A TRIVIAL REMARK ON GOLDBACH CONJECTURE
 BY

K. RAMACHANDRA
§ 1. INTRODUCTION. In [3] S. Srinivasan has proved the following conditional theorem. (We write $e(x)=\exp (2 \pi i x)$).
THEOREM. Let $B>10$ be arbitrary. Suppose there is a function δ_{B} tending to zero as $B \rightarrow \infty$, such that

$$
\left|\int_{\mathcal{M}_{3}} S^{2}(\alpha) e(-N \alpha) d \alpha\right|<\delta_{B} \frac{N}{(\log N)^{2}}\left(\frac{N}{\varphi(N)}\right)
$$

where $S(\alpha)=\sum_{p \leq X} e(p \alpha)(p: p r i m e s), N=[X]$ and \mathcal{M}_{3} is the part of the minor arcs corresponding to denominators q,

$$
Q(\log X)^{-2}<q<Q
$$

with $Q=X(\log X)^{-B}$. Then the number $r(N)$ of representations of N as a sum of two odd primes satisfies

$$
r(N)=(1+o(1)) S_{0}(N) T(N)
$$

as $N \rightarrow \infty$, where $T(N)=\Sigma\left(\log m_{1} \log m_{2}\right)^{-1}$ the summation being over integers $m_{1}>1, m_{2}>1$ and $m_{1}+m_{2}=N$, and

$$
S_{0}(N)=\prod_{p \mid N}\left(1-\frac{1}{(p-1)^{2}}\right) \prod_{p \mid N}\left(1+\frac{1}{p-1}\right)
$$

The analogous statement holds good for the twin-primes conjecture also.
In this note we prove the theorem above with $Q(\log X)^{-2}<q<Q$ replaced by $Q(\log X)^{-1-\varepsilon}<q<Q$ where $\varepsilon>0$ is any small constant. (In conversation with Srinivasan I came to know that he also knew this result. In fact it follows by his conditions on A, B, C. However my treatment is different.)

We now describe his basic and supplementary intervals. Let

$$
L=\log X, Q=X L^{-B}, Q_{1}=L^{A}, Q_{0}=X L^{-(B+C)}
$$

where the constants A, B, C satisfy

$$
A>3(B+C), B>1, C>1
$$

Let \mathcal{M}_{1}, be the union of α-intervals defined by

$$
\left|\alpha-\frac{h}{q}\right|<\frac{1}{Q}, 0 \leq h<q,(h, q)=1, \text { and } q \leq Q_{1}
$$

These intervals are disjoint and

$$
\int_{\mathcal{M}_{1}} S^{2}(\alpha) e(-N \alpha) d \alpha=T(N) S_{0}(N)+O\left(\frac{1}{A} \frac{N}{Q(N)} \frac{N}{(\log N)^{2}}\right)
$$

\mathcal{M}_{2} is in union of the α-intervals defined by

$$
\mathcal{M}_{2}=\bigcup_{Q_{1} \leq q \leq Q_{0}} \bigcup_{\substack{h=0 \\(\lambda, q)=1}}^{q-1} \mathcal{M}(h, q)
$$

where $\mathcal{M}(h q)=\left[\frac{h}{q}-(q Q)^{-1}, \frac{h}{q}+(q Q)^{-1}\right]$.

Let

$$
I=\left[-Q^{-1}, 1-Q^{-1}\right] \text { and } \mathcal{M}=\bigcup_{1 \leq q \leq Q} \bigcup_{\substack{h=0 \\(h, q)=1}}^{q-1} \mathcal{M}(h, q)
$$

We know that $\mathcal{M}=I$ and we have to get an asymptotic formula for

$$
\int_{I} S^{2}(\alpha) e(-N \alpha) d \alpha
$$

We put $\mathcal{M}_{3}=I-\left(\mathcal{M}_{1} \cup \mathcal{M}_{2}\right)$ and we get the result of Srinivasan. (To sum up, the basic intervais treatment of Srinivasan follows Prachar (see [2] p.182) and that of Gailagher (see [1], Lemma 7) and his supplementary intervals treatment involves a simple but new idea). We give in the next section our new treatment of supplementary intervals.
§ 2. NEW TREATMENT OF SUPPLEMENTARY INTERVALS. In Lemmas 2 to 5 constants implied by the Vinogradov symbol \ll depend on the integer constant k.
LEMMA 1. Let v and γ be any two real numbers and $f(x)$ a k times continuously differentiable function defined in $v \leq x \leq v+k \gamma$. Then

$$
\begin{gathered}
\int_{0}^{\gamma} \cdots \int_{0}^{\gamma} f^{k}\left(v+u_{1}+\cdots+u_{k}\right) d u_{1} \cdots d u_{k} \\
=f(v+k \gamma)-\binom{k}{1} f(v+(k-1) \gamma)+\cdots+(-1)^{k} f(v)
\end{gathered}
$$

PROOF. The lemma follows by induction on \boldsymbol{k}.
LEMMA 2. Let Q_{0}, Q_{1}, Q and q be positive integers with

$$
Q_{1} \leq q \leq Q_{0} \leq Q .
$$

Let a be an integer satisfying $1 \leq a \leq q,(a, q)=1, \gamma$ a real number satisfying $|\gamma| \leq \frac{1}{q Q_{0}}, k$ a fixed natural number, $v=\frac{a}{q}+\beta$ with $0 \leq|\beta| \leq \frac{1}{q Q}$. Put $F(x)=\sum_{p \leq N} e(p x)$ where N is any natural number and $f(x)=|F(x)|^{2}$. Then

$$
f(v) \ll \frac{N^{k+2}}{(\log N)^{2}\left(q Q_{0}\right)^{k}}+\sum_{j=1}^{k} f(v+j \gamma)
$$

PROOF. The first term on the RHS comes from a trivial estimation of the multiple integral in Lemma 1 and the second term is obvious.
LEMMA 3. We have,

$$
\begin{gathered}
\frac{2 f(v)}{q Q_{0}}=\int_{|\gamma| \leq \frac{1}{Q_{0}}} f(v) d \gamma \\
\ll \frac{N^{k+2}}{(\log N)^{2}\left(q Q_{0}\right)^{k+1}}+\int_{|w| \leq \frac{k+1}{Q}} f\left(\frac{a}{q}+w\right) d w .
\end{gathered}
$$

PROOF. Follows from Lemma 2 on integration with respect to γ since for $1 \leq j \leq k$ we have

$$
\int_{|\gamma| \leq \frac{1}{Q_{0}}} f\left(\frac{a}{q}+\beta+j \gamma\right) d \gamma \ll \int_{|w| \leq \frac{k+1}{Q_{0}}} f\left(\frac{a}{q}+w\right) d w
$$

(on putting $\boldsymbol{\beta}+\boldsymbol{j} \boldsymbol{\gamma}=\boldsymbol{w}$).
LEMMA 4. Any fixed interval

$$
\frac{a}{q} \pm \frac{k+1}{q Q_{0}}\left(1 \leq a \leq q,(a, q)=1,1 \leq q \leq Q_{0}\right)
$$

intersects at most $O(1)$ other intervals and so

$$
\begin{aligned}
& \sum_{q \leq Q_{0}} \sum_{a} \int_{|B| \leq \frac{1}{q}} \int_{|w| \leq \frac{k+1}{Q} Q_{0}} f\left(\frac{a}{q}+w\right) d w \\
& \ll\left(\int_{0}^{1} f(x) d x\right) \frac{Q_{0}}{Q} \ll \frac{N}{\log N}\left(\frac{Q_{0}}{Q}\right)
\end{aligned}
$$

PROOF. Follows by the remark that the innermost integral on the LHS is independent of β.
LEMMA 5. We have

$$
\sum_{Q_{1} \leq q \leq Q_{0}} \sum_{a} \int_{|\beta| \leq \frac{1}{q} Q} f\left(\frac{a}{q}+\beta\right) d \beta
$$

$$
\ll \frac{N^{2}}{Q(\log N)^{2}}\left(\frac{N}{Q_{0} Q_{1}}\right)^{k}+\frac{N}{\log N}\left(\frac{Q_{0}}{Q}\right) .
$$

PROOF. By Lemma 3, we have,

$$
\sum_{a} f\left(\frac{a}{q}+\beta\right) \ll \frac{N^{k+2} q Q_{0}}{(\log N)^{2}\left(q Q_{0}\right)^{k+1}}+q Q_{0} \sum_{a} \int_{|\gamma| \leq \frac{k+1}{q} Q_{0}} f\left(\frac{a}{q}+w\right) d w
$$

Integrating with respect to β in $|\beta| \leq \frac{1}{q Q}$ and summing over q in

$$
Q_{1} \leq q \leq Q_{0}
$$

we obtain

$$
\begin{gathered}
\sum_{Q_{1} \leq q \leq Q_{0}} \sum_{a} \int_{\left\lvert\, \beta i \leq \frac{1}{q}\right.} f\left(\frac{a}{q}+\beta\right) d \beta \\
\frac{N^{k+2}}{(\log N)^{2}} \sum_{q \geq Q_{1}} \frac{q Q_{0}}{\left(q Q_{0}\right)^{k+1}}\left(\frac{1}{q Q}\right)+\left(\frac{Q_{0}}{Q}\right)\left(\frac{N}{\log N}\right) \\
<\frac{N^{2}}{Q(\log N)^{2}}\left(\frac{N}{Q_{0} Q_{1}}\right)^{k}+\left(\frac{Q_{0}}{Q}\right)\left(\frac{N}{\log N}\right) .
\end{gathered}
$$

This proves the lemma.
§ 3. REMARKS. The basic intervals are already investigated by S. Srinivasan [3]. The application of the results of $\S 2$ to estimation of a trivial portion of supplementaryintervals is clear. For instance we can take

$$
Q=\frac{N}{(\log N)^{A}}, Q_{0}=N(\log N)^{-A-1-\varepsilon}, Q_{1}=(\log N)^{A+1+2 \varepsilon}, k \geq k_{0}(\varepsilon, A)
$$

ACKNOWLEDGEMENT. The author wishes to thank Dr. S. SRINIVASAN for going through an earlier draft of this note.

REFERENCES

1. P.X. GALLAGHER, Primes and powers of 2, Invent Math. 29 (1975), 125-142.
2. K. PRACHAR, Primzahlverteilung, Berlin/New York, (1957).
3. S. SRINIVASAN, A remark on Goldbach problem, J. Number Theory 12 (1980), 116-121.

ADDRESS OF THE AUTHOR
PROFESSOR K. RAMACHANDRA SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD
BOMBAY 400005
INDIA

