Hardy-Ramanujan Journal Vol.14 (1991) 21-33

ON THE ZEROS OF A CLASS OF GENERALISED DIRICHLET SERIES-VIII BY

R. BALASUBRAMANIAN AND K. RAMACHANDRA

§ 1. INTRODUCTION AND NOTATION. In the paper VII^[4] of this series (for the earlier papers of the series see the list of references in the paper VII^[4]) K. Ramachandra started a new problem "Let $s = \sigma + it, T \ge T_0$. For what values $\alpha = \alpha(T)$ the rectangle ($\sigma \ge \alpha(T), T \le t \le 2T$) contains infinity of zeros of a generalised Dirichlet series of a certain type?" (In the earlier papers of this series he and R. Baslasubramanian, sometimes individually and sometimes jointly, considered the problem where $\alpha = \alpha(T)$ is independent of T). Since the series considered in that paper were too general the answer $\left(\alpha(T) = \frac{1}{2} - \frac{D}{\log\log T}\right)$ was perhaps too weak. In the present paper we consider some of the Dirichlet series of the form $F(s) = \sum_{n=1}^{\infty} (a_n b_n \lambda_n^{-s})$ which were considered in the paper V^[3] of this series. (The method of the present paper does not succeed for all the series considered in V^[3] let alone those considered in VI^[2]). Before we recall the general series of V^[3], we record two neat results (the second being deeper than the first) as two theorems. In what follows T is the only variable and we assume that T exceeds a large positive constant.

THEOREM 1. Let $\{\chi(n)\}(n = 1, 2, 3, \cdots)$ be any sequence of complex

numbers with $\sum_{n \leq x} \chi(n) = O(1)$. Let, as usual, $s = \sigma + it$. Then the number of zeros of $\zeta(s) + \sum_{n=1}^{\infty} (\chi(n)n^{-s})$ in the rectangle $\{\sigma \geq \frac{1}{2} - C_0(\log\log T)^{\frac{3}{2}}(\log T)^{-\frac{1}{2}}, T \leq t \leq 2T\}$

is $\gg T(\log \log T)^{-1}$ for a suitable positive constant C_0 .

THEOREM 2. Let $1 = \lambda_1 < \lambda_2 < \lambda_3 < \cdots$ be an infinite sequenvce of real numbers such that for $n \ge n_0$ (n_0 , a constant), λ_n is the restriction to integers of a twice continuously differentiable function g(x) of a real variable x with the following properties.

(1) As $x \to \infty, x^{-1}g(x)$ tends to a positive limit.

(2) There exist positive constants a and b such that for all $x \ge n_0$, we have,

 $a \leq g'(x) \leq b$

and

$$a\leq (g'(x))^2-g(x)g''(x)\leq b.$$

Then the number of zeros of $F(s) = \sum_{n=1}^{\infty} ((-1)^n \lambda_n^{-s})$ in the rectangle

$$\left\{\sigma \geq \frac{1}{2} - C_0 (\log \log T)^{\frac{3}{2}} (\log T)^{-\frac{1}{2}}, T \leq t \leq 2T\right\}$$

is $\gg T(\log \log T)^{-1}$ for a suitable positive constant C_0 .

REMARK. For $n = 1, 2, 3, \dots$, let $\beta_n = \beta_n^{(1)} + \beta_n^{(2)}$ where $\beta_n^{(1)}$ and $\beta_n^{(2)}$ are two bounded monotonic sequences of real numbers. Then for $n \ge n_0$ we can replace λ_n by $\lambda_n + \beta_n$ and the result is practically unchanged (i.e. except for a change of C_0).

The general theorem is too lengthy to state. We now proceed to state it. We consider series of the form $F(s) = \sum_{n=1}^{\infty} (a_n b_n \lambda_n^{-s})$ where λ_n has been introduced already (the change of λ_n to $\lambda_n + \beta_n$ mentioned in the remark below Theorem 2 is certainly permissible in what follows). Let f(x) be a positive real valued function with the following properties.

(1) $f(x)x^{\eta}$ is increasing and $f(x)x^{-\eta}$ is decreasing for every $\eta > 0$ and all $x \ge x_0(\eta)$.

(2) For $n \ge n_0, a \le |b_n| (f(n))^{-1} \le b$.

(3) For all $x \ge 1$, $\sum_{x \le n \le 2x} |b_{n+1} - b_n| \le bf(x)$. We next assume that $\{a_n\}$ and $\{b_n\}$ satisfy one at least of the following two conditions.

(4) Monotonicity condition. Let $a_n(n = 1, 2, 3, \cdots)$ be a bounded sequence of complex numbers such that $x^{-1} \sum_{\substack{n \leq x \\ n \leq x}} a_n$ tends to a non-zero limit (which may be complex) and further $|b_n| \lambda_n^{-\eta}$ is monotonic decreasing for every $\eta > 0$ and all $n \ge n_0(\eta)$.

(5) Real part condition. There exists an infinite arithmetic progression J of positive integers such that

$$\lim \inf_{x \to \infty} \left(\frac{1}{x} \sum_{\substack{x \le \lambda_n \le 2x, Re \ a_n > 0}} Re \ a_n \right) > 0$$

and

$$\lim_{x\to\infty}\left(\frac{1}{x}\sum_{\substack{x\leq\lambda_n\leq 2x,Re\ a_n<0\\n\in J}}\right)=0.$$

We are now in a position to state our general theorem.

THEOREM 3. Let $F(s) = \sum_{n=1}^{\infty} (a_n b_n \lambda_n^{-s})$ be as described above. Let $Exp(-\sqrt{\log x}) \leq f(x)$ for $x \geq x_0$. Let β be a positive constant $< \frac{1}{2}$ and that F(s) can be continued analytically in $(\sigma \geq \beta, \frac{1}{2}T \leq t \leq \frac{5}{2}T)$ and here $max \mid F(s) \mid \leq T^{A_1}$ where $A_1 \geq 2$ is a positive constant. Finally let

$$\frac{1}{T}\int_{\frac{1}{2}T}^{\frac{5}{2}T} |F(\frac{1}{2}+it)|^2 dt \le (\log T)^{A_2}$$

where $A_2 \geq 2$ is a constant. Then the number of zeros of F(s) in the rectangle

$$\{\sigma \geq \frac{1}{2} - C_0(\log\log T)^{\frac{3}{2}}(\log T)^{-\frac{1}{2}}, T \leq t \leq 2T\}$$

is $\gg T(\log \log T)^{-1}$ where $C_0 \ge 0$ is a certain constant.

REMARK 1. The restriction of the theorem regarding the upper bound for the mean square of $|F(\frac{1}{2} + it)|$ is very strong. Practically (since the mean square can be proved to be $\gg (f(T))^2$) it forces us to consider the series of $V^{[3]}$, with the extra restriction $f(x) \leq (\log x)^A$ for some constant $A \geq 2$ and all $x \geq x_0(A)$. Further the restriction $f(x) \geq Exp(-\sqrt{\log x})$ forces us to consider only a sub-class of functions considered in $V^{[3]}$. It may be remarked that the mean square hypothesis is satisfied for all functions considered in $V^{[3]}$ by imposing $f(x) \leq (\log x)^A$.

REMARK 2. A nice example of the functions covered by Theorem 3 is $\sum_{n=1}^{\infty} ((-1)^n Exp(-\sqrt{\log n})n^{-s}).$ It may be noted (as a special case of a very general Theorem [1]) that this is an entire function.

REMARK 3. In the theorem it is not difficult to relax the rectangle of analytic continuation to $(\sigma \ge \beta, T \le t \le 2T)$ and replace the mean-value condition by

$$\frac{1}{T}\int_{T}^{2T} |F(\frac{1}{2}+it)|^{2} \leq (\log T)^{A_{2}}$$

where $A_2 \ge 2$ is a constant.

REMARK 4. It is possible to generalise our results further. As a simple example we can in Theorem 1 replace $\zeta(s) + \sum_{n=1}^{\infty} (\chi(n)n^{-s})$ by

$$K^{-s}(\zeta(s)+\sum_{n=1}^{\infty}(\chi(n)n^{-s}))+\sum_{n=1}^{\infty}d_n\lambda_n^{-s}$$

where $\sum_{n \leq x} d_n = O(1)$, K is a positive constant, $|\lambda_m - Kn| \geq (100)^{-1}$ for all $m, n, 1 \ll \lambda_{n+1} - \lambda_n$ and finally $\lambda_n = O(n)$.

REMARK 5. We have imposed the restriction $f(x) \ge Exp(-\sqrt{\log x})$ for

 $x \ge x_0$ to obtain some worthwhile results, but it is possible to obtain weaker results by relaxing this condition.

NOTATION. The letter A with or without subscripts will denote constants > 2. The letter C with or without subscripts will denote positive constants.

§ 2. A GENERAL LEMMA. Let $1 = \lambda_1 < \lambda_2 < \lambda_3 < \cdots$ be an infinite sequence of real numbers with $1 \gg \lambda_{n+1} - \lambda_n \gg 1$ and $\{k_n\}(n = 1, 2, 3, \cdots)$ be any sequence of complex numbers such that $k_1 = 1$ and the series $\phi(s) = \sum_{n=1}^{\infty} (k_n \lambda_n^{-s})$ is convergent in $\sigma \ge A_1$ and is continuable analytically in $(\sigma \ge \beta, T - (\log T)^2 \le t \le T + (\log T)^2)$ and there max $|\phi(s)| \le T^{A_2}$, where $\beta < \frac{1}{2}$ is a positive constant. Let

$$\frac{1}{T}\int_{T-(\log T)^2}^{2T+(\log T)^2} |\phi(\frac{1}{2}+it)|^2 dt \leq (\log T)^{A_3}.$$

Then, we have,

$$\frac{1}{T}\int_{\frac{1}{2}-(\log T)^{-1}}^{A_1+2}\int_{T-1}^{2T+1}|\phi(\sigma+it)|^2 dtd\sigma \leq (\log T)^{A_4}.$$

REMARK. This lemma is well-known to experts in the subject and so its proof will be postponed to the last section. Also it is possible to replace $(log T)^2$ by a constant multiple of loglog T.

§ 3. THE FUNCTION $F_2(s)$. As in $VI^{[2]}$ we introduce the function (in $VI^{[2]}$ we have used the kernel $Exp(W^{4a+2})$ but we now use the kernel $Exp((Sin W)^2)$)

$$F_2(s) = \sum_{n=1}^{\infty} a_n b_n (\Delta(T) - \Delta(TD^{-1})) \lambda_n^{-s}$$

where D is a large positive constant and $\Delta(x)$ for x > 0 is defined by

$$\Delta(\boldsymbol{x}) = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} F(W) \boldsymbol{x}^{W} E \boldsymbol{x} p((Sin \ \frac{W}{1000})^2) \frac{dW}{W}.$$

As in VI^[2] we have

LEMMA 1. Let q be any real constant satisfying $\beta < q < \frac{1}{2}$. Then we have the inequalities

(1)
$$\frac{1}{T}\int_{T}^{2T} |F_2(q+it)|^2 dt \ll T^{1-2q}(f(T))^2,$$

and

(2)
$$\frac{1}{T}\int_{T}^{2T} |F_2(q+it)| \gg T^{\frac{1}{2}-q}f(T).$$

PROOF. Similar to the proof of Lemma 10 of $VI^{[2]}$.

LEMMA 2. Let T be an integer. Then the number of integers M in the range $T \le M \le 2T - 1$ for which

$$\int_{M}^{M+1} |F_2(q+it)| dt > C_1 T^{\frac{1}{2}-q} f(T)$$

exceeds C_2T .

PROOF. Similar to that of Lemma 4 of $VI^{[2]}$.

LEMMA 3. There exist at least $C_3T(\log \log T)^{-1}$ points t_j with

$$|F_2(q+it_j)| > c_1 T^{\frac{1}{2}-q} f(T)$$

and such that any two points t_j and $t_{j'}$ with $j \neq j'$ differ by at least C₄loglog T

REMARK. Here C_4 is arbitrary and C_3 depends on it.

PROOF. Follows from Lemma 2.

LEMMA 4. Let r be a constant satisfying $\beta < r < q < \frac{1}{2}$. Put $C_5 = \frac{1}{100}C_4$ and $H = C_5 \log \log T$. Then

$$\int_{t_j-H}^{t_j+H} |F_2(r+it)| \ge C_6 V \ log \log T$$

where $V = T^{\frac{1}{2}-\tau} f(T)$ for at most $C_7 C_6^{-1} T(\log \log T)^{-1}$ points t_j .

REMARK. Here C_6 is arbitrary and C_7 is independent of C_6 .

PROOF. By (1) of Lemma 1, the sum over j of the quantity on the LHS does not exceed C_7VT and this gives Lemma 4.

LEMMA 5. There are at least $\frac{1}{2}C_3T(\log\log T)^{-1}$ points t_j seperated by (distances) at least $C_4\log\log T$ such that if $H = \frac{1}{100}C_4 \log\log T$ then with $V = T^{\frac{1}{2}-r}f(T)$, we have,

$$\int_{t_j-H}^{t_j+H} |F_2(r+it)| dt \leq C_6 V \ log \log T.$$

REMARK. Here C_4 is arbitrary and C_3 depends on it.

PROOF. The lemma follows by choosing a large C_6 in Lemma 4.

LEMMA 6. Uniformly in σ with $q < \sigma_0 \leq \sigma < \frac{1}{2}$, we have, for the points t_j of Lemma 5,

$$\int_{t_j-2H}^{t_j+2H} |F_2(\sigma+iv)Exp((Sin \frac{W}{1000})^2)\frac{dW}{W}| > C_8T^{\frac{1}{2}-\sigma}f(T)(loglog T)^{-\theta}$$

where σ_0 is a constant $W = \sigma - q + iv$, and $\theta = \frac{1}{2(q-r)}$.

PROOF. Put $s_0 = q + it_j$, we have

$$F_{2}(s_{0}) = \frac{1}{2\pi i} \int F_{2}(s_{0} + W) X^{W} Exp((Sin \ \frac{W}{1000})^{2}) \frac{dW}{W}$$

where the integral is taken over the (anticlockwise) boundary of the rectangle bounded by the lines Re W = r - q, $Re W = \sigma - q$, $Im W = \pm H$. We take the absolute values (using Lemma 3) of the integrand on the RHS and choose $X = C_8T (loglog T)^{(q-r)^{-1}}$, where C_8 is a large positive constant. This leads to Lemma 6.

LEMMA 7. Given any σ in $\sigma_0 \leq \sigma < \frac{1}{2}$, there exist points v_j satisfying $t_j - 2H \leq v_j \leq t_j + 2H$, such that uniformly in σ there holds

$$\mid F_2(\sigma + iv_j) \mid > C_9 T^{\frac{1}{2} - \sigma} f(T) (\log \log T)^{-\theta}$$

where $\theta = (2(q - r))^{-1}$.

REMARK. Note that v_j are separated by (distances) at least $\frac{24}{25}C_4$ loglog T

where C_4 is at our disposal.

PROOF. Follows from Lemma 6.

LEMMA 8. Given any σ in $\sigma_0 \leq \sigma < \frac{1}{2}$ there exist points p_j satisfying $v_j - H \leq p_j \leq v_j + H$ such that uniformly in σ , there holds,

$$|F(\sigma+ip_j)| > C_{10}T^{\frac{1}{2}-\sigma}f(T)(\log\log T)^{-\theta}$$

where θ is the constant defined before.

REMARK 1. Note that p_j are separated by (distances) at least $\frac{1}{2}C_4$ loglog T. Also the number of points p_j is at least $\frac{1}{2}C_3T(loglog T)^{-1}$. Here C_4 is arbitrary and C_3 depends on it. (Both are independent of σ).

REMARK 2. We can refine the lower bound for $|F(\sigma + ip_j)|$ but we do not do it since it does not have an application.

PROOF. We start with

$$F_{2}(\sigma + iv_{j}) = \frac{1}{2\pi i} \int F(\sigma + iv_{j} + W) T^{W}(1 - D^{-W}) Exp((Sin \frac{W}{1000})^{2}) \frac{dW}{W}$$

where the integration is over Re W = 2. We break off the portion $|v| \ge C_{11} \log \log T$ with a small error and move the line of integration in the rest to Re W = 0. Here C_{11} is a specific constant and not arbitrary. We now use Lemma 7 and majorise the integrand. This leads to the lemma.

The rest of the proof consists in proving that at least $\frac{1}{3}C_3T(\log \log T)^{-1}$ of the rectangles

$$\left\{\sigma \geq \frac{1}{2} - C_0 (\log \log T)^{\frac{3}{2}} (\log T)^{-\frac{1}{2}}, p_j - H \leq t \leq p_j + H\right\}$$

contain a zero of F(s) if C_0 is a large positive constant. This would complete the proof of Theorem 3.

§ 4. TWO APPLICATIONS OF BOREL-CARATHÉODORY THE-OREM. Suppose that the rectangle

$$\{\sigma \geq \frac{1}{2} - K\delta, p_j - H \leq t \leq p_j + H\}$$

is zero free for F(s), where δ and K are positive quantities to be chosen in the next section. (The quantity δ will be chosen to be small and K to be large).

LEMMA 1. (Borel-Carathéodory Theorem. See [5] page 174). Suppose G(z) is analytic in $|z - z_0| \le R$ and on $|z - z_0| = R$ we have $Re \ G(z) \le U$. Then in $|z - z_0| \le r < R$, we have,

$$\mid G(z) \mid \leq \frac{2rU}{R-r} + \frac{R+r}{R-r} \mid G(z_0) \mid .$$

REMARK. The r of this lemma is not to be confused with that of the preceeding section.

LEMMA 2. In the rectangle

$$\{\sigma \geq \frac{1}{2} - (K-1)\delta, p_j - H + C_{12} \leq t \leq p_j + H - C_{12}\}$$

we have,

$$|\log F(s)| \leq C_{13}\delta^{-1}\log T.$$

PROOF. Choose z_0 to be a point in

$$\{\sigma \ge 2, p_j - H + C_{12} \le t \le p_j + H - C_{12}\}$$

where $\log F(s)$ is bounded and then take R to be such that the circle with centre z_0 and radius R touches $\sigma = \frac{1}{2} - K\delta$ and lies within the rectangle $\{\sigma \geq \frac{1}{2} - K\delta, p_j - H \leq t \leq p_j + H\}$. Next choose $r = R - \delta$. This proves Lemma 2.

LEMMA 3. Let M_j denote the maximum of |F(s)| in $\{\sigma \geq \frac{1}{2}, p_j - H \leq t \leq p_j + H\}$. Then, we have,

$$\sum_{j} M_j^2 \leq T(\log T)^{A_5}.$$

PROOF. Let M_j be attained at s_j say. Then M_j^2 is majorised by the mean of $|F(s)|^2$ over a disc of radius $(log T)^{-1}$ with centre s_j . The lemma now follows from the general result of § 2.

LEMMA 4. We have,

$$M_j^2 \ge (\log T)^{11A_5}$$

for at most $T(\log T)^{-10}$ values of j. Hence we are still left with at least $\frac{1}{3} C_3 T(\log \log T)^{-1}$ values of j for which

$$M_i^2 \leq (\log T)^{11A_5}$$
.

REMARK. From now on we restrict j only to these values.

PROOF. Follows from Lemma 3.

LEMMA 5. In the rectangle

$$\{\sigma \geq \frac{1}{2} - \delta, p_j - H + C_{12} \leq t \leq p_j + H - C_{12}\}$$

we have,

$$|\log F(s)| \leq C_{14}\delta^{-1} \log\log T.$$

PROOF. Choose z_0 to be a point in

$$\{\sigma \geq 2, p_j - H + C_{12} \leq t \leq p_j + H - C_{12}\}\$$

and then take R to be such that the circle with centre z_0 and radius R touches $\sigma = \frac{1}{2}$ and lies within the rectangle $\{\sigma \ge \frac{1}{2}, p_j - H \le t \le p_j + H\}$. Next choose $r = R - \delta$. The lemma now follows from Lemma 4.

§ 5. COMPLETION OF THE PROOF. Suppose that for a certain j, the rectangle $\{\sigma \ge \frac{1}{2} - K\delta, | p_j - t | \le H\}$ does not contain a zero of F(s). We obtain a contradiction in the following way. Put $s_0 = \sigma + ip_j$ where $\sigma = \frac{1}{2} - \delta$, and also let $\sigma_1 = \frac{1}{2} - (K-1)\delta, \sigma_2 = \sigma$, and $\sigma_3 = \frac{1}{2} + \delta$. We apply maximum modulus principle to

$$\psi(W) = \log F(s_0 + W) X^W Exp((Sin \frac{W}{1000})^2)$$

according to which

$$\mid \psi(0) \mid \leq max \mid \psi(W) \mid$$

maximum being taken over the boundary of the rectangle bounded by $Re W = -(K-2)\delta$, $Re W = 2\delta$, $Im W = \pm \frac{1}{2}H$. If $\delta \ge 6(\log T)^{-\frac{1}{2}}$ we have (by a suitable choice of X and C_4)

$$\frac{\delta}{2} \log T \leq \delta \log T - 3\sqrt{\log T} \leq |\psi(0)|$$
$$\leq C_{15} (\delta^{-1} \log T)^{\frac{2}{K}} (\delta^{-1} \log \log T)^{\frac{K-2}{K}}.$$

We now choose K = loglog T and obtain

$$rac{\delta}{2} \log T \leq C_{16} \delta^{-1} \log \log T$$

This is a contradiction if we choose $\delta = C_{17}(\log \log T)^{\frac{1}{2}}(\log T)^{-\frac{1}{2}}$ and $C_{17}^2 > 2C_{16}$. This proves Theorem 3 provided we prove the general lemma of § 2.

§ 6. PROOF OF THE GENERAL LEMMA. Let $\varepsilon > 0$ be arbitrary but fixed. Then in $\{\sigma \geq \beta + \varepsilon, T \leq t \leq 2T\}$, we have, by Cauchy's theorem $|\phi'(s)| \leq T^{A_2+1}$ and so in $\{|\sigma - \frac{1}{2}| \leq T^{-4A_2}, T \leq t \leq 2T\}$ we have

$$\mid \phi^2(rac{1}{2}+it)-\phi^2(\sigma+it)\mid \leq 1.$$

Hence it suffices to consider in this rectangle the portion $|\sigma - \frac{1}{2}| \ge T^{-4A_2}$. If now $\frac{1}{2} - (\log T)^{-1} \le \sigma \le \frac{1}{2} - T^{-4A_2}$ we have

$$|\phi^2(s) = rac{1}{2\pi i}\int \phi^2(s+W)X^W Exp(W^2)rac{dW}{W}$$

the contour being the (anticlockwise) boundary of the rectangle bounded by $Re \ W = \beta - \sigma$, $Re \ W = \frac{1}{2} - \sigma$, $Im \ W = \pm log \ T$. We choose X to be a large power of T so that the integral over the left boundary is negligible. Clearly the integrals over the horizontal boundaries are together negligible. We take absolute values and integrate with respect to t from t = T to t = 2T. This leads to the result since on the right boundary $|X^W| \leq 1$ and $\int |\frac{dW}{W}| \ll \log T$.

If now $\sigma \geq \frac{1}{2} + T^{-4A_2}$ we start with

$$\phi^2(s) = \frac{1}{2\pi i} \int \phi^2(s+W) Exp(W^2) \frac{dW}{W}$$

the contour being the (anticlockwise) boundary of the rectangle bounded by $Re \ W = \frac{1}{2} - \sigma$, $Re \ W = 3A_1 - \sigma$, $Im \ W = \pm log \ T$. The proof proceeds as before using $\phi(s + W) = O(1)$ on the right boundary and negligible on the horizontal boundaries and the fact $\int |\frac{dW}{W}| \ll \log T$ on the left boundary. This completes the proof of the general lemma.

Theorem 3 is now completely proved.

ACKNOWLEDGEMENT. The authors are grateful to Professor M. JUTILA for encouragement.

REFERENCES

- [1] R. BALASUBRAMANIAN AND K. RAMACHANDRA, The proof that certain functions are entire, Maths. Teacher (India) (1985), p.7.
- [2] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-VI, Arkiv för Mathematik, no. 2, 19 (1981), p. 239-250.
- [3] K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-V, Reine u. Angew. Math., 303/304 (1978), p. 295-313.
- [4] K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-VII, (to appear).
- [5] E.C. TITCHMARSH, Theory of functions, Oxford University Press (1939).

ADDRESS OF THE AUTHORS

- 1) PROFESSOR R. BALASUBRAMANIAN MATSCIENCE THARAMANI P.O. MADRAS 600 113 INDIA
- 2) PROFESSOR K. RAMACHANDRA SCHOOL OF MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD COLABA BOMBAY 400 005 INDIA

MANUSCRIPT COMPLETED ON 17 FEBRUARY 1991