ON INFINITUDE OF PRIMES

By
S. RINIVASAN

Let $\mathrm{x}_{\mathrm{m}}(\mathrm{m} \geqslant 1)$ be an increasing sequence of positive integers satisfying

$$
\begin{equation*}
x_{m} x_{m+1},\left(x_{m}, x_{m+1} / x_{m}\right)=1 \tag{1}
\end{equation*}
$$

This immediately implies the infinitude of primes. For example, $a(n)=n^{2}+n+1$ satisfies $a\left(n^{2}\right)=a(n) a(-n)$ and $\mathrm{a}(\mathrm{n}), \mathrm{a}(-\mathrm{n})$) $=1$ giving (1) with, in particular, $\mathrm{x}_{\mathrm{m}}=\mathrm{a}\left(2^{2^{m}}\right)$.

Further, for given prime p, taking $x_{m}=2^{p^{m}}-1$ we see that (1) is fulfilled, because tiva if a prime q divide x_{m} one has (2) $x_{m+1} / x_{m}=1+\left(x_{m}+1+\cdots+\left(x_{m}+1\right)^{p-1}\right.$

$$
\equiv \mathrm{p}(\bmod \mathrm{q}) ;
$$

i. e, $\left(x_{m}, x_{m+1} / x_{m}\right)$ divides p; but $x_{m}=1(\bmod p)$.

Now, from (1), it easily follows that $q \equiv 1\left(\bmod p^{m+1}\right)$ for every prime q dividing $\mathrm{x}_{\mathrm{m}+1} / \mathrm{x}_{\mathrm{m}}$;
in particular we have infinitude of primes $\not \equiv 1\left(\bmod p^{r}\right)$ for any given prime p and $\mathrm{r}>1$.

Actually, on the same princlple, one can prove the infinitude of primes $=1(\bmod k$ for any giver integer $k(>1)$. In fact, we can prove the following theorem.

Theorem.

Let $\mathrm{K}(>1), \mathrm{k}(>1)$ be given integers. Then, for infinitely many primes q, we have

$$
\begin{equation*}
e_{K}(q)=O\left(\bmod k^{\left[c_{k} \log \log q\right]}\right) \tag{3}
\end{equation*}
$$

with a certain $c_{k}>0$, where $e_{K}(q)$ denotes the exponent of K modulo q. In particular,

$$
\begin{equation*}
q \equiv 1(\bmod k) \text { for an infinity of primes } q . \tag{3'}
\end{equation*}
$$

Proof.
set, for $r>1, n=k^{r}$. Next, define $d_{i}=n p_{i}^{-r a_{i}}$ and, for $\mathrm{m}>1$,

$$
\begin{align*}
& y_{\mathrm{m}}=\mathrm{K}_{1}^{\mathrm{n}^{\mathrm{m}}}-(-1)^{\mathrm{k}} \tag{4}\\
& \mathrm{y}_{\mathrm{m}}^{\prime}=l \mathrm{~cm}\left(\mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}, 1}, \ldots, \mathrm{y}_{\mathrm{m}, \mathrm{~s}}\right)
\end{align*}
$$

where $y_{m, i}=K_{1}{ }^{d_{i}^{m+1}}{ }_{p_{i}}^{r a}-(-1)^{k}$, and

$$
\mathrm{K}_{1}=\mathrm{K}^{\phi(\mathrm{k})}
$$

Observe that

$$
\begin{align*}
& \left(y_{j}, \mathrm{~K}_{1}\right)=1 ; \mathrm{y}_{\mathrm{m}}^{\prime}{ }^{\prime y_{m+1}} \tag{5}\\
& \left(\text { set } \mathrm{y}_{\mathrm{m}}^{\prime} \mathrm{y}^{\prime \prime}{ }_{\mathrm{m}}=\mathrm{y}_{\mathrm{m}+1}\right)
\end{align*}
$$

Now consider $m^{\prime}=n^{m}+n^{m+1}\left(p_{1}{ }^{-r m a_{1}}+\ldots+p_{8}^{-r m a_{8}}\right)$ $\leqslant \mathrm{c} \mathrm{n}^{\mathrm{m}+1}$ with $\mathrm{c}=\frac{11}{12}$. (For $\mathrm{n}=2,3$, check $\mathrm{c}>\frac{3}{4}$ suffices;
and for $n>4, c>\frac{\pi^{2}}{6}-1+\frac{1}{4}$ suffices.) Hence we have $y^{\prime \prime}{ }_{m}>\left(\frac{1}{2} K_{1}^{n^{m+1}}\right),\left(2^{s+1} K_{1}^{m^{\prime}}\right)>K_{1}^{-(s+2)+n^{m+1} / 12}$

Because $s<n-1$, we obtain

$$
y_{m}^{*}>K_{1}^{n} \quad(m>5)
$$

As with (2), we get

$$
\begin{equation*}
\left(y_{m}^{\prime}, y_{m}^{\prime \prime}\right)=2^{B} \tag{6}
\end{equation*}
$$

for some $\mathbf{B} \boldsymbol{>} \mathbf{0}$.
Case i.
k odd. Note that $\mathrm{y}_{\mathrm{j}} \neq 0(\bmod 4)$, and so by $\left(5^{\prime}\right)$ there is an odd prime q dividing $y_{m}{ }^{\prime \prime}$. Now (since $(K, q)=1$ by (5)) $e_{K}(\mathrm{q})$ divides $2 \phi(\mathrm{~K}) \mathrm{n}^{\mathrm{m}+1}$ but does not divide $\phi(\mathrm{k}) \mathrm{n}^{\mathrm{m}+1}$. Denoting by b_{i} the exact power of p_{i} in $e_{K}(q)$, suppose for some $\mathrm{i}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}<\mathrm{a}_{\mathrm{i}}$. r . This would mean that e_{K} (q) divides $2 \phi(k) d_{i}^{m+1}{ }_{p_{i}}^{r a}{ }_{i}$ but does not divide $\phi(k) d_{i}^{m+1}{ }_{p_{i}}^{r a}{ }_{i}$,

$$
\begin{align*}
& \text { So, } b_{i}>r a_{i}(1<i<s), \text { i. e., } \\
& \quad k^{r}\left|e_{K}(q)\right| 2 \phi(k) n^{n+1} ; \quad m>s . \tag{7'}
\end{align*}
$$

Taking here $m=5$, say we get $q<K_{1}^{k^{1+6 r}}<K^{k^{8 r}}$ giving(3). This completes the proof in this case (on letting $\mathrm{r} \rightarrow \infty$.)

Case (ii)

\mathbf{k} even. Now we proceed to determine α_{j}, the exact power of 2 in y_{j}. If K is even, we have $\alpha_{j}=0$. If $K=2^{\alpha} K_{0}+1$, $K_{0}=2^{\beta} K^{\prime}-1$ with $\alpha>1, \beta>1$ and K^{\prime} odd, we see that ${ }^{\alpha}{ }_{j}=A+\beta_{1}+\mathrm{rj} \beta_{2}$, where β_{1}, β_{2} denote the exact power of 2 in $\phi(k), k$ (respectively) and $\mathbf{A}=\alpha$ or $\mathbf{A}=\beta+1$ according as $\alpha \neq 1$, or $\alpha=1$. Thus the exact power of 2 in y_{m+1} / y_{m} is $\alpha_{\mathrm{m}+1}-\dot{\alpha}_{\mathrm{m}}=\mathrm{r} \beta_{2}$. Since $\mathrm{r} \beta_{2}<\mathrm{n}$ (trivially), we again conclude that $\mathrm{y}^{\prime \prime}$ mas an odd prime divisor q . Proceeding, as in (i), with this q we can conclude that (7") $\quad k^{r}\left|e_{K}(q)\right| \phi(k) n^{m+1} ; m>5$.
The proof is completed again as before (in (i)).

Remarks.

(i) Taking $\mathrm{r}=1$ above, with $\mathrm{K}=2$ say, we obtain that for any given $\mathrm{k}(>1)$ there is a prime $\mathrm{q}=1(\bmod k)$, with $q<2^{k^{7}}$.
(ii) For given $\mathrm{K}(>1), \mathrm{k}(>1)$ denoting by Q_{K} (k) the set of primes q (constructed as in the above proof, with $r>1$), we can conclude from (7^{\prime}), ($7^{\prime \prime}$) that $Q_{K}\left(k_{1}\right)$ and $Q_{K}\left(k_{2}\right)$ are disjoint if k_{j} has a prime factor not dividing $k_{i} \phi\left(k_{i}\right)$.

In particular,

$$
\begin{equation*}
\mathrm{Q}_{\mathbf{K}}(\mathrm{p}) \cap \mathrm{Q}_{K^{\prime}}\left(\mathrm{p}^{\prime}\right)=\phi, \text { primes } \mathrm{p} \neq \mathrm{p}^{\prime} \tag{8}
\end{equation*}
$$

(iii) For given $\mathrm{k}(>2)$, we can prove also the infinitude of primes $\neq 1(\bmod k)$ via sequences x_{m} satisfying (1). To this
end, we see easily that it suffices if further $x_{m+1} / x_{m} \neq 1$ $(\bmod \mathrm{k})$ for sufficiently large m . These conditions are fulfilled by the choice $x_{m}=q^{q}-(-1)^{q}$, where (for example) $q=2$, if k is not a power of 2 and $\mathrm{q}=3$, otherwise. (More can be similarly proved; like $q \equiv l(\bmod k)$ for some $l^{2} \neq 1(\bmod k)$. if $\mathbf{k} \times 24$. However, these will appear elsewhere.)
(iv) Also, we have from (7^{\prime}), $\left(7^{\prime \prime}\right)$ that

$$
\begin{equation*}
\mathbf{P}\left(e_{\mathbf{K}}(\mathrm{q})\right)=\mathbf{P}(\mathbf{k}) \tag{9}
\end{equation*}
$$

holds for infinitely many primes $q=1\left(\bmod k^{\left[c_{k} \log \log q\right]}\right.$) where $P(m)$ denotes the greatest prime divisor of m.
(v) Perhaps the remarks in the current article are at least anticipated, as suggested by Professor H. Halberstam pointing out Ex. $5^{\text {e }}$ on p. 59 of [1]. However, it may be noted that, writing $f_{n}(x)$ for the polynomial $f(x)$ in the above exercise (which is close to the second paragraph of this article), the present article treats, in contrast, x as fixed and n as varying.

Acknowledgement.
I wish to express my thanks to Prufessor K. Ramachandra for checking through the manuscript. Also, I wish to thank 1 rofessor H. Halberstam for his comment (in Remark (v) above)

Reference

1. W. J. Le Veque, Topics in Number Theary, Vol I, AddisonWesley (1956).

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005 (India)

