ON INFINITUDE OF PRIMES

By

S. SRINIVASAN

Let $x_m (m > 1)$ be an increasing sequence of positive integers satisfying

(1)
$$x_m + x_{m+1}, (x_m, x_{m+1} / x_m) = 1$$

This immediately implies the infinitude of primes. For example, $a(n) = n^2 + n + 1$ satisfies $a(n^2) = a(n) a(-n)$ and (a(n), a(-n)) = 1 giving (1) with, in particular, $x_m = a(2^2^m)$.

Further, for given prime p, taking $x_m = 2^{p^m} - 1$ we see that (1) is fulfilled, because then if a prime q divide x_m one has

(2) $x_{m+1} / x_m = 1 + (x_m + 1) + \dots + (x_m + 1)^{p-1}$ = p(mod q);

i.e., $(x_m, x_{m+1} / x_m)$ divides p; but $x_m \equiv 1 \pmod{p}$.

Now, from (1), it easily follows that $q \equiv 1 \pmod{p^{m+1}}$ for every prime q dividing x_{m+1} / x_m ;

in particular we have infinitude of primes $\approx 1 \pmod{p}^r$ for any given prime p and r > 1.

Actually, on the same principle, one can prove the infinitude of primes $\equiv 1 \pmod{k}$ for any given integer k (> 1). In fact, we can prove the following theorem. Theorem.

Let K (> 1), k (> 1) be given integers. Then, for infinitely many primes q, we have

(3)
$$\mathbf{e}_{\mathbf{K}}(\mathbf{q}) \equiv O \pmod{k \begin{bmatrix} \mathbf{c}_{\mathbf{k}} & \log \log \mathbf{q} \end{bmatrix}}$$

with a certain $c_k > 0$, where $c_K(q)$ denotes the exponent of K modulo q. In particular,

(3') $q \equiv 1 \pmod{k}$ for an infinity of primes q.

Proof.

Let $k = \frac{s}{\pi} p_i^{a_i}$ ($a_i > 1$; primes $p_1 < ... < p_s$) and set, for r > 1, $n = k^r$. Next, define $d_i = np_i^{-ra_i}$ and, for m > 1,

(4)
$$y_{m} = K_{1}^{n^{m}} - (-1)^{k};$$

 $y'_{m} = l c m (y_{m}, y_{m,1}, ..., y_{m,s}),$
where $y_{m,i} = K_{1}^{d_{i}^{m+1}p_{i}^{ra_{i}}} - (-1)^{k}$, and
 $K_{1} = K^{\phi(k)}.$

Observe that

(5)
$$(y_{j},K_{1}) = 1; y'_{m} + y_{m+1}$$

(set $y'_{m}y''_{m} = y_{m+1}$).

Now consider m' = n^m + n^{m + 1} (p₁ - rma₁ - rma_s) $< c n^{m+1}$ with $c = \frac{11}{12}$. (For n = 2,3, check $c > \frac{3}{4}$ suffices; and for n > 4, $c > \frac{\pi^2}{6} - 1 + \frac{1}{4}$ suffices.) Hence we have

$$y''_{m} \ge \left(\frac{1}{2}K_{1}^{m+1}\right)/(2^{s+1}K_{1}^{m'}) \ge K_{1}^{-(s+2)+n^{m+1}/12}$$

Because s < n-1, we obtain

(5')
$$y''_{m} > K_{1}^{n} (m > 5).$$

As with (2), we get

(6)
$$(y'_{m}, y'_{m}) = 2^{B}$$

for some B > 0.

Case i.

k odd. Note that $y_j \neq 0 \pmod{4}$, and so by (5') there is an odd prime q dividing y_m ''. Now (since (K, q) = 1 by (5)) $e_K(q)$ divides $2\phi(K) n^{m+1}$ but does not divide $\phi(k) n^{m+1}$. Denoting by b_i the exact power of p_i in $e_K(q)$, suppose for some i, $b_i < a_i$ r. This would mean that $e_K(q)$ divides $2\phi(k) d_i^{m+1} p_i^{ra_i}$ but does not divide $\phi(k) d_i^{m+1} p_i^{ra_j}$, Consequently $q \mid y_{m, i} \mid y'_m$ in contradiction to (6)

So,
$$b_i > ra_i$$
 ($1 < i < s$), i. e.,
(7') $k^r + e_K$ (q) $+ 2\phi$ (k) n^{m+1} ; $m > 5$.

Taking here m = 5, say we get $q < K_1^{k^{1+6r}} < K_1^{k^{sr}}$ giving(3). This completes the proof in this case (on letting $r \to \infty$.) Case (ii)

k even. Now we proceed to determine α_j , the exact power of 2 in y_j. If K is even, we have $\alpha_j = 0$. If $K = 2^{\alpha}K_0 + 1$, $K_0 = 2^{\beta}K' - 1$ with $\alpha > 1$, $\beta > 1$ and K' odd, we see that $\alpha_j = A + \beta_1 + rj\beta_2$, where β_1 , β_2 denote the exact power of 2 in ϕ (k), k (respectively) and $A = \alpha$ or $A = \beta + 1$ according as $\alpha \neq 1$, or $\alpha = 1$. Thus the exact power of 2 in y_{m+1} / y_m is $\alpha_{m+1} - \alpha_m = r\beta_2$. Since $r\beta_2 < n$ (trivially), we again conclude that y''_m has an odd prime divisor q. Proceeding, as in (i), with this q we can conclude that

(7")
$$k^{r} + e_{K}(q) + \phi(k) n^{m+1}; m > 5.$$

The proof is completed again as before (in (i)).

Remarks.

(i) Taking r = 1 above, with K = 2 say, we obtain that for any given k (> 1) there is a prime $q \equiv 1 \pmod{k}$, with $q < 2^k^7$.

(ii) For given K (> 1), k (> 1) denoting by Q_{K} (k) the set of primes q (constructed as in the above proof, with r > 1), we can conclude from (7'), (7") that Q_{K} (k_{1}) and Q_{K} (k_{2}) are disjoint if k, has a prime factor not dividing k, ϕ (k₁).

In particular,

(8)
$$Q_{\mathbf{K}}(p) \cap Q_{\mathbf{K}}(p') = \phi$$
, primes $p \neq p'$.

(iii) For given k (> 2), we can prove also the infinitude of primes $\neq 1 \pmod{k}$ via sequences x_m satisfying (1). To this

end, we see easily that it suffices if further $x_{m+1}/x_m \neq 1$ (mod k) for sufficiently large m. These conditions are fulfilled by the choice $x_m = q^q^m - (-1)^q$, where (for example) q = 2, if k is not a power of 2 and q = 3, otherwise. (More can be similarly proved; like $q \equiv l \pmod{k}$ for some $l^2 \neq 1 \pmod{k}$. if $k \times 24$. However, these will appear elsewhere.)

(iv) Also, we have from (7'), (7'') that
(9)
$$P(e_{K}(q)) = P(k)$$

holds for infinitely many primes $q \equiv 1 \pmod{k} \begin{bmatrix} c_k \log \log q \end{bmatrix}$ where P(m) denotes the greatest prime divisor of m.

(v) Perhaps the remarks in the current article are at least anticipated, as suggested by Professor H. Halberstam pointing out Px. 5° on p. 59 of [1]. However, it may be noted that, writing $f_n(x)$ for the polynomial f(x) in the above exercise (which is close to the second paragraph of this article), the present article treats, in contrast, x as *fixed* and n as *varying*.

Acknowledgement.

I wish to express my thanks to Professor K. Ramachandra for checking through the manuscript. Also, I wish to thank I rofessor H. Halberstam for his comment (in Remark (v) above)

Reference

1. W. J. Le Veque, Topics in Number Theory, Vol I, Addison-Wesley (1956).

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400 005 (India)