Hardy-Ramanujan Journal
Vol. 13 (1990) 21-27

PROOF OF SOME CONJECTURES ON THE MEAN-VALUE OF TITCHMARSH SERIES WITH APPLICATIONS TO TITCHMARSH'S PHENOMENON

BY
 K. RAMACHANDRA

§ 1. INTRODUCTION. This is a continuation of $[R]_{1}$ but no previous knowledge of this paper is necessary. In fact we improve these results a good deal. However for some applications of the main results of the present paper, a knowledge of the results of [BRS] is assumed. The main results of the present paper are the following two theorems on what I call weak Titchmarsh series. We begin with a definition.

WEAK TITCHMARSH SERIES. Let $0 \leq \varepsilon<1, D \geq 1, C \geq 1$ and $H \geq 10$. Put $R=H^{\varepsilon}$. Let $a_{1}=\lambda_{1}=1$ and $\left\{\lambda_{n}\right\}(n=1,2,3, \cdots)$ be any sequence of real numbers with $\frac{1}{C} \leq \lambda_{n+1}-\lambda_{n} \leq C(n=1,2,3, \cdots)$ and $\left\{a_{n}\right\}(n=1,2,3, \cdots)$ any sequence of complex numbers satisfying

$$
\sum_{\lambda_{n} \leq X}\left|a_{n}\right| \leq D(\log X)^{R}
$$

for all $X \geq 3 C$. Then for complex $s=\sigma+i t(\sigma>0)$ we define the analytic function $F(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{-s}$ as a weak Titchmarsh series associated with the parameters occuring in the definition.

THEOREM 1 (FOURTH MAIN THEOREM). For a weak Titchmarsh series $F(s)$ with $H \geq 36 C^{2} H^{\varepsilon}$, we have

$$
\lim \inf _{\sigma \rightarrow+0} \int_{0}^{H}|F(\sigma+i t)| d t \geq H-36 C^{2} H^{\epsilon}-12 C D
$$

THEOREM 2 (FIFTH MAIN THEOREM). For a weak Titchmarsh series $F(s)$ with $\log H \geq 4320 C^{2}(1-\varepsilon)^{-5}$, we have,

$$
\lim \inf _{\sigma \rightarrow+0} \int_{0}^{H}|F(\sigma+i t)|^{2} d t \geq \sum_{n \leq M}\left(H-\frac{H}{\log H}-100 C^{2} n\right)\left|a_{n}\right|^{2}-2 D^{2}
$$

where $M=\left(36 C^{2}\right)^{-1} H^{1-\varepsilon}(\log H)^{-4}$.
REMARKS. Theorems 1 and 2 have been refered to as the fourth and the fifth main theorems in $[R]_{2}$. Also we remark that it is not difficult to improve the conditions in the theorems slightly.
§ 2. PROOF OF THEOREM 1. We can argue with $\sigma>0$ and then pass to the limit as $\sigma \rightarrow+0$. But formally the notation is simplified if we treat as though $F(s)$ is convergent absolutely if $\sigma=0$ and there is no loss of generality. Let r be a positive integer and $0<U \leq r^{-1} H$. Then since $|F(s)| \geq 1+\operatorname{Re}\left(F(s)\right.$), we have (with $\lambda=u_{1}+\cdots+u_{r}$),

$$
\begin{aligned}
\int_{0}^{H}|F(i t)| d t & \geq U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{\lambda}^{H-r U+\lambda}|F(i t)| d t \\
& \geq U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{\lambda}^{H-r U+\lambda}\{1+\operatorname{Re}(F(i t))\} d t \\
& \geq H-r U-2^{r+1} U^{-r} J
\end{aligned}
$$

where $J=\sum_{n=2}^{\infty}\left|a_{n}\right|\left(\log \lambda_{n}\right)^{-r-1}$. Now $J=S_{0}+\sum_{j=1}^{\infty} S_{j}$ where $S_{0}=\sum_{\lambda_{n} \leq 3 C}$ $\left|a_{n}\right|\left(\log \lambda_{n}\right)^{-r-1}$ and $S_{j}=\sum_{3^{j} C \leq \lambda_{n} \leq 3^{j+1} C}\left|a_{n}\right|\left(\log \lambda_{n}\right)^{-r-1} . \operatorname{In} S_{0}$ we use $\lambda_{n} \geq \lambda_{2} \geq 1+C^{-1}$ and so $\left(\log \lambda_{n}\right)^{-r-1} \leq(2 C)^{r+1}$ and we obtain $S_{0} \leq D(2 C)^{r+1}(3 C)^{R}$. Also, we have,

$$
\begin{aligned}
S_{j} & \leq D\left(\log \left(3^{j+1} C\right)\right)^{R}\left(\log \left(3^{j} C\right)\right)^{-r-1} \\
& \leq D 2^{R}\left(\log \left(3^{j} C\right)\right)^{R-r-1},\left(\text { since } 3^{j+1} C \leq\left(3^{j} C\right)^{2}\right) \\
& \leq D 2^{R} j^{-2} \text { by fixing } r=[3 R]
\end{aligned}
$$

Thus for $r=[3 R]$ we have

$$
\begin{aligned}
J & \leq D(2 C)^{r+1}(3 C)^{R}+2 D 2^{R},\left(\text { since } \sum_{j=1}^{\infty} j^{-2}<2\right) \\
& \leq 3 D(2 C)^{r+1}(3 C)^{R}
\end{aligned}
$$

Collecting we have,

$$
\begin{aligned}
2^{r+1} U^{-r} J & \leq 12 C D(3 C)^{R}\left(\frac{4 C}{U}\right)^{r} \\
& \leq 12 C D\left(\frac{12 C^{2}}{U}\right)^{R} \text { if } U \geq 4 C \\
& \leq 12 C D \text { by fixing } U=12 C^{2}
\end{aligned}
$$

The only condition which we have to satisfy is $r U \leq H$ which is secured by $H \geq 36 C^{2} H^{c}$. This completes the proof of Theorem 1.
§ 3. PROOF OF THEOREM 2. We write $\lambda=u_{1}+\cdots+u_{r}$, where $0 \leq u_{i} \leq U$ and $0<U \leq r^{-1} H$. We put $M_{1}=[M], A(s)=\sum_{m \leq M_{1}} a_{m} \lambda_{m}^{-*}$ and $B(s)=\sum_{n \geq M_{1}+1} a_{n} \lambda_{n}^{-s}$ so that $F(s)=A(s)+B(s)$. For the moment we suppose M to be a free parameter with the restriction $3 \leq M \leq H$. We use

$$
|F(i t)|^{2} \geq|A(i t)|^{2}+2 \operatorname{Re}(A(i t) \overline{B(i t)}) .
$$

Now by a well-known theorem of H.L. Montgomery and R.C. Vaughan we have

$$
\int_{\lambda}^{H-r U+\lambda}|A(i t)|^{2} d t \geq \sum_{n \leq M}\left(H-r U-100 C^{2} n\right)\left|a_{n}\right|^{2}
$$

Next the absolute value of

$$
\begin{equation*}
2 U^{-r} \int_{0}^{U} d u_{\tau} \cdots \int_{0}^{U} d u_{1} \int_{\lambda}^{H-r U+\lambda}\left(A(i t) \frac{\cdot}{B(i t)}\right) d t \tag{3.1}
\end{equation*}
$$

does not exceed

$$
\begin{aligned}
& 2^{r+2} U^{-r} \sum_{m \leq M_{1}, n \geq M_{1}+1}\left|a_{m} a_{n}\right|\left(\log \frac{\lambda_{n}}{\lambda_{m}}\right)^{-r-1} \\
& \leq 2^{r+2} U^{-r}\left(\sum_{m \leq M_{1}}\left|a_{m}\right|\right)\left(\sum_{n \geq M_{1}+1}\left|a_{n}\right|\left(\log \frac{\lambda_{n}}{\lambda_{M_{1}}}\right)^{r+1}\right)
\end{aligned}
$$

Here the m-sum is $\leq D\left(\log \lambda_{M_{1}}\right)^{R} \leq D(\log (3 M C))^{R}$, since $\lambda_{M_{1}} \leq M_{1} C \leq$ $M C$. It is enough to choose $M \geq 1$ for the bound for the m-sum. The n-sum can be broken up into $\lambda_{n} \leq 3 \lambda_{M_{1}}$ and $3^{j} \lambda_{M_{1}}<\lambda_{n} \leq 3^{j+1} \lambda_{M_{1}}$ ($j=$
$1,2,3, \cdots)$. Let us denote these sums by S_{0} and S_{j}. Now since $\left(\log \frac{\lambda_{n}}{\lambda_{M_{1}}}\right) \geq$ $\left(\log \frac{\lambda_{M_{1}+1}}{\lambda_{M_{1}}}\right) \geq \log \left(1+\frac{1}{C \lambda_{M_{1}}}\right) \geq\left(2 C \lambda_{M_{1}}\right)^{-1} \geq\left(2 C^{2} M\right)^{-1}$, we obtain

$$
S_{0} \leq D\left(\log \left(3 \lambda_{M_{1}}\right)\right)^{R}\left(2 C^{2} M\right)^{r+1} \leq D(\log (3 M C))^{R}\left(2 C^{2} M\right)^{r+1}
$$

Also

$$
\begin{aligned}
S_{j} & \leq D\left(\log \left(3^{j+1} \lambda_{M_{1}}\right)\right)^{R}(j \log 3)^{-r-1} \\
& \leq D(j \log 3+\log (3 M C))^{R} j^{-r-1} \\
& \leq 2^{R} D(j \log 3)^{R}(\log (3 M C))^{R_{j}-r-1} \\
& \leq 4^{R} D(\log (3 M C))^{R_{j}-2}, \text { if } r \geq R+1
\end{aligned}
$$

and so (since $\sum_{j=1}^{\infty} j^{-2}<2$),

$$
\left(\sum_{m} \cdots\right)\left(\sum_{n} \cdots\right) \leq D^{2}(\log (3 M C))^{R}(\log (3 M C))^{R} Y
$$

(where $\left.Y=\left(2 C^{2} M\right)^{r+1}+2\left(4^{R}\right)\right)$

$$
\leq D^{2}(\log (3 M C))^{2 R}\left(\left(2 C^{2} M\right)^{r+1}+2\left(4^{R}\right)\right)
$$

Hence the absolute value of the expression (3.1) does not exceed

$$
\begin{align*}
& D^{2}(\log (3 M C))^{2 R}\left(\left(8 C^{2} M\right)\left(\frac{4 C^{2} M}{U}\right)^{r}+2\left(\frac{4^{R}}{U^{r}}\right)\right) \tag{3.2}\\
\leq & D^{2}\left\{8 C^{2} M\left(\frac{4 C^{2} M(\log (3 M C))^{2}}{U}\right)^{R+\log \left(8 C^{2} M\right)}+2\left(\frac{4}{U}\right)^{R}\right\}
\end{align*}
$$

if $U \geq 4 C^{2} M$ and $r \geq R+\log \left(8 C^{2} M\right)$. We put $U=12 C^{2} M(\log (3 M C))^{2}$ and obtain for (3.2) the bound $D^{2}\{1+1\} \leq 2 D^{2}$. The conditions to be satisfied are $M \geq 1$ and

$$
12 C^{2} M(\log (3 M C))^{2}\left(R+\log \left(8 C^{2} M\right)+1\right) \leq H
$$

In fact we can satisfy $U r \leq \frac{H}{\log H}$ by requiring

$$
12 C^{2} M(\log (3 M C))^{2}\left(R+\log \left(8 C^{2} M\right)+1\right) \leq \frac{H}{\log H}
$$

This is satisfied if

$$
36 C^{2} M\left(\log \left(8 C^{2} M\right)\right)^{3} R \leq H(\log H)^{-1}
$$

Let $8 C^{2} M \leq H$. Then $36 C^{2} M R \leq H(\log H)^{-4}$ gives what we want. We choose $M=\left(36 C^{2}\right)^{-1} H^{1-\varepsilon}(\log H)^{-4}$. Clearly this satisfies $8 C^{2} M \leq H$. In order to satisfy $M \geq 1$ we have to secure that

$$
\left(36 C^{2}\right)^{-1} \frac{((1-\varepsilon)(\log H))^{5}}{120}(\log H)^{-4} \geq 1
$$

i.e. $\log H \geq 4320 C^{2}(1-\varepsilon)^{-5}$.

This completes the proof of Theorem 2.
§ 4. APPLICATIONS OF THEOREMS 1 AND 2. An immediate application of Theorem 1 is
THEOREM 3. Let $\zeta(s, a)=\sum_{n=0}^{\infty}(n+a)^{-s}$ (where $\left.(0<a \leq 1)\right)$ be the Hurwitz zeta-function in $\sigma>1$ and consider its analytic continuation in $\sigma \geq 1$. Then

$$
\min _{T \geq 1} \int_{T}^{T+H}|\zeta(1+i t, a)| d t \geq \frac{1}{a} H+o(H)
$$

Let $(\zeta(s))^{u}=\sum_{n=1}^{\infty} d_{u}(n) n^{-s}$ where u is any complex constant. Consider the analytic continuation of $(\zeta(s))^{u}$ in $\sigma \geq 1, t \geq 1$. An immediate corollary to Theorem 2 is

THEOREM 4. We have,

$$
\min _{T \geq 1}\left(\frac{1}{H} \int_{T}^{T+H}\left|\zeta(1+i t)^{u}\right|^{2} d t\right) \geq \sum_{n=1}^{\infty} \frac{\left|d_{u}(n)\right|^{2}}{n^{2}}+o(1)
$$

and in particular for $u=1$, we have,

$$
\min _{T \geq 1}\left(\frac{1}{H} \int_{T}^{T+H}|\zeta(1+i t)|^{2} d t\right) \geq \frac{\pi^{2}}{6}+o(1) .
$$

It is possible to prove by using Theorem 2 a very nice Ω theorem for $\left|(\zeta(1+i t))^{z}\right|$, where $z=e^{i \theta}(0 \leq \theta<2 \pi, \theta$ fixed $)$ as $t \rightarrow \infty$. It is

THEOREM 5. We have,

$$
\begin{equation*}
\min _{T \geq 1 T \leq t \leq T+H}\left|(\zeta(1+i t))^{x}\right| \geq e^{\gamma} \lambda(\theta)(\log \log H-\log \log \log H)+O(1), \tag{4.1}
\end{equation*}
$$

where

$$
\lambda(\theta)=\prod_{p}\left\{\left(1-\frac{1}{p}\right)\left(\frac{\sqrt{p^{2}-\operatorname{Sin}^{2} \tilde{\theta}+\operatorname{Cos} \theta}}{p-p^{-1}}\right)^{\operatorname{Cos} \theta} \operatorname{Exp}\left(\operatorname{Sin} \theta \operatorname{Sin}^{-1}\left(\frac{\operatorname{Sin} \theta}{p}\right)\right)\right\}
$$

PROOF. By Theorem 2 we have with $\varepsilon=\frac{1}{3}, u=k z$,

$$
\begin{equation*}
\frac{1}{H} \int_{T}^{T+H}\left|(\zeta(1+i t))^{u}\right|^{2} d t \geq \frac{1}{2} \sum_{n \leq H^{t}} \frac{\left|d_{u}(n)\right|^{2}}{n^{2}} \tag{4.2}
\end{equation*}
$$

uniformly in $T \geq 1$, and k any positive integer satisfying $1 \leq k \leq \log H$, provided H exceeds an absolute constant. Denote by S the RHS in (4.2). Then $S^{\frac{1}{2 k}}$ has been studied in [BRS] as a function of H as k runs over $1 \leq k \leq \log H$. It has been proved (by considering the maximum term of the sum in S) that

$$
\max _{1 \leq k \leq \log }\left(S^{\frac{1}{2 k}}\right) \geq e^{\gamma} \lambda(\theta)(\log \log H-\log \log \log H)+O(1) .
$$

This completes the proof of Theorem 5.
These ideas are quite general (applicable to zeta and L-functions of algebraic number fields). For example for ordinary L-series $L(s)=L(s, \chi)$ where χ is a non-principal character $\bmod q$, we can prove

THEOREM 6. We have,
$\min _{T} \max _{T \leq t \leq T+H}\left|(L(1+i t))^{z}\right| \geq e^{\gamma} \lambda(\theta) \frac{\varphi(q)}{q}\{(\log \log H-\log \log \log H)+O(1)\}$ uniformly in $\boldsymbol{q} \geq \mathbf{3}$.

ACKNOWLEDGEMENT. The author is very much thankful to Professor R. Balasubramanian for encouragement.

REFERENCES

[BRS]R. BALASUBRAMANIAN, K. RAMACHANDRA AND A. SANKARANARAYANAN, On the frequency of Titchmarsh's phenomenon for $\zeta(s)$-VIII (to appear).
[$\left.\mathrm{R}_{1}\right] \mathrm{K} . \mathrm{RAMACHANDRA}^{2}$, On the frequency of Titchmarsh's phenomenon for $\zeta(s)$-VII, Annales Acad. Sci. Fenn. Ser AI, 14 (1989), 27-40.
[R_{2}] K. RAMACHANDRA, A short monograph on the Riemann zeta function (a book to appear).
P.S. The theorems of $\S 4$ can be stated for σ satisfying $|\sigma-1| \leq \psi(t)$ for suitable $\psi(t) \rightarrow 0$ as $t \rightarrow \infty$.

ADDRESS OF THE AUTHOR

PROFESSOR K. RAMACHANDRA
SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD
BOMBAY 400005
INDIA
MANUSCRIPT COMPLETED ON 21 OCTOBER 1990.

