Hardy-Ramanujan Journal
Vol. 14 (1991) 21-33

ON THE ZEROS OF A CLASS OF GENERALISED DIRICHLET SERIES-VIII BY

R. BALASUBRAMANIAN AND K. RAMACHANDRA

\oint 1. INTRODUCTION AND NOTATION. In the paper VII ${ }^{[4]}$ of this series (for the earlier papers of the series see the list of references in the paper VII ${ }^{[4]}$) K. Ramachandra started a new problem "Let $s=\sigma+i t, T \geq T_{0}$. For what values $\alpha=\alpha(T)$ the rectangle ($\sigma \geq \alpha(T), T \leq t \leq 2 T)$ contains infinity of zeros of a generalised Dirichlet series of a certain type?" (In the earlier papers of this series he and R. Baslasubramanian, sometimes individually and sometimes jointly, considered the problem where $\alpha=\alpha(T)$ is independent of T). Since the series considered in that paper were too general the answer $\left(\alpha(T)=\frac{1}{2}-\frac{D}{\log \log T}\right)$ was perhaps too weak. In the present paper we consider some of the Dirichlet series of the form $F(s)=$ $\sum_{n=1}^{\infty}\left(a_{n} b_{n} \lambda_{n}^{-s}\right)$ which were considered in the paper $V^{[3]}$ of this series. (The method of the present paper does not succeed for all the series considered in $\mathrm{V}^{[3]}$ let alone those considered in VI $\left.{ }^{[2]}\right)$. Before we recall the general series of $\mathrm{V}^{[3]}$, we record two neat results (the second being deeper than the first) as two theorems. In what follows T is the only variable and we assume that T exceeds a large positive constant.

THEOREM 1. Let $\{\chi(n)\}(n=1,2,3, \cdots)$ be any sequence of complex
numbers with $\sum_{n \leq x} \chi(n)=O(1)$. Let, as usual, $s=\sigma+i t$. Then the number of zeros of $\zeta(s)+\sum_{n=1}^{\infty}\left(\chi(n) n^{-s}\right)$ in the rectangle

$$
\left\{\varepsilon \geq \frac{1}{2}-C_{0}(\log \log T)^{\frac{3}{2}}(\log T)^{-\frac{1}{2}}, T \leq t \leq 2 T\right\}
$$

is $\gg T(\log \log T)^{-1}$ for a suitable positive constant C_{0}.
THEOREM 2. Let $1=\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$ be an infinite sequenvce of real numbers such that for $n \geq n_{0}$ (n_{0}, a constant), λ_{n} is the restriction to integers of a twice continuously differentiable function $g(x)$ of a real variable x with the following properties.
(1) As $x \rightarrow \infty, x^{-1} g(x)$ tends to a positive limit.
(2) There exist positive constants a and b such that for all $x \geq n_{0}$, we have,

$$
a \leq g^{\prime}(x) \leq b
$$

and

$$
a \leq\left(g^{\prime}(x)\right)^{2}-g(x) g^{\prime \prime}(x) \leq b
$$

Then the number of zeros of $F(s)=\sum_{n=1}^{\infty}\left((-1)^{n} \lambda_{n}^{-s}\right)$ in the rectangle

$$
\left\{\sigma \geq \frac{1}{2}-C_{0}(\log \log T)^{\frac{3}{2}}(\log T)^{-\frac{1}{2}}, T \leq t \leq 2 T\right\}
$$

is $\gg T(\log \log T)^{-1}$ for a suitable positive constant C_{0}.
REMARK. For $n=1,2,3, \cdots$, let $\beta_{n}=\beta_{n}^{(1)}+\beta_{n}^{(2)}$ where $\beta_{n}^{(1)}$ and $\beta_{n}^{(2)}$ are two bounded monotonic sequences of real numbers. Then for $n \geq n_{0}$ we can replace λ_{n} by $\lambda_{n}+\beta_{n}$ and the result is practically unchanged (i.e. except for a change of C_{0}).

The general theorem is too lengthy to state. We now proceed to state it. We consider series of the form $F(s)=\sum_{n=1}^{\infty}\left(a_{n} b_{n} \lambda_{n}^{-s}\right)$ where λ_{n} has been introduced already (the change of λ_{n} to $\lambda_{n}+\beta_{n}$ mentioned in the remark
below Theorem 2 is certainly permissible in what follows). Let $f(x)$ be a positive real valued function with the following properties.
(1) $f(x) x^{\eta}$ is increasing and $f(x) x^{-\eta}$ is decreasing for every $\eta>0$ and all $x \geq x_{0}(\eta)$.
(2) For $n \geq n_{0}, a \leq\left|b_{n}\right|(f(n))^{-1} \leq b$.
(3) For all $x \geq 1, \sum_{x \leq n \leq 2 x}\left|b_{n+1}-b_{n}\right| \leq b f(x)$. We next assume that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy one at least of the following two conditions.
(4) Monotonicity condition. Let $a_{n}(n=1,2,3, \cdots)$ be a bounded sequence of complex numbers such that $x^{-1} \sum_{n \leq x} a_{n}$ tends to a non-zero limit (which may be complex) and further $\left|b_{n}\right| \lambda_{n}^{-\eta}$ is monotonic decreasing for every $\eta>0$ and all $n \geq n_{0}(\eta)$.
(5) Real part condition. There exists an infinite arithmetic progression J of positive integers such that

$$
\lim \inf _{x \rightarrow \infty}\left(\frac{1}{x} \sum_{\substack{x \leq \lambda_{n} \leq 2 x, R_{e} \\ n \in J}} \operatorname{Re} a_{n}>0\right)>0
$$

and

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x} \sum_{\substack{x \leq \lambda_{n} \leq 2 x, R_{e}, n \in J}}\right)=0 .
$$

We are now in a position to state our general theorem.
THEOREM 3. Let $F(s)=\sum_{n=1}^{\infty}\left(a_{n} b_{n} \lambda_{n}^{-s}\right)$ be as described above. Let $\operatorname{Exp}(-\sqrt{\log x}) \leq f(x)$ for $x \geq x_{0}$. Let β be a positive constant $<\frac{1}{2}$ and that $F(s)$ can be continued analytically in ($\sigma \geq \beta, \frac{1}{2} T \leq t \leq \frac{5}{2} T$) and here $\max |F(s)| \leq T^{A_{1}}$ where $A_{1} \geq 2$ is a positive constant. Finally let

$$
\frac{1}{T} \int_{\frac{1}{2} T}^{\frac{5}{2} T}\left|F\left(\frac{1}{2}+i t\right)\right|^{2} d t \leq(\log T)^{A_{2}}
$$

where $A_{2} \geq 2$ is a constant. Then the number of zeros of $F(s)$ in the rectangle

$$
\left\{\sigma \geq \frac{1}{2}-C_{0}(\log \log T)^{\frac{3}{2}}(\log T)^{-\frac{1}{2}}, T \leq t \leq 2 T\right\}
$$

is $\gg T(\log \log T)^{-1}$ where $C_{0} \geq 0$ is a certain constant.
REMARK 1. The restriction of the theorem regarding the upper bound for the mean square of $\left|F\left(\frac{1}{2}+i t\right)\right|$ is very strong. Practically (since the mean square can be proved to be $\gg(f(T))^{2}$) it forces us to consider the series of $\mathrm{V}^{[3]}$, with the extra restriction $f(x) \leq(\log x)^{A}$ for some constant $A \geq 2$ and all $x \geq x_{0}(A)$. Further the restriction $f(x) \geq \operatorname{Exp}(-\sqrt{\log x})$ forces us to consider only a sub-class of functions considered in $\mathrm{V}^{[3]}$. It may be remarked that the mean square hypothesis is satisfied for all functions considered in $\mathrm{V}^{[3]}$ by imposing $f(x) \leq(\log x)^{A}$.
REMARK 2. A nice example of the functions covered by Theorem 3 is $\sum_{n=1}^{\infty}\left((-1)^{n} \operatorname{Exp}(-\sqrt{\log n}) n^{-s}\right)$. It may be noted (as a special case of a very general Theorem [1]) that this is an entire function.

REMARK 3. In the theorem it is not difficult to relax the rectangle of analytic continuation to ($\sigma \geq \beta, T \leq t \leq 2 T$) and replace the mean-value condition by

$$
\frac{1}{T} \int_{T}^{2 T}\left|F\left(\frac{1}{2}+i t\right)\right|^{2} \leq(\log T)^{A_{2}}
$$

where $A_{2} \geq 2$ is a constant.
REMARK 4. It is possible to generalise our results further. As a simple example we can in Theorem 1 replace $\zeta(s)+\sum_{n=1}^{\infty}\left(\chi(n) n^{-s}\right)$ by

$$
K^{-s}\left(\zeta(s)+\sum_{n=1}^{\infty}\left(\chi(n) n^{-s}\right)\right)+\sum_{n=1}^{\infty} d_{n} \lambda_{n}^{-s}
$$

where $\sum_{n \leq x} d_{n}=O(1), K$ is a positive constant, $\left|\lambda_{m}-K n\right| \geq(100)^{-1}$ for all $m, n, 1 \ll \lambda_{n+1}-\lambda_{n}$ and finally $\lambda_{n}=O(n)$.
REMARK 5. We have imposed the restriction $f(x) \geq \operatorname{Exp}(-\sqrt{\log x})$ for
$x \geq x_{0}$ to obtain some worthwhile results, but it is possible to obtain weaker results by relaxing this condition.

NOTATION. The letter A with or without subscripts will denote constants ≥ 2. The letter C with or without subscripts will denote positive constants.
§ 2. A GENERAL LEMMA. Let $1=\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots$ be an infinite sequence of real numbers with $1 \gg \lambda_{n+1}-\lambda_{n} \gg 1$ and $\left\{k_{n}\right\}(n=1,2,3, \cdots)$ be any sequence of complex numbers such that $k_{1}=1$ and the series $\phi(s)=$ $\sum_{n=1}^{\infty}\left(k_{n} \lambda_{n}^{-s}\right)$ is convergent in $\sigma \geq A_{1}$ and is continuable analytically in $(\sigma \geq$ $\left.\beta, T-(\log T)^{2} \leq t \leq T+(\log T)^{2}\right)$ and there $\max |\phi(s)| \leq T^{A_{2}}$, where $\beta<\frac{1}{2}$ is a positive constant. Let

$$
\frac{1}{T} \int_{T-(\log T)^{2}}^{2 T+(\log T)^{2}}\left|\phi\left(\frac{1}{2}+i t\right)\right|^{2} d t \leq(\log T)^{A_{3}}
$$

Then, we have,

$$
\frac{1}{T} \int_{\frac{1}{2}-(\log T)^{-1}}^{A_{1}+2} \int_{T-1}^{2 T+1}|\phi(\sigma+i t)|^{2} d t d \sigma \leq(\log T)^{A_{4}}
$$

REMARK. This lemma is well-known to experts in the subject and so its proof will be postponed to the last section. Also it is possible to replace $(\log T)^{2}$ by a constant multiple of $\log \log T$.
§ 3. THE FUNCTION $F_{2}(s)$. As in $\mathrm{VI}^{[2]}$ we introduce the function (in $\mathrm{VI}^{[2]}$ we have used the kernel $\operatorname{Exp}\left(W^{4 a+2}\right)$ but we now use the kernel $\left.\operatorname{Exp}\left((\operatorname{Sin} W)^{2}\right)\right)$

$$
F_{2}(s)=\sum_{n=1}^{\infty} a_{n} b_{n}\left(\Delta(T)-\Delta\left(T D^{-1}\right)\right) \lambda_{n}^{-s}
$$

where D is a large positive constant and $\Delta(x)$ for $x>0$ is defined by

$$
\Delta(x)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} F(W) x^{W} \operatorname{Exp}\left(\left(\operatorname{Sin} \frac{W}{1000}\right)^{2}\right) \frac{d W}{W}
$$

As in VI ${ }^{[2]}$ we have

LEMMA 1. Let q be any real constant satisfying $\beta<q<\frac{1}{2}$. Then we have the inequalities

$$
\begin{equation*}
\frac{1}{T} \int_{T}^{2 T}\left|F_{2}(q+i t)\right|^{2} d t \ll T^{1-2 q}(f(T))^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{T} \int_{T}^{2 T}\left|F_{2}(q+i t)\right| \gg T^{\frac{1}{2}-q} f(T) \tag{2}
\end{equation*}
$$

PROOF. Similar to the proof of Lemma 10 of $\mathrm{VI}^{[2]}$.
LEMMA 2. Let T be an integer. Then the number of integers M in the range $T \leq M \leq 2 T-1$ for which

$$
\int_{M}^{M+1}\left|F_{2}(q+i t)\right| d t>C_{1} T^{\frac{1}{2}-q} f(T)
$$

exceeds $C_{2} T$.
PROOF. Similar to that of Lemma 4 of VI ${ }^{[2]}$.
LEMMA 3. There exist at least $C_{3} T(\log \log T)^{-1}$ points t_{j} with

$$
\left|F_{2}\left(q+i t_{j}\right)\right|>c_{1} T^{\frac{1}{2}-q} f(T)
$$

and such that any two points $\boldsymbol{t}_{\boldsymbol{j}}$ and $\boldsymbol{t}_{\boldsymbol{j}^{\prime}}$ with $j \neq j^{\prime}$ differ by at least $C_{4} \log \log T$

REMARK. Here C_{4} is arbitrary and C_{3} depends on it.
PROOF. Follows from Lemma 2.
LEMMA 4. Let r be a constant satisfying $\beta<r<q<\frac{1}{2}$. Put $C_{5}=\frac{1}{100} C_{4}$ and $H=C_{5} \log \log T$. Then

$$
\int_{t_{j}-H}^{t_{j}+H}\left|F_{2}(r+i t)\right| \geq C_{6} V \log \log T
$$

where $V=T^{\frac{1}{2}-r} f(T)$ for at most $C_{7} C_{6}^{-1} T(\log \log T)^{-1}$ points t_{j}.
REMARK. Here C_{6} is arbitrary and C_{7} is independent of C_{6}.

PROOF. By (1) of Lemma 1, the sum over j of the quantity on the LHS does not exceed $C_{7} V T$ and this gives Lemma 4.
LEMMA 5. There are at least $\frac{1}{2} C_{3} T(\log \log T)^{-1}$ points t_{j} seperated by (distances) at least $C_{4} \log \log T$ such that if $H=\frac{1}{100} C_{4} \log \log T$ then with $V=T^{\frac{1}{2}-r} f(T)$, we have,

$$
\int_{t_{j}-H}^{t_{j}+H}\left|F_{2}(r+i t)\right| d t \leq C_{6} V \log \log T
$$

REMARK. Here C_{4} is arbitrary and C_{3} depends on it.
PROOF. The lemma follows by choosing a large C_{6} in Lemma 4.
LEMMA 6. Uniformly in σ with $q<\sigma_{0} \leq \sigma<\frac{1}{2}$, we have, for the points t_{j} of Lemma 5 ,

$$
\int_{t_{j}-2 H}^{t_{j}+2 H}\left|F_{2}(\sigma+i v) \operatorname{Exp}\left(\left(\operatorname{Sin} \frac{W}{1000}\right)^{2}\right) \frac{d W}{W}\right|>C_{8} T^{\frac{1}{2}-\sigma} f(T)(\log \log T)^{-\theta}
$$

where σ_{0} is a constant $W=\sigma-q+i v$, and $\theta=\frac{1}{2(q-r)}$.
PROOF. Put $s_{0}=q+i t_{j}$, we have

$$
F_{2}\left(s_{0}\right)=\frac{1}{2 \pi i} \int F_{2}\left(s_{0}+W\right) X^{W} \operatorname{Exp}\left(\left(\operatorname{Sin} \frac{W}{1000}\right)^{2}\right) \frac{d W}{W}
$$

where the integral is taken over the (anticlockwise) boundary of the rectangle bounded by the lines $\operatorname{Re} W=r-q, \operatorname{Re} W=\sigma-q, I m W= \pm H$. We take the absolute values (using Lemma 3) of the integrand on the RHS and choose $X=C_{8} T(\log \log T)^{(q-r)^{-1}}$, where C_{8} is a large positive constant. This leads to Lemma 6.

LEMMA 7. Given any σ in $\sigma_{0} \leq \sigma<\frac{1}{2}$, there exist points v_{j} satisfying $t_{j}-2 H \leq v_{j} \leq t_{j}+2 H$, such that uniformly in σ there holds

$$
\left|F_{2}\left(\sigma+i v_{j}\right)\right|>C_{9} T^{\frac{1}{2}-\sigma} f(T)(\log \log T)^{-\theta}
$$

where $\theta=(2(q-r))^{-1}$.
REMARK. Note that v_{j} are seperated by (distances) at least $\frac{24}{25} C_{4} \log \log T$
where C_{4} is at our disposal.
PROOF. Follows from Lemma 6.
LEMMA 8. Given any σ in $\sigma_{0} \leq \sigma<\frac{1}{2}$ there exist points p_{j} satisfying $v_{j}-H \leq p_{j} \leq v_{j}+H$ such that uniformly in σ, there holds,

$$
\left|F\left(\sigma+i p_{j}\right)\right|>C_{10} T^{\frac{1}{2}-\sigma} f(T)(\log \log T)^{-\theta}
$$

where θ is the constant defined before.
REMARK 1. Note that p_{j} are seperated by (distances) at least $\frac{1}{2} C_{4} \log \log T$. Also the number of points p_{j} is at least $\frac{1}{2} C_{3} T(\log \log T)^{-1}$. Here C_{4} is arbitrary and C_{3} depends on it. (Both are independent of σ).

REMARK 2. We can refine the lower bound for $\left|F\left(\sigma+i p_{j}\right)\right|$ but we do not do it since it does not have an application.

PROOF. We start with

$$
F_{2}\left(\sigma+i v_{j}\right)=\frac{1}{2 \pi i} \int F\left(\sigma+i v_{j}+W\right) T^{W}\left(1-D^{-W}\right) \operatorname{Exp}\left(\left(\operatorname{Sin} \frac{W}{1000}\right)^{2}\right) \frac{d W}{W}
$$

where the integration is over Re $W=2$. We break off the portion $|v| \geq$ $C_{11} \log \log T$ with a small error and move the line of integration in the rest to $\operatorname{Re} W=0$. Here C_{11} is a specific constant and not arbitrary. We now use Lemma 7 and majorise the integrand. This leads to the lemma.

The rest of the proof consists in proving that at least $\frac{1}{3} C_{3} T(\log \log T)^{-1}$ of the rectangles

$$
\left\{\sigma \geq \frac{1}{2}-C_{0}(\log \log T)^{\frac{3}{2}}(\log T)^{-\frac{1}{2}}, p_{j}-H \leq t \leq p_{j}+H\right\}
$$

contain a zero of $F(s)$ if C_{0} is a large positive constant. This would complete the proof of Theorem 3.
§ 4. TWO APPLICATIONS OF BOREL-CARATHÉODORY THEOREM. Suppose that the rectangle

$$
\left\{\sigma \geq \frac{1}{2}-K \delta, p_{j}-H \leq t \leq p_{j}+H\right\}
$$

is zero free for $F(s)$, where δ and K are positive quantities to be chosen in the next section. (The quantity δ will be chosen to be small and K to be large).
LEMMA 1. (Borel-Carathéodory Theorem. See [5] page 174). Suppose $G(z)$ is analytic in $\left|z-z_{0}\right| \leq R$ and on $\left|z-z_{0}\right|=R$ we have Re $G(z) \leq U$. Then in $\left|z-z_{0}\right| \leq r<R$, we have,

$$
|G(z)| \leq \frac{2 r U}{R-r}+\frac{R+r}{R-r}\left|G\left(z_{0}\right)\right|
$$

REMARK. The r of this lemma is not to be confused with that of the preceeding section.

LEMMA 2. In the rectangle

$$
\left\{\sigma \geq \frac{1}{2}-(K-1) \delta, p_{j}-H+C_{12} \leq t \leq p_{j}+H-C_{12}\right\}
$$

we have,

$$
|\log F(s)| \leq C_{13} \delta^{-1} \log T
$$

PROOF. Choose z_{0} to be a point in

$$
\left\{\sigma \geq 2, p_{j}-H+C_{12} \leq t \leq p_{j}+H-C_{12}\right\}
$$

where $\log F(s)$ is bounded and then take R to be such that the circle with centre z_{0} and radius R touches $\sigma=\frac{1}{2}-K \delta$ and lies within the rectangle $\left\{\sigma \geq \frac{1}{2}-K \delta, p_{j}-H \leq t \leq p_{j}+H\right\}$. Next choose $r=R-\delta$. This proves Lemma 2.

LEMMA 3. Let M_{j} denote the maximum of $|F(s)|$ in $\left\{\sigma \geq \frac{1}{2}, p_{j}-H \leq\right.$ $\left.t \leq p_{j}+H\right\}$. Then, we have,

$$
\sum_{j} M_{j}^{2} \leq T(\log T)^{A_{5}}
$$

PROOF. Let M_{j} be attained at s_{j} say. Then M_{j}^{2} is majorised by the mean of $|F(s)|^{2}$ over a disc of radius $(\log T)^{-1}$ with centre s_{j}. The lemma now follows from the general result of $\S 2$.

LEMMA 4. We have,

$$
M_{j}^{2} \geq(\log T)^{11 A_{5}}
$$

for at most $T(\log T)^{-10}$ values of j. Hence we are still left with at least $\frac{1}{3} C_{3} T(\log \log T)^{-1}$ values of j for which

$$
M_{j}^{2} \leq(\log T)^{11 A_{5}}
$$

REMARK. From now on we restrict j only to these values.
PROOF. Follows from Lemma 3.
LEMMA 5. In the rectangle

$$
\left\{\sigma \geq \frac{1}{2}-\delta, p_{j}-H+C_{12} \leq t \leq p_{j}+H-C_{12}\right\}
$$

we have,

$$
|\log F(s)| \leq C_{14} \delta^{-1} \log \log T
$$

PROOF. Choose z_{0} to be a point in

$$
\left\{\sigma \geq 2, p_{j}-H+C_{12} \leq t \leq p_{j}+H-C_{12}\right\}
$$

and then take R to be such that the circle with centre z_{0} and radius R touches $\sigma=\frac{1}{2}$ and lies within the rectangle $\left\{\sigma \geq \frac{1}{2}, p_{j}-H \leq t \leq p_{j}+H\right\}$. Next choose $r=R-\delta$. The lemma now follows from Lemma 4.
§ 5. COMPLETION OF THE PROOF. Suppose that for a certain j, the rectangle $\left\{\sigma \geq \frac{1}{2}-K \delta,\left|p_{j}-t\right| \leq H\right\}$ does not contain a zero of $F(s)$. We obtain a contradiction in the following way. Put $s_{0}=\sigma+i p_{j}$ where $\sigma=\frac{1}{2}-\delta$, and also let $\sigma_{1}=\frac{1}{2}-(K-1) \delta, \sigma_{2}=\sigma$, and $\sigma_{3}=\frac{1}{2}+\delta$. We apply maximum modulus principle to

$$
\psi(W)=\log F\left(s_{0}+W\right) X^{W} \operatorname{Exp}\left(\left(\operatorname{Sin} \frac{W}{1000}\right)^{2}\right)
$$

according to which

$$
|\psi(0)| \leq \max |\psi(W)|
$$

maximum being taken over the boundary of the rectangle bounded by $R e W=$ $-(K-2) \delta, \operatorname{Re} W=2 \delta, \operatorname{Im} W= \pm \frac{1}{2} H$. If $\delta \geq 6(\log T)^{-\frac{1}{2}}$ we have (by a suitable choice of X and C_{4})

$$
\begin{aligned}
& \frac{\delta}{2} \log T \leq \delta \log T-3 \sqrt{\log T} \leq|\psi(0)| \\
& \leq C_{15}\left(\delta^{-1} \log T\right)^{\frac{2}{K}}\left(\delta^{-1} \log \log T\right)^{\frac{K-2}{K}}
\end{aligned}
$$

We now choose $K=\log \log T$ and obtain

$$
\frac{\delta}{2} \log T \leq C_{16} \delta^{-1} \log \log T
$$

This is a contradiction if we choose $\delta=C_{17}(\log \log T)^{\frac{1}{2}}(\log T)^{-\frac{1}{2}}$ and $C_{17}^{2}>$ $2 C_{16}$. This proves Theorem 3 provided we prove the general lemma of $\S 2$.
§ 6. PROOF OF THE GENERAL LEMMA. Let $\varepsilon>0$ be arbitrary but fixed. Then in $\{\sigma \geq \beta+\varepsilon, T \leq t \leq 2 T\}$, we have, by Cauchy's theorem $\left|\phi^{\prime}(s)\right| \leq T^{A_{2}+1}$ and so in $\left\{\left|\sigma-\frac{1}{2}\right| \leq T^{-4 A_{2}}, T \leq t \leq 2 T\right\}$ we have

$$
\left|\phi^{2}\left(\frac{1}{2}+i t\right)-\phi^{2}(\sigma+i t)\right| \leq 1
$$

Hence it suffices to consider in this rectangle the portion $\left|\sigma-\frac{1}{2}\right| \geq T^{-4 A_{2}}$. If now $\frac{1}{2}-(\log T)^{-1} \leq \sigma \leq \frac{1}{2}-T^{-4 A_{2}}$ we have

$$
\left\lvert\, \phi^{2}(s)=\frac{1}{2 \pi i} \int \phi^{2}(s+W) X^{W} \operatorname{Exp}\left(W^{2}\right) \frac{d W}{W}\right.
$$

the contour being the (anticlockwise) boundary of the rectangle bounded by $\operatorname{Re} W=\beta-\sigma, \operatorname{Re} W=\frac{1}{2}-\sigma, \operatorname{Im} W= \pm \log T$. We choose X to be a large power of T so that the integral over the left boundary is negligible. Clearly the integrals over the horizontal boundaries are together negligible. We take absolute values and integrate with respect to t from $t=T$ to $t=2 T$. This leads to the result since on the right boundary $\left|X^{W}\right| \leq 1$ and $\int\left|\frac{d W}{W}\right| \ll \log T$.

If now $\sigma \geq \frac{1}{2}+T^{-4 A_{2}}$ we start with

$$
\phi^{2}(s)=\frac{1}{2 \pi i} \int \phi^{2}(s+W) \operatorname{Exp}\left(W^{2}\right) \frac{d W}{W}
$$

the contour being the (anticlockwise) boundary of the rectangle bounded by Re $W=\frac{1}{2}-\sigma, \operatorname{Re} W=3 A_{1}-\sigma, I m W= \pm \log T$. The proof proceeds as before using $\phi(s+W)=O(1)$ on the right boundary and negligible on the horizontal boundaries and the fact $\int\left|\frac{d W}{W}\right| \ll \log T$ on the left boundary. This completes the proof of the general lemma.

Theorem 3 is now completely proved.
ACKNOWLEDGEMENT. The authors are grateful to Professor M. JUTILA for encouragement.

REFERENCES

[1] R. BALASUBRAMANIAN AND K. RAMACHANDRA, The proof that certain functions are entire, Maths. Teacher (India) (1985), p.7.
(2 R. BALASUBRAMANIAN AND K RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-VI, Arkiv för Mathematik, no. 2, 19 (1981), p. 239-250.
[3]K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-V, Reine u. Angew. Math., 303/304 (1978), p. 295-313.
[4] K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-VII, (to appear).
[5] E.C. TITCHMARSH, Theory of functions, Oxford University Press (1939).

ADDRESS OF THE AUTHORS

1) PROFESSOR R. BALASUBRAMANIAN MATSCIENCE THARAMANI P.O. MADRAS 600113 INDIA
2) PROFESSOR K. RAMACHANDRA SCHOOL OF MATHEMATICS

TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD
COLABA
BOMBAY 400005
INDIA

