Hardy-Ramanujan Journal
Vol. 16 (1993) 21-43

THE NUMBER OF PRIMES IN A SHORT INTERVAL SHITUO LOU AND QI YAO

§ 1. INTRODUCTION.

Let x be a sufficient large number.
We shall investigate the number of primes in the interval $(x-y, x]$ for $y=x^{\theta}$ with $1 / 2<\theta \leq 7 / 12$. Hoheisel [1] was the first to give a value of $\theta<1$ such that

$$
\begin{equation*}
\pi(x)-\pi(x-y) \sim \frac{y}{\log x}, y=x^{\theta} \tag{1.1}
\end{equation*}
$$

Ingham [2] connected the problem with zero density estimates for $\zeta(s)$, and Montgomery [3] showed how a method of Halasz could be used to estimate $N(\sigma, T)$ (the number of zeros of $\zeta(s)$ in the range Re $s \geq \sigma, 0<I m s \leq T$). Huxley [4] proved that for

$$
\frac{7}{12}<\theta \leq 1
$$

(1.1) holds. His work built on foundations laid by the authors mentioned above.

Heath-Brown [5] has given an alternative proof of Huxley's result : Heath-Brown has actually proved more namely

THEOREM A [5] Let $\varepsilon(x) \leq 1 / 12$ be a non-negative function of x. Then

$$
\begin{equation*}
\pi(x)-\pi(x-y)=\frac{y}{\log x}\left\{1+O\left(\varepsilon^{4}(x)\right)+O\left(\left(\frac{\log \log x}{\log x}\right)^{4}\right)\right\} \tag{1.2}
\end{equation*}
$$

uniformly for

$$
x^{7 / 12-\varepsilon(x)} \leq y \leq \frac{x}{(\log x)^{4}} .
$$

Thus (1.1) holds for such y, providing only that $\varepsilon(x) \rightarrow 0$ as $x \rightarrow \infty$. Moreover, he obtained

$$
\begin{equation*}
\pi(x)-\pi\left(x-x^{7 / 12}\right)=\frac{x^{7 / 12}}{\log x}\left\{1+O\left(\left(\frac{\log \log x}{\log x}\right)^{4}\right)\right\} \tag{1.3}
\end{equation*}
$$

In [5], Heath-Brown has shown :
THEOREM B. Let

$$
\begin{equation*}
\sum(z)=\sum_{\substack{x-1<p_{i}, \cdots p_{0} \leq \pi \\ p_{i} \geq x, i=1, \cdots, k}} 1 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{align*}
E(x, z)= & \frac{1}{\log x}+\frac{1}{6} \int \cdots \int_{\substack{t_{1} t_{2} t_{3} \geq t_{4} \geq x \\
t_{5} \geq x \\
t_{2}}}\left(\log \frac{x}{t_{1} t_{2} t_{3} t_{4} t_{5}}\right)^{-1} \\
& \frac{d t_{1} d t_{2} d t_{3} d t_{4} d t_{5}}{t_{1} t_{2} t_{3} t_{4} t_{5} \log t_{1} \log t_{2} \log t_{3} \log t_{4} \log t_{5}} \tag{1.5}
\end{align*}
$$

is independent of y, where z may take any value in the range

$$
\begin{gathered}
x^{1 / 7}<z \leq x^{1 / 8} \exp \left(-(\log x)^{43 / 44}\right), y \geq x^{7 / 12} \\
x^{1 / 7}<z \leq y^{50} x^{-29} \exp \left(-(\log x)^{43 / 44}\right), y<x^{7 / 12}
\end{gathered}
$$

Then

$$
\begin{equation*}
\pi(x)-\pi(x-y)=y E(x, z)-\frac{1}{6} \sum(x)+O\left(y \exp \left(-(\log x)^{1 / 7}\right)\right. \tag{1.6}
\end{equation*}
$$

uniformly for

$$
\begin{equation*}
x^{7 / 12-1 / 6000} \leq y \leq x \exp \left(-(\log x)^{1 / 6}\right) \tag{1.7}
\end{equation*}
$$

In this paper, we shall give a generalization of Theorem B in § 2. Let the interval $\left.\right|^{y}=(x-y, x]$ with

$$
x^{1 / 2}<y \leq \frac{1}{2} x
$$

and the parameter z satisfying

$$
x^{1 / k_{0}}<x \leq x^{1 / 5}
$$

where k_{0} is a positive integer that will be chosen later. For example, with $y=x^{\theta}$, we shall choose $k_{0}=11$ if $\theta=11 / 20+\varepsilon$.

Denote $p\left(d_{i}\right)$ the smallest prime factor of d_{i}. We write

$$
S_{k}:=\left\{d_{1} \cdots d_{k}: d_{1} \cdots d_{k}=\left.d \in\right|^{y}, p\left(d_{i}\right) \geq z, 1 \leq i \leq k\right\} .
$$

$d_{1} \cdots d_{r}=d_{1}^{\prime} \cdots d_{j}^{\prime} \in S_{k}$ if and only if $r=j$ and $d_{i}=d_{i}^{\prime}$ for $1 \leq i \leq r$.
Let

Let r be a positive integer, $I_{j}, 1 \leq j \leq r$, be a set of integers, and $I_{j} \subseteq[2, x]$ and H be the "Direct Product" of sets I_{j}, for $1 \leq j \leq r$, it means $d \in H$ if and only if $d=d_{1} \cdots d_{r}$ with $d_{j} \in I_{j}, 1 \leq j \leq r$, and $\left.d \in\right|^{\nu}$. (1.8)

Suppose θ be fixed in the interval $(1 / 2,1)$ and $\left.y \in\left[x^{\theta}, x \exp (-\log x)^{1 / 6}\right)\right]$. Define the conditions $\left(A_{1}\right)$ and $\left(A_{2}\right)$ as following :
(A_{1}). If there exist some sets $\mathrm{H}_{k}, 1 \leq k<k_{0}$, which are collections of direct products H 's and constants c_{H} such that

$$
\begin{equation*}
\sum_{\left.n \in\right|^{\boldsymbol{r}}} a_{n}(k)=\sum_{H \in H_{k}} c_{H} \sum_{d \in H} 1+O\left(\frac{y}{\log ^{2} x}\right), \tag{1.9}
\end{equation*}
$$

then we call $\mathrm{H}_{k}, 1 \leq k<\boldsymbol{k}_{0}$, satisfy $\left(A_{1}\right)$.
(A_{2}). If $\mathbf{H}_{k}, 1 \leq k<k_{0}$, satisfy $\left(A_{1}\right)$, There exists a subset H_{k}^{\prime} and for each $H \in H_{k}^{\prime}$ there exists a function $E_{k}(H, z)$ independent of y such that

$$
\begin{equation*}
\sum_{d \in H} 1=y E_{k}(H, x)+O\left(y \exp \left(-(\log x)^{1 / 7}\right)\right) \tag{1.10}
\end{equation*}
$$

uniformly for

$$
x^{4} \leq y \leq x \exp \left(-(\log x)^{1 / 6}\right)
$$

then we call $\mathrm{H}_{k}^{\prime}, 1 \leq k<k_{0}$, satisfy (A_{2}).
We now state our Theorem here :
THEOREM 1. Let x be a sufficient large number, θ be fixed in $(1 / 2,1), x^{\theta} \leq$ $y<(1 / 2) x,\left.\right|^{y}=(x-y, x], k_{0}$ be an integer which is dependent on θ, and x be fixed in $\left(x^{1 / k_{0}}, x^{1 / 5}\right]$. Let $\mathbf{H}_{k}, 1 \leq k<k_{0}$, such that $\left(A_{1}\right)$. If there exists a subset \mathbf{H}_{k}^{\prime} of \mathbf{H}_{k} such that $\left(A_{2}\right)$, and writing $\mathbf{H}_{k}^{\prime \prime}=\mathbf{H}_{k} \backslash \mathbf{H}_{k}^{\prime}$, then we have

$$
\begin{equation*}
x(x)-\pi(x-y)=y E(x, x)+R(y)+O\left(y \exp \left(-(\log x)^{1 / 7}\right)\right. \tag{1.11}
\end{equation*}
$$

uniformly for

$$
x^{\theta} \leq y \leq x \exp \left(-(\log x)^{1 / 6}\right)
$$

where $E(x, x)$ independent of y, and

$$
\begin{equation*}
R(y)=\sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} \sum_{H \in H_{k}^{\prime \prime}} c_{H} \sum_{d \in H} 1 \tag{1.12}
\end{equation*}
$$

We call \mathbf{H}_{k}^{\prime} a 'good set' and call $\mathrm{H}_{k}^{\prime \prime}$ a 'bad set', for $1 \leq k<k_{0}$. HeathBrown [5] prove that

$$
\begin{equation*}
\pi(x)-\pi(x-y)=\sum_{1 \leq k<k_{0}}(-1)^{k-1} k^{-1} \sum_{k \in S_{k}} 1+O\left(y x^{-\frac{1}{3}}\right) \tag{1.13}
\end{equation*}
$$

Comparing (1.13) and (1.6) with (1.5), Heath-Brown took $k_{0}=7, S_{1}, \cdots S_{5}$ as good sets and only S_{6} as a bad set i.e. $\mathbf{H}_{1}^{\prime}=S_{1}, \cdots, \mathbf{H}_{5}^{\prime}=S_{5}, \mathrm{H}_{6}^{\prime}=\varnothing$; and $\mathbf{H}_{1}^{\prime \prime}=\cdots=\mathbf{H}_{5}^{\prime \prime}=\varnothing, \mathbf{H}_{6}^{\prime \prime}=S_{6}$. In Theorem 1, we are not limited that the good set or that the bad set should to be whole of S_{k}. In fact, $R(y)$ is the contribution of all bad sets. He proved that the contribution of his bad sets is $\Sigma(z)$ in (1.5). Heath-Brown applied Theorem B to improve (1.3). He obtained that if \boldsymbol{x} is sufficient large,

$$
\begin{equation*}
\pi(x)-\pi(x-y) \geq \frac{4 y}{5 \log x} \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
x^{\frac{7}{12}-\frac{1}{6000}} \leq y \leq x . \tag{1.15}
\end{equation*}
$$

In § 2 we shall prove Theorem 1. In § 2, we shall prove the following theorem also :

THEOREM 2. Suppose that θ is fixed in $(1 / 2,1), y_{0}=x \exp \left(-(\log x)^{1 / 8}\right), \mathbf{H}_{k}, 1 \leq$ $k<k_{0}$, satisfy $\left(A_{1}\right)$ and $\left(A_{2}\right)$. If there exist constanis $e_{1}, e_{1}^{\prime}, e_{2}$ and e_{2}^{\prime} such that

$$
\begin{equation*}
\frac{\left(-\varepsilon_{1}^{\prime}+\varepsilon\right) y_{0}}{\log x}<\sum_{1 \leq k<k_{0}}(-1)^{k-i} k^{-i} R_{k}\left(y_{0}\right)<\frac{\left(e_{i}-\varepsilon\right) y_{0}}{\log x} \tag{1.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left(-e_{2}^{\prime}+\varepsilon\right) y}{\log x}<\sum_{1 \leq k<k_{0}}(-1)^{k-1} k^{-1} R_{k}(y)<\frac{\left(e_{2}-\varepsilon\right) y}{\log x} \tag{1.17}
\end{equation*}
$$

where ε is a small positive constant. Then

$$
\begin{equation*}
\frac{\left(1-e_{1}-e_{2}^{\prime}\right) y}{\log x}<\pi(x)-\pi(x-y)<\frac{\left(1+e_{1}^{r}+e_{2}\right) y}{\log x} \tag{1.18}
\end{equation*}
$$

uniformly for $x^{\theta} \leq \boldsymbol{y} \leq y_{0}$.
Take an applicable form H_{k} with condition (A_{1}), which makes it possible to extend the range of validity of

$$
\begin{equation*}
(1-c) \frac{y}{\log x}<\pi(x)-\pi(x-y)<\left(1+c^{\prime}\right) \frac{y}{\log x} \tag{1.19}
\end{equation*}
$$

where c and c^{\prime} are constants. In this paper, we prove that (1.19) holds with $y=x^{\theta}, \theta=11 / 20+\varepsilon$ and $c=c^{\prime}=0.01$ in $\S 6$.

In [7], we gave some sufficient conditions that imply some kind of "direct product" be "good set". In § 3 and § 4 below, we use those conditions to prove that $\mathrm{H}_{k}^{\prime}, 1 \leq k \leq k_{0}$, which will be defined in (3.3) and (3.4) below be "good set".

In $\oint 6$ we will prove
Theorem 3. Suppose x be a large number, then

$$
\begin{equation*}
1.01 \frac{y}{\log x} \geq \pi(x)-\pi(x-y) \geq 0.99 \frac{y}{\log x} \tag{1.20}
\end{equation*}
$$

with $\boldsymbol{y}=\boldsymbol{x}^{\boldsymbol{\theta}}$, uniformly for

$$
\begin{equation*}
\frac{11}{20}<\theta \leq \frac{7}{12} . \tag{1.21}
\end{equation*}
$$

A criterion for good sets is extracted. However, the technical nork needed to choose good sets and to make the size of the bad sets as small
as possible, is precisely the main difference between our method and that Heath-Brown's. The new Theorem 1 will enable us to improve the results of Heath-Brown and Iwaniec [10]. Later on we shall establish one deeper results: for

$$
x^{\theta} \leq y \leq x \exp \left(-(\log x)^{1 / 6}\right)
$$

we have (1.19) with $\theta=6 / 11+\varepsilon$ or $\theta=7 / 13+\varepsilon$.
Moreover, we can improve (1.19) further but only at the cost of much arduous computation.

§ 2 Proof of Theorem 1 and Theorem 2.

The proof of Theorem 1 is much along the method that was used by Heath-Brown [5].

Our starting point is based on a formal identity (see [5]) :

$$
\begin{align*}
\log \zeta(s) \prod(s)= & \sum_{1 \leq k \leq \infty}(-1)^{k-1} k^{-1}\left(\zeta(s) \prod(s)-1\right)^{k} \tag{2.1}\\
& =\sum_{1 \leq t \leq \infty} \sum_{p \geq x} \frac{1}{t p^{t s}} \tag{2.2}
\end{align*}
$$

where

$$
\Pi(s)=\prod_{p<z}\left(1-\frac{1}{p^{\rho}}\right)
$$

We pick out the coefficients of n^{-3} for those terms in (2.1) and (2.2) with $\left.n \in\right|^{\nu}$. Thus in (2.2), these coefficients total

$$
\begin{equation*}
\sum_{1 \leq t<\infty}\left(\pi\left(x^{\frac{1}{1}}\right)-\pi\left((x-y)^{\frac{1}{1}}\right)\right) \frac{1}{t}=\pi(x)-\pi(x-y)+O\left(y x^{-\frac{1}{3}}\right) \tag{2.3}
\end{equation*}
$$

On the other hand, the Dirichlet series for $\zeta(s) \Pi(s)-1$ is

$$
\begin{equation*}
\sum_{n \geq z} c_{n} n^{-s} \tag{2.4}
\end{equation*}
$$

where c_{n} is 0 or 1 according to n has a prime factor $<z$ or not. It follows from (1.7) that there are no term of n^{-s} in (2.2) with $\left.n \in\right|^{y}$ corresponding to exponents $k \geq \boldsymbol{k}_{0}$. Henceiorth we consider oniy the terms with $k<k_{0}$.

Let

$$
\begin{equation*}
(\zeta(s) \Pi(s)-1)^{k}=\sum_{1 \leq n<\infty} a_{n}(k) n^{-z} \tag{2.5}
\end{equation*}
$$

By (2.4),

$$
\begin{equation*}
(\zeta(s) \Pi(s)-1)^{k}=\left(\sum_{1 \leq n<\infty} c_{n} n^{-s}\right)^{k} \tag{2.6}
\end{equation*}
$$

Then

$$
\sum_{1 \leq n<\infty} a_{n}(k) n^{-s}=\left(\sum_{1 \leq n<\infty} c_{n} n^{-n}\right)^{k}
$$

and

$$
a_{n}(k)=\sum_{d_{1} \cdots d_{k}=n} c_{d_{1}} \cdots c_{d_{k}} .
$$

Write

$$
\begin{equation*}
a_{n}(k)=\left|\left\{\left(d_{1}, \cdots, d_{k}\right): n=d_{1} \cdots d_{k}, p\left(d_{i}\right) \geq z, 1 \leq i \leq k\right\}\right|, \tag{2.7}
\end{equation*}
$$

where $\left(d_{1}, \cdots, d_{k}\right)=\left(d_{1}^{\prime}, \cdots, d_{k}^{\prime}\right)$ means $d_{i}=d_{i}^{\prime}$ for $i=1, \cdots, k$. Therefore

$$
\begin{equation*}
\sum_{n \in \mid} a_{n}(k)=\sum_{\substack { d_{1},{c}{d_{k}=n \\
\left(d_{i}\right) \geq, x, 1 \leq i \leq k{ d _ { 1 } , \begin{subarray} { c } { d _ { k } = n \\
(d _ { i }) \geq , x , 1 \leq i \leq k } } \\
{\text { ve| }}\end{subarray}} 1, \tag{2.8}
\end{equation*}
$$

and in (2.1), the coefficients total

We have that
since (2.3) and (2.9).

By conditions $\left(A_{1}\right)$ and $\left(A_{2}\right)$, we have that

$$
\begin{aligned}
\pi(x)-\pi(x-y) & =\sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} \sum_{H \in H_{k}} c_{H} \sum_{d \in H} 1+O\left(y x^{-\frac{1}{3}}\right)+O\left(\frac{y}{\log ^{2} x}\right) \\
& =y \sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} \sum_{H \in H_{k}^{\prime}} c_{H} E_{k}(H, x)+R(y)+O\left(\frac{y}{\log ^{2} x}\right) .
\end{aligned}
$$

Let

$$
E(x, z)=\sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} \sum_{H \in H_{k}^{\prime}} c_{H} E_{k}(H, x)
$$

This completes the proof.
The proof of Theorem 2
By Prime Number Theorem,

$$
\pi(x)=\int_{2}^{x} \frac{d t}{\log t}+O\left(x \exp (-\log x)^{1 / 2}\right)
$$

We have

$$
\begin{gather*}
\pi(x)-\pi\left(x-y_{0}\right)=\int_{x-y_{0}}^{x}\left(\frac{1}{\log t}-\frac{1}{\log x}\right) d t+\frac{y_{0}}{\log x}+O\left(x \exp \left(-(\log x)^{1 / 2}\right)\right. \\
=\int_{x-y_{0}}^{x} \frac{\log \frac{x}{t}}{\log t \log x} d t+\frac{y_{0}}{\log x}+O\left(x \exp \left(-(\log x)^{1 / 2}\right)\right. \tag{2.11}
\end{gather*}
$$

Clearly, for $\boldsymbol{x}-\boldsymbol{y}_{0} \leq \boldsymbol{t} \leq \boldsymbol{x}$,

$$
\log \frac{x}{t} \leq \log \frac{x}{x-y_{0}} \leq \frac{y_{0}}{x-y_{0}}=O\left(\frac{y_{0}}{x}\right)
$$

Therefore, (3.1) is

$$
\begin{equation*}
\pi(x)-\pi\left(x-y_{0}\right)=\frac{y_{0}}{\log x}+O\left(y_{0} \exp \left(-(\log x)^{1 / 6}\right)\right. \tag{2.12}
\end{equation*}
$$

Using Theorem 1 with $y=y_{0}, S_{k}^{\prime}=\mathbf{H}_{k}$, and

$$
R\left(y_{0}\right)=\sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} R_{k}\left(y_{0}\right)+O\left(\frac{y_{0}}{\log x}\right)
$$

we have

$$
\begin{equation*}
\pi(x)-\pi\left(x-y_{0}\right)=y_{0} E(x, z)+\sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} R_{k}\left(y_{0}\right)+O\left(\frac{y_{0}}{\log ^{2} x}\right) \tag{2.13}
\end{equation*}
$$

Comparing (2.12) with (2.13), we have

$$
\begin{equation*}
\frac{y_{0}}{\log x}=y_{0} E(x, x)+\sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} R_{k}\left(y_{0}\right)+O\left(\frac{y_{0}}{\log ^{2} x}\right) \tag{2.14}
\end{equation*}
$$

hence

$$
\begin{equation*}
E(x, z)=\frac{1}{\log x}-\frac{1}{y_{0}} \sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} R_{k}\left(y_{0}\right)+O\left(\frac{y_{0}}{\log ^{2} x}\right) \tag{2.15}
\end{equation*}
$$

By (2.15) and (1.16),

$$
\begin{equation*}
\frac{1-e_{1}}{\log x}<E(x, z)<\frac{1+e_{1}^{\prime}}{\log x} \tag{2.16}
\end{equation*}
$$

Using Theorem 1 again,

$$
\begin{equation*}
y E(x, z)=\pi(x)-\pi(x-y)-\sum_{1 \leq k \leq k_{0}}(-1)^{k-1} k^{-1} R_{k}(y)+O\left(\frac{y}{\log ^{2} x}\right) \tag{2.17}
\end{equation*}
$$

By (1.17), (2.15) and (2.17), we have

$$
\begin{equation*}
\frac{\left(1-e_{1}-e_{2}^{\prime}\right) y}{\log x}<\pi(x)-\pi(x-y)<\frac{\left(1+e_{1}^{\prime}+e_{2}\right) y}{\log x} \tag{2.18}
\end{equation*}
$$

This completes the proof.

§ 3. "Good Set"

Let c_{0} be a constant that will be defined later on. Let l_{0} be an interval [$\left.a_{0}, b_{0}\right]$ which contains in $[1, x]$ and $\left.\right|_{j}(1 \leq j \leq r)$ be a subset of interval $\left[a_{j}, b_{j}\right]$ contains in $\left[x^{c_{0}}, x\right]$ also. Denote $D=\left.\left.\right|_{0} \cdots\right|_{r}$ be a direct product of $\left.\right|_{j}$. Let $i_{j}=\log a_{j} / \log x$ and $i_{j}^{\prime}=\log b_{j} / \log x$ and let $d_{j}=x^{\theta_{j}}$ with $i_{j} \leq \theta_{j} \leq i_{j}^{\prime}$ and $0 \leq j \leq r$. For convenience, we write $d=\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{r}\right\} \in D$, and a set

$$
\begin{equation*}
\mathbf{D}=\left\{\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{r}\right\}: 1 / 2 \geq 1-\theta_{1}-\cdots-\theta_{r}=\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{r}\right\} \tag{3.1}
\end{equation*}
$$

For short, we denote $\left\{\theta_{j}\right\}=\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{\tau}\right\}$.
Let $\left.\mathrm{D} \cap\right|^{y}$ be a set of integers, $\left.d \in \mathrm{D} \cap\right|^{\nu}$ if and only if $d \in \mathrm{D}$ and $\left.d \in\right|^{y} \cdot d=d^{\prime}$ with $d,\left.d^{\prime} \in \mathrm{D} \cap\right|^{\nu}$ means $d=d_{0} \cdots d_{r}$ and $d^{\prime}=d_{0}^{\prime \prime} \cdots d_{r}^{\prime}$ with $d_{j}=d_{j}^{\prime}$ for $0 \leq j<r$. We shall show the sufficient conditions for $\left.\mathrm{D} \cap\right|^{\nu}$ be a "good set", i.e. for a fixed z with $x^{1 / 5}>z=x^{c}$, there exists a function $E_{\mathrm{D}}(x, z)$, independent of y, which satisfies that

$$
\begin{equation*}
\sum_{d \in \mathbf{D} \cap \mathbf{I}} 1=y E_{\mathbf{D}}(x, z)+O\left(y \exp \left(-\log ^{1 / 7} x\right)\right) \tag{3.2}
\end{equation*}
$$

where $E_{\mathrm{D}}(x, z)$ and constant in " O " are uniformly for

$$
x^{\theta} \leq y \leq x \exp \left(-4(\log x)^{\frac{1}{3}}(\log \log x)^{-\frac{1}{3}}\right)
$$

Let $\theta=11 / 20+\varepsilon, t_{0}=1-\theta+\varepsilon / 2$ and $x=x^{c}$ with $c=1 / 2-8 t_{0} / 9$. Define

$$
\begin{gather*}
\mathrm{D}(6)=\left\{\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{5}\right\}:\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{5}\right\} \in \mathrm{D}, 2 t_{0} / 5 \geq 1-\theta_{1}-\cdots-\theta_{5}=\right. \\
\left.\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{5} \geq 1 / 2-8 t_{0} / 9\right\} \tag{3.3}
\end{gather*}
$$

and

$$
\begin{gather*}
\mathrm{D}(8)=\left\{\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{7}\right\}:\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{7}\right\} \in \mathrm{D}, 2 t_{0} / 7 \geq 1-\theta_{1}-\cdots-\theta_{7}=\right. \\
\left.\theta_{0} \geq \theta_{1} \geq \cdots \geq \theta_{7} \geq 1 / 2-8 t_{0} / 9\right\} \tag{3.4}
\end{gather*}
$$

In this section, we shall prove that :
Theorem 4. Suppose $\theta=11 / 20+\varepsilon, t_{0}=1-\theta+\varepsilon / 2, z=x^{c 0}$ with $c=$ $1 / 2-8 t_{0} / 9 ; D^{\prime}$ be a subset of $D_{\text {; }}$ and

$$
\begin{equation*}
\mathbf{D}^{\prime} \cap(\mathbf{D}(6) \cup \mathbf{D}(8))=0 \tag{3.5}
\end{equation*}
$$

then D^{\prime} satisfies (3.2), i.e. D^{\prime} is a good set.
Obviously, the subset of D with $\mathrm{r} \neq 5$ or 7 are good sets. $\mathbf{D}(6)$ and $\mathbf{D}(8)$ are called exceptional sets.

We discuss those sequences $d=\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{r}\right\}=\left\{\theta_{j}\right\}$ in D. For such $\left\{\theta_{j}\right\}$, we define a corresponding set Θ of all of sequences $\left\{\theta_{0}^{\prime}, \theta_{1}, \cdots, \theta_{r}, \theta_{r+1}, \cdots, \theta_{r+r_{1}}\right\}$ with $\theta_{0}^{\prime} \leq \theta_{0}, \theta_{1} \geq \cdots \geq \theta_{r} \geq \log z / \log x>\theta_{r+1} \geq \cdots \geq \theta_{r+r_{1}}$ and

$$
\begin{equation*}
\theta_{0}^{\prime}+\theta_{1}+\cdots \theta_{r+r_{1}}=1 \tag{3.6}
\end{equation*}
$$

By (3.6) and (3.1), we have that if $r_{1}=0$, then

$$
\begin{equation*}
\theta_{0}^{\prime}=\theta_{0} \geq \theta_{1} . \tag{3.7}
\end{equation*}
$$

For short, write $\left\{\theta_{j}\right\}^{\prime}=\left\{\theta_{0}^{\prime}, \theta_{1}, \cdots, \theta_{r}, \theta_{r+1}, \cdots, \theta_{r+r_{1}}\right\} .\left\{\theta_{j}\right\}$ and $\left\{\theta_{j}\right\}^{\prime} \in$ Θ. Let $\theta_{0}^{\prime}=\log X / \log x, \theta_{j}=\log X_{d}^{(j)} / \log x(1 \leq j \leq r)$ and $\theta_{r+j}=$ $\log Z_{j} / \log x\left(1 \leq j \leq r_{1}\right)$. For each $\left\{\theta_{0}^{\prime}, \theta_{1}, \cdots, \theta_{r}, \theta_{r+1}, \cdots, \theta_{r+r_{1}}\right\}$, we define a product of Dirichlet series :

$$
\begin{equation*}
W\left(s,\left\{\theta_{j}\right\}^{\prime}\right\}=W(s)=X(s) \prod_{j=1}^{r} X_{d}^{(j)}(s) Y(s) \prod_{j=1}^{{ }_{1}} Z_{j}(s) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& X(s)=\sum_{X<n \leq 2 X} n^{-s} ; \\
& X_{d}^{(j)}(s)=\sum_{X_{i}^{(j)}<m \leq 2 X_{d}^{(j)}} f_{m}^{(j)} m^{-s},\left|f_{m}^{(j)}\right| \leq 1 ; \\
& Z_{j}(s)=\left.\sum_{Z_{j}<1 \leq 2 Z_{j}} c_{j}\right|^{-s},\left|c_{1}\right| \leq 1 ; \\
& Y(s)=\sum_{Y<t \leq 2 Y} \mu(t) v_{t} t^{-s},\left|v_{t}\right| \leq 1 .
\end{aligned}
$$

with $Y=O\left(x^{\delta}\right), \delta$ be a sufficient small number with $\delta<\varepsilon$. Each $\left\{\theta_{j}\right\} \in \mathbf{D}$ corresponds all of $W\left(s,\left\{\theta_{j}\right\}^{\prime}\right)^{\prime s}$ for which $\left\{\theta_{j}\right\}^{\prime} \in \Theta$. Define that $\mathbf{W}(\mathbf{D})$ is a set of all of such $W\left(s,\left\{\theta_{j}\right\}^{\prime}\right)$. For short, we write $W\left(s,\left\{\theta_{j}\right\}^{\prime}\right)=W(s)$. In [7], we proved that

Theorem A. If \mathbf{D} satisfies one of following conditions
(1) $a_{0} \geq x^{1 / 2}$;
(2) all of $W(s) \in \mathbf{W}(\mathbf{D})$ such that

$$
\begin{equation*}
\int_{T}^{2 T}\left|W\left(\frac{1}{2}+i t\right)\right| d t \ll x^{\frac{1}{2}} \exp \left(-(\log x)^{\frac{1}{3}}(\log \log x)^{-\frac{2}{3}}\right) \tag{3.9}
\end{equation*}
$$

for

$$
T_{1} \leq T \leq \frac{x^{1-\Delta}}{y}
$$

where Δ is any fixed positive constant, and

$$
T_{1}=\exp \left((\log x)^{\frac{1}{3}}(\log \log x)^{-\frac{1}{3}}\right)
$$

Then (1.2) holds i.e. \mathbf{D} is a good set
Let $\theta_{0}, \theta_{1}, \cdots, \theta_{k}$ be positive numbers. In [7], we discussed the sequence $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ with positive number k such that

$$
\begin{equation*}
\theta_{0}+\theta_{1}+\cdots+\theta_{k}=1 \tag{3.10}
\end{equation*}
$$

defined a set $E(\theta)$ of some $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$'s and acutely proved that $\left.[7, \S 5]\right)$.

Theorem B. Let $\left\{\theta_{j}\right\} \in \mathbf{D}$. For each $\left\{\theta_{j}\right\}^{\prime} \in \Theta$ define

$$
W^{\prime}(s)=X(s) \prod_{j=1}^{r} X_{d}^{(j)}(s) \prod_{j=1}^{r_{1}} Z_{j}(s)
$$

If $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$, then

$$
\begin{equation*}
\int_{T}^{2 T}\left|W^{\prime}\left(\frac{1}{2}+i t\right)\right| d t \ll x^{1 / 2-\varepsilon} \tag{3.11}
\end{equation*}
$$

Moreover, (3.9) holds.
We now describe the set $E(\theta)$.
Suppose $\left\{a_{1}, a_{2}, \sigma\right\}$ or $\left\{a_{1}, a_{2}, a_{3}, \sigma\right\}$ be a complementary partial sum (it means that each θ_{j} belongs one and only one set and their sum in a set be σ or a_{i}) of $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ with $\sigma=\theta_{0}$ or $\sigma \leq t_{0} / 2$, then

$$
\begin{equation*}
a_{1}+a_{2}+\sigma=1 \tag{3.12}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+\sigma=1 \tag{3.13}
\end{equation*}
$$

Later on, we only define two of a_{1}, a_{2} and σ if (3.12) holds; or define three of a_{1}, a_{2}, a_{3} and σ if (3.13) holds. Suppose $\theta=11 / 20+\varepsilon$ and $t_{0}=9 / 20-\varepsilon / 2$.

We define $E(\theta)$ be a set which contains all of sequence $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ with (3.12) which satisfies one of following three properties :
(I) There exists at least one complementary partial sum $\left\{a_{1}, a_{2}, \sigma\right\}$ of $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ which satisfies one of following conditions:
(3.14) $a_{1} \leq t_{0}$ and $a_{2} \leq t_{0}$ (see Lemma 4.4 of [7]);
(3.15) $\sigma>t_{0} / 5, a_{1}>8 t_{0} / 9$ and $a_{2}>8 t_{0} / 9$ (see (4.1.3) with $i=3$ of [7]);
(3.16) $a_{1}>6 t_{0} / 7, a_{2}>6 t_{0} / 7$ and $\sigma>t_{0} / 4$ (see (4.1.3) with $i=2$ of [7]);
(3.17) $a_{1} \geq t_{0}$ and $a_{2} \geq t_{0}$ (see (4.1.1) of [7]);
(3.18) $1 / 2 \geq a_{1} \geq t_{0}$, and $\sigma<1 / 2-8 t_{0} / 9$ (see (4.5.6) of [7]);
(3.19) $\sigma>t_{0} / 2$ (see Lemma 4.3 of [7]).
(II) There exists at least one complementary partial $\operatorname{sum}\left\{a_{1}, a_{2}, a_{3}, \sigma\right\}$ of $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ which satisfies
(3.20) $a_{1} \geq t_{0}, a_{2} \geq t_{0} / 3, a_{3} \geq t_{0} / 3$ and $\sigma>2 t_{0} / 5$ (see (4.2.2) of [7]).

For a fixed σ, in [7] we proved that there exists a pair of numbers (m_{σ}, M_{σ}) with the properties

$$
\begin{gather*}
M_{\sigma}-m_{\sigma}>1 / 2-8 t_{0} / 9 \text { if } \sigma \geq 1 / 2-8 t_{0} / 9 \tag{3.21}\\
M_{\sigma}-m_{\sigma}<\sigma \text { if } \sigma<1 / 2-8 t_{0} / 9 \tag{3.22}\\
M_{\sigma}>t_{0}>m_{\sigma} \tag{3.23}
\end{gather*}
$$

and

$$
\begin{equation*}
M_{\sigma}+m_{\sigma}+\sigma=1 \tag{3.24}
\end{equation*}
$$

(III) Suppose $\left\{a_{1}, a_{2}, \sigma\right\}$ or $\left\{a_{1}, a_{2}, a_{3}, \sigma\right\}$ be a complementary sum of $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ with

$$
\begin{equation*}
m_{\sigma}<a_{i}<M_{\sigma}, \quad(i=1 \text { or } 2) \tag{3.25}
\end{equation*}
$$

(See Lemma 4.5 of [7]).

Applying Theorem A and Theorem B, Theorem 4 follows from Theorem 5. Suppose $\theta=11 / 20+\varepsilon$, and \mathbf{D}^{\prime} be a subset of \mathbf{D} such that

$$
\mathbf{D}^{\prime} \cap(\mathbf{D}(6) \cup \mathbf{D}(8))=\phi
$$

Then for every $\left\{\theta_{j}\right\} \in \mathbf{D}^{\prime}$, the all of corresponding $\left\{\theta_{j}\right\}^{\prime} \in \Theta$ contain in $E(\theta)$.

§ 4. LEMMAS.

Let $\theta=11 / 20+\varepsilon$ and $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ with (3.11), i.e.

$$
\theta_{0}+\theta_{1}+\cdots+\theta_{k}=1
$$

In this section, we shall show some sufficient conditions for $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in$ $E(\theta)$. By the definition of $E(\theta)$ we check that $\left\{\theta_{j}\right\}$ satisfies at least one of conditions (3.14) - (3.20) and (3.25).

Lemma 4.1. Suppose there exist two elements θ^{\prime} and $\theta^{\prime \prime}$ of $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ with $\theta^{\prime} \leq t_{0} / 2$ and $\theta^{\prime \prime}<1 / 2-8 t_{0} / 9$. If there exists a partial sum s of $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \backslash\left\{\theta^{\prime}, \theta^{\prime \prime}\right\}$ such that $s<t_{0}$ and $s+\theta^{\prime} \geq t_{0}$, then $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in$ $E(\theta)$.

Proof. We discuss following three cases :
Case 1. $t_{0} \leq s+\theta^{\prime}<M_{\theta^{\prime \prime}}$ and $1-s-\theta^{\prime} \geq t_{0}$.
Let $\sigma=\theta^{\prime \prime}$ and $a_{1}=s+\theta^{\prime}$, we have that $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ by (3.23) and (3.25).

Case 2. $s+\theta^{\prime} \geq M_{\theta^{\prime \prime}}$.
By (3.24), we have

$$
1-s-\theta^{\prime}-\theta^{\prime \prime} \leq 1-M_{\theta^{\prime \prime}}-\theta^{\prime \prime}=m_{\theta^{\prime \prime}}
$$

and, by (3.22),

$$
1-s-\theta^{\prime} \leq \theta^{\prime \prime}+m_{\theta^{\prime \prime}}<M_{\theta^{\prime \prime \prime}} .
$$

Let $a_{1}=1-s-\theta^{\prime}$ and $\sigma=\theta^{\prime \prime}$, if $a_{1}>m_{\theta^{\prime \prime}}$, then $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ by (3.25). If $a_{1} \leq m_{\theta^{\prime \prime}} \leq t_{0}$, then $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ by (3.14) (since
$a_{2} \leq m_{\theta^{\prime \prime}} \leq t_{0}$.)
Case 3. $t_{0} \leq s+\theta^{\prime}<M_{\theta^{\prime \prime}}$ and $1-s-\theta^{\prime}<t_{0}$.
Let $a_{1}=1-s-\theta^{\prime}<t_{0}, a_{2}=s<t_{0}$ and $\sigma=\theta^{\prime}$, then $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ by (3.14).

Lemma 4.2. Suppose $\left\{a_{1}, a_{2}, \sigma\right\}$ be a complementary partial sum of $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\}$ with $a_{1}=\theta_{1}+\cdots+\theta_{k}, a_{2}=\theta_{1}^{\prime}+\cdots \theta_{k}^{\prime}, a_{1} \geq a_{2}, \sigma=1-a_{1}-a_{2}>1 / 2-8 t_{0} / 9$ and

$$
\begin{equation*}
\max \left\{\theta_{1}, \cdots, \theta_{k}\right\}-\min \left\{\theta_{1}^{\prime}, \cdots, \theta_{k}^{\prime}\right\}<\frac{1}{2}-\frac{8 t_{0}}{9} \tag{4.1}
\end{equation*}
$$

then $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$.
Proof. If $a_{1} \leq t_{0}$, then $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ by (3.14); if $a_{2} \geq t_{0}$, then $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ by (2.8); if $m_{\sigma}<a_{1}<M_{\sigma},\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ by (3.25).

Now we suppose $a_{1} \geq M_{\sigma}$.
By (3.15) and (3.1), we have

$$
\begin{aligned}
\theta_{1}+\cdots+\theta_{k-1}+\theta_{k}^{\prime} & =\theta_{1}+\cdots+\theta_{k}+\left(\theta_{k}^{\prime}-\theta_{k}\right) \\
& >M_{\sigma}-\left(\frac{1}{2}-\frac{8 t_{0}}{9}\right) \geq m_{\sigma} .
\end{aligned}
$$

If

$$
\theta_{1}+\cdots+\theta_{k-1}+\theta_{k}^{\prime}<M_{\sigma} .
$$

let $a_{1}=\theta_{1}+\cdots+\theta_{k-1}+\theta_{k}^{\prime}$, then $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ by (3.17); if

$$
\theta_{1}+\cdots+\theta_{k-1}+\theta_{k}^{\prime} \geq M_{\sigma}
$$

and

$$
\theta_{1}+\cdots+\theta_{k-2}+\theta_{k-1}^{\prime}+\theta_{k}^{\prime}<M_{\sigma}
$$

repeating above process, let $a_{1}=\theta_{1}+\cdots+\theta_{k-1}^{\prime}+\theta_{k}^{\prime}$ we also have $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in$ $E(\theta)$. And repeat it again, we have that, in all cases, $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{k}\right\} \in E(\theta)$ since

$$
\theta_{1}^{\prime}+\cdots+\theta_{k}^{\prime}<t_{0} \leq M_{\sigma} .
$$

§ 5. Proof of Theorem 3

It is sufficient to prove Theorem 4, i.e., let $\left\{\hat{0}_{j}\right\} \in \mathrm{D}$ and $\left\{\theta_{j}\right\}^{\prime} \in \Theta$ that satisfies following conditions :
(5.1) $t_{0}>1-\theta_{1}-\cdots-\theta_{r}=\theta_{0} \geq \theta_{0}^{\prime} \geq \theta_{1} \geq \cdots \geq \theta_{r}>1 / 2-8 t_{0} / 9 \geq$ $\theta_{r+1} \geq \cdots \geq \theta_{r+r_{i}}$
(5.2) $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{5}\right\} \notin D(6)$ if $r=5$, and $\left\{\theta_{0}, \theta_{1}, \cdots, \theta_{7}\right\} \notin D(6)$ if $r=7$;
(5.3) $\theta_{0}^{\prime}+\theta_{1}+\cdots+\theta_{r+r_{1}}=1$,
we shall prove that $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$.
We record (2.2) here : if $r_{1}=0$,

$$
\theta_{0}^{\prime}=\theta_{0} \geq \theta_{1} .
$$

Let k_{0} be the number such that

$$
\begin{equation*}
\sum_{1 \leq j \leq k_{0}-1} \theta_{j} \leq t_{0} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1 \leq j \leq k_{0}} \theta_{j}>t_{0} \tag{5.5}
\end{equation*}
$$

By (5.1), $\theta_{1}<t_{0}$, then we have $k_{0} \geq 2$.
If $r+r_{1}>k_{0}>r$, then $\theta_{k_{0}}<1 / 2-8 t_{0} / 9$. In Lemma 4.1, take $\theta^{\prime}=$ $\theta_{k_{0}}, \theta^{\prime \prime}=\theta_{r+r_{1}}$, then $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$. If $k_{0}=r+r_{1}$, let

$$
a_{1}=\sum_{1 \leq j \leq k_{0}-1} \theta_{j} \leq t_{0}
$$

and

$$
a_{2}=\theta_{k_{0}} \leq 1 / 2 \leq 8 t_{0} / 9<t_{0}
$$

then $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.14). Finally, we consider $2 \leq k_{0} \leq r$.
Lemma 5.1. Suppose $r_{1}=0$. If $r \leq 2\left(k_{0}-1\right)$, or $r \geq k_{0}+4$, then $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$.

Proof. If $r \leq 2\left(k_{0}-1\right)$, let

$$
a_{1}=\sum_{1 \leq j \leq k_{0}-1} \theta_{j} \leq t_{0}
$$

and

$$
a_{2}=\sum_{k_{0} \leq j \leq r} \theta_{j} \leq a_{1} \leq t_{0}
$$

Thus $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.14).
If $r \geq k_{0}+4$, let

$$
\begin{aligned}
& a_{1}=\sum_{k_{0}+1 \leq j \leq k_{0}+4} \theta_{j}>4\left(\frac{1}{2}-\frac{8 t_{0}}{9}\right)>\frac{8 t_{0}}{9}, \\
& a_{2}=\sum_{1 \leq j \leq k_{0}}^{\theta_{j}>t_{0}}
\end{aligned}
$$

and $\sigma=1-a_{1}-a_{2}$. Thus $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.15) since $\sigma=1-\theta_{1}-\cdots-\theta_{r} \geq$ $\theta_{1}>t_{0} / 5$. The Lemma is proved.

To prove Theorem 4, we now discuss following cases :

Case 1. $k_{0} \geq 3$.

By (5.1) and (5.4), we have

$$
\theta_{3} \leq \theta_{2} \leq \frac{1}{2}\left(\theta_{1}+\theta_{2}\right) \leq \frac{1}{2} t_{0} .
$$

If $r_{1}>0$, take $\theta^{\prime}=\theta_{3}$ and $\theta^{\prime \prime}=\theta_{r+r_{1}}$ in Lemma 4.1, we have that $\left\{\theta_{j}\right\}^{\prime} \in$ $E(\theta)$.

Now may suppose that

$$
r_{1}=0 .
$$

By Lemma 5.1, we also suppose

$$
\begin{equation*}
2 k_{0}-1 \leq r \leq k_{0}+3 \tag{5.6}
\end{equation*}
$$

i.e. $3 \leq k_{0} \leq 4$.

When $k_{0}=4$, by (5.6) we have $r=7$. Since $\left\{\theta_{j}\right\} \notin D(8)$, we have

$$
\theta_{1}+\theta_{2}+\theta_{3}>\frac{6}{7} t_{0}
$$

Let $a_{1}=\theta_{1}+\theta_{2}+\theta_{3}>6 t_{0} / 7, a_{2}=\theta_{4}+\theta_{5}+\theta_{6}+\theta_{7}>8 t_{0} / 9>6 t_{0} / 7$, and $\sigma=\theta_{0}>1 / 8>t_{0} / 4$, thus $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.16). When $k_{0}=3$, by (5.6), $r=5$ or 6 . If $r=5$, by $\left\{\theta_{j}\right\} \notin D(6)$, we have

$$
\theta_{1}>\frac{2}{5} t_{0} .
$$

Let $a_{1}=\theta_{3}+\theta_{4}+\theta_{5}$, when $\theta_{3}+\theta_{4}+\theta_{5} \geq t_{0}$, let $a_{2}=\theta_{2}>t_{0} / 3$ and $a_{2}=\theta_{1}>2 t_{0} / 5$, then $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.20). When $\theta_{3}+\theta_{4}+\theta_{5}<t_{0}$, let $a_{2}=\theta_{1}+\theta_{2}$, by (5.1) we have

$$
\theta_{1}+\theta_{2} \leq \frac{2}{3}\left(\theta_{0}+\theta_{1}+\theta_{2}\right) \leq \frac{2}{3}\left(1-\theta_{3}-\theta_{4}-\theta_{5}\right)<t_{0} .
$$

Thus $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.14).
When $\boldsymbol{k}_{0}=3, \boldsymbol{r}=6$ and $r_{1}=0$, we discuss following cases :
Case 1.1. $\theta_{1}+\theta_{3}+\theta_{5} \leq t_{0}$ or $\theta_{2}+\theta_{4}+\theta_{6} \geq t_{0}$.
Let $a_{1}=\theta_{1}+\theta_{3}+\theta_{5}$ and $a_{2}=\theta_{2}+\theta_{4}+\theta_{6}$, then $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.14) or (3.17).

Case 1.2. $\theta_{1}+\theta_{3}+\theta_{5}>t_{0}>\theta_{2}+\theta_{4}+\theta_{B}$.
If $\theta_{1}-\theta_{6}<1 / 2-8 t_{0} / 9$, take $\sigma=1-a_{1}-\cdots-a_{6} \geq a_{1}>1 / 2-8 t_{0} / 9$ in Lemma 4.2, then $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$. We consider that

$$
\theta_{1}-\theta_{6} \geq 1 / 2-8 t_{0} / 9
$$

By (4.1), $\theta_{6} \geq 1 / 2-8 t_{0} / 9$, therefore

$$
\theta_{1} \geq 1-16 t_{0} / 9
$$

and $\theta_{0}+\theta_{1} \geq 2-32 t_{0} / 9>8 t_{0} / 9$. Let $a_{1}=\theta_{0}+\theta_{1}>8 t_{0} / 9, a_{2}=\theta_{2}+\theta_{3}+$ $\theta_{4}+\theta_{5}>8 t_{0} / 9$ and $\sigma=\theta_{6}$, thus $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.15).

Case 2. $k_{0}=2$.
By (5.4), we have $\theta_{1}>t_{0} / 2$. If $r_{1}=0$, then $\theta_{0}^{\prime}=\theta_{0}>t_{0} / 2$ and $\left\{\theta_{j}\right\} \in$ $E(\theta)$ by (3.19). Now may suppose that $r_{1}>0$ and $\theta_{0} \leq t_{0} / 2$.

We discuss the following two cases :

Case 2.1. $\theta_{3}>t_{0} / 2$.
Let $a_{1}=\theta_{2}+\theta_{3} \geq t_{0}$. By (5.1) and (5.3), we have that

$$
\theta_{2}+\theta_{3} \leq 1-\theta_{0}^{\prime}-\theta_{1}-\theta_{4}-\cdots-\theta_{r+r_{1}} \leq 1-\theta_{2}-\theta_{3}
$$

then

$$
\begin{equation*}
\theta_{2}+\theta_{3} \leq 1 / 2 \tag{5.7}
\end{equation*}
$$

Let $\sigma=\theta_{r+r_{1}}$, then $\left\{\theta_{j}\right\}^{\prime} \in E(\theta)$ by (3.18) (since $r_{1}>0$ implies $\theta_{r+r_{1}}<$ $\left.1 / 2-8 t_{0} / 9\right)$.

Case 2.2. $\theta_{3} \leq t_{2} / 2$.
We have

$$
\theta_{1}+\theta_{0}+\theta_{3}+\cdots+\theta_{r+r_{1}}=1-\theta_{2}>1-t_{0}
$$

and $\theta_{1}+\theta_{0}+\theta_{3}+\cdots+\theta_{r+r_{1}-1}>t_{0}$ (since $\theta_{r+r_{1}}<1 / 2-8 t_{0} / 9<1-2 t_{0}$). We can find a number $j=0$ or 3 or $j \leq r+r_{1}-1$ with

$$
\theta_{1}+\theta_{0}+\theta_{3}+\cdots+\theta_{k-1}<t_{0}
$$

and

$$
\theta_{1}+\theta_{0}+\theta_{3}+\cdots+\theta_{k} \geq t_{0}
$$

In Lemma 3.1, take $\theta^{\prime}=\theta_{0}$ and $\theta^{\prime \prime}=\theta_{r+r_{1}}$, then we have that $\left\{\theta_{j}\right\} \in E(\theta)$. The proof of Theorem 1 is complete.

§ 6. Proof of Theorem 3.

In this section we discuss that $\theta=11 / 20+\varepsilon$.
Let

$$
\begin{equation*}
S_{k}^{\prime}=\left\{d=d_{0} d_{1} \cdots d_{k-1}: d \in S_{k}, d_{0} \geq \cdots \geq d_{k-1}\right\} \tag{6.1}
\end{equation*}
$$

Take $\mathbf{H}_{k}=S_{k}^{\prime}$ and $c_{H}=k$!, then $\left(A_{1}\right)$ holds.
Let

$$
\begin{equation*}
\mathbf{D}(6)=\left\{d: d \in S_{6}^{\prime}, d=d_{0} \cdots d_{5}, x^{2 t_{0} / 5} \geq d_{0} \geq \cdots \geq d_{5} \geq x^{\frac{1}{2}-\frac{8 t_{0}}{9}}, d_{3}^{\prime} d_{4} d_{5} \geq x^{t_{0}}\right\} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{D}(8)=\left\{d: d \in S_{k}^{\prime}, d=d_{0} \cdots d_{7}, x^{\frac{2 t_{0}}{7}} \geq d_{0} \geq \cdots \geq d_{7} \geq x^{\frac{1}{2}-\frac{8 t_{0}}{6}}\right\} \tag{6.3}
\end{equation*}
$$

In [8], we proved the following lemma:
Lemma 6.1. Let $\mathbf{H}_{8}^{\prime \prime}=\mathbf{D}(6), \mathrm{H}_{8}^{\prime \prime}=\mathrm{D}(8)$ and $\mathrm{H}_{k}^{\prime \prime}=0$ for $k \neq 6$ and 8 , then condition $\left(A_{2}\right)$ holds, i.e. (1.10) holds for $\mathbf{H}_{k}^{\prime}=\mathbf{H}_{k} \backslash \mathbf{H}_{k}^{\prime \prime}$.
Proof of Theorem 3. By (1.12), we have that

$$
\begin{equation*}
R(y)=(5!) \sum_{d \in \mathrm{D}(8)} 1+(7!) \sum_{d \in \mathrm{D}(8)} 1 \tag{6.4}
\end{equation*}
$$

We now estimate $R(y)$. By (4.2), $d \in \mathbf{D}(6)$ implies $d=d_{0} \cdots d_{5}$ with

$$
\begin{equation*}
p\left(d_{j}\right) \geq x^{\frac{1}{2}-\frac{8 t_{0}}{\gamma_{0}}}>\left(d_{j}\right)^{\frac{1}{2}}, 0 \leq j \leq 5 . \tag{6.5}
\end{equation*}
$$

Then all of d_{j} 's be primes. Let

$$
\begin{gathered}
\mathrm{D}_{1}(6)=\left\{\left(p_{0}, \cdots, p_{4}\right): p_{j} \text { primes for } 0 \leq j \leq 4, x^{\frac{2 t_{0}}{b}} \geq p_{0} \geq \cdots\right. \\
\left.\geq p_{4} \geq x^{\frac{1}{2}\left(1-\frac{8 t_{0}}{6}\right)}, p_{3} \geq x^{\frac{t_{0}}{3}}\right\} . \\
\left.\right|^{(1)}=\left.\right|^{(1)}\left(p_{0}, \cdots, p_{4}\right)=\left[\frac{x-y}{p_{0} \cdots p_{4}}, \frac{x}{p_{0} \cdots p_{4}}\right),
\end{gathered}
$$

and

$$
\Delta_{5}=\Delta_{5}^{1} \cup \Delta_{5}^{2}
$$

where

$$
\begin{equation*}
\Delta_{5}^{1}=\left\{\left(t^{0}, \cdots, t^{4}\right): \frac{2 t_{0}}{5} \geq t^{0} \geq \cdots \geq t^{4} \geq \frac{t_{0}}{3}\right\} \tag{6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{5}^{2}=\left\{\left(t^{0}, \cdots, t^{4}\right): \frac{2 t_{0}}{5} \geq t^{0} \geq \cdots \geq t^{3} \geq \frac{t_{0}}{3} \geq t^{4} \geq \frac{1}{2}\left(1-\frac{8 t_{0}}{5}\right)\right\} \tag{6.7}
\end{equation*}
$$

Then we have that

$$
\sum_{d \in D(6)} 1=\sum_{\left(p_{0}, \cdots, p_{4}\right) \in D_{1}(6)} \quad \sum_{\left.p_{6} \in \mathbb{F}^{1}\right)} 1 \leq \sum_{\left(p_{0}, \cdots, p_{4}\right) \in D_{1}(8)} \frac{2 y}{p_{0} \cdots p_{4} \log \frac{y}{p_{0} \cdots p_{4}}}
$$

$$
\begin{equation*}
\leq \frac{(2+\varepsilon) y}{\log x} \int \cdots \int_{\Delta_{5}} \frac{d t^{0} \cdots d t^{4}}{t^{0} \cdots t^{4}\left(1-t^{0}-\cdots-t^{4}\right)} \tag{6,8}
\end{equation*}
$$

By (6.6) and (6.7) we have that

$$
\begin{gathered}
\int \cdots \int_{\Delta_{b}^{1}} \frac{d t^{0} \cdots d t^{4}}{t^{0} \cdots t^{4}\left(1-t^{0}-\cdots-t^{4}\right)} \leq \frac{1}{5!} \int_{\frac{t_{0}}{3}}^{\frac{7 t_{0}}{5}} d t^{0} \int_{\frac{t_{0}}{3}}^{\frac{2 t_{0}}{6}} d t^{1} \cdots \int_{\frac{t_{0}}{3}}^{\frac{2 t_{0}}{6}} \frac{d t^{0} \cdots d t^{4}}{t^{0} \cdots t^{4}\left(1-t^{0}-\cdots-t^{4}\right)} \\
\leq \frac{10}{5!}\left(\log \frac{1.8}{1.5}\right)^{5}<\frac{0.002015}{5!}
\end{gathered}
$$

and

$$
\begin{gathered}
\int \cdots \int_{\Delta_{5}^{2}} \frac{d t^{0} \cdots d t^{4}}{t^{0} \cdots t^{4}\left(1-t^{0}-\cdots-t^{4}\right)} \leq \\
\leq \frac{1}{4!} \int_{\frac{2_{0}}{3}}^{\frac{2 t_{0}}{5}} d t^{0} \int_{\frac{t_{0}}{3}}^{\frac{2 t_{0}}{8}} d t^{1} \cdots \int_{\frac{1}{2}\left(1-\frac{8 t_{0}}{5}\right)}^{\frac{t_{0}}{3}} \frac{d t^{0} \cdots d t^{4}}{t^{0} \cdots t^{4}\left(1-t^{0}-\cdots-t^{4}\right)} \\
\leq \frac{1}{(4!)(1-0.72-0.15)}\left(\log \frac{0.18}{0.15}\right)^{4}\left(\log \frac{0.15}{0.14}\right)<\frac{0.002933}{5!}
\end{gathered}
$$

Thus

$$
\begin{equation*}
\sum_{d \in \mathbf{D}(6)} 1<\frac{0.009895}{5!}\left(\frac{y}{\log x}\right) \tag{6.9}
\end{equation*}
$$

Let

$$
\mathbf{D}_{1}(8)=\left\{\left(p_{0}, \cdots, p_{6}\right): p_{j} \text { primes for } 0 \leq j \leq 6, x^{\frac{2 t_{0}}{7}} \geq p_{0} \geq \cdots \geq p_{0} \geq x^{\frac{1}{2}\left(1-\frac{12 t_{0}}{7}\right)}\right\}
$$

$$
\left.\right|^{(2)}=\left.\right|^{(2)}\left(p_{0}, \cdots, p_{6}\right)=\left[\frac{x-y}{p_{0} \cdots p_{6}}, \frac{x}{p_{0} \cdots p_{6}}\right)
$$

and

$$
\Delta_{T}=\Delta_{7}^{1} \cup \Delta_{7}^{2}
$$

where

$$
\begin{equation*}
\Delta_{7}^{1}=\left\{\left(t^{0}, \cdots, t^{8}\right): \frac{2 t_{0}}{7} \geq t^{0} \geq \cdots t^{6} \geq \frac{t_{0}}{4}\right\} \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{7}^{2}=\left\{\left(t^{0}, \cdots, t^{6}\right): \frac{2 t_{0}}{7} \geq t^{0} \geq \cdots \geq t^{5} \geq \frac{t_{0}}{3} \geq t^{6} \geq \frac{1}{2}\left(1-\frac{12 t_{0}}{7}\right)\right\} \tag{6.11}
\end{equation*}
$$

Then we have that

$$
\begin{gathered}
\sum_{d \in \mathbf{D}(8)} 1=\sum_{\left(p_{0}, \cdots, p_{6}\right) \in \mathrm{D}_{1}(8)} \sum_{\left.p_{7} \in\right|^{(2)}} 1 \leq \sum_{\left(p_{0}, \cdots, p_{6}\right) \in \mathrm{D}_{1}(8)} \frac{2 y}{p_{0} \cdots p_{6} \log \frac{y}{p_{0} \cdots p_{6}}} \\
\leq \frac{(2+\varepsilon) y}{\log x} \int \cdots \int_{\Delta_{7}} \frac{d t^{0} \cdots d t^{6}}{t^{0} \cdots t^{6}\left(1-t^{0} \cdots \cdots-t^{6}\right)} .
\end{gathered}
$$

By (6.6) and (6.7) we have that

$$
\begin{gathered}
\int \cdots \int_{\Delta_{7}^{1}} \frac{d t^{0} \cdots d t^{6}}{t^{0} \cdots t^{6}\left(1-t^{0}-\cdots-t^{6}\right)} \leq \frac{1}{7!} \int_{\frac{t_{0}}{4}}^{\frac{2 t_{0}}{7}} d t^{0} \int_{\frac{t_{0}}{7}}^{\frac{2 t_{0}}{7}} d t^{1} \cdots \int_{\frac{t_{0}}{4}}^{\frac{2 t_{0}}{7}} \frac{d t^{6}}{t^{0} \cdots t^{6}\left(1-t^{0}-\cdots-t^{6}\right)} \\
\leq \frac{10}{7!}\left(\log \frac{\frac{0.9}{7}}{\frac{0.45}{4}}\right)^{7}<\frac{7.6\left(10^{-6}\right)}{7!}
\end{gathered}
$$

and

$$
\begin{gathered}
\int \cdots \int_{\Delta_{7}^{2}} \frac{d t^{0} \cdots d t^{6}}{t^{0} \cdots t^{6}\left(1-t^{0}-\cdots-t^{6}\right)} \leq \\
\leq \frac{1}{6!} \int_{\frac{t_{0}}{4}}^{\frac{2 t_{0}}{7}} d t^{0} \int_{\frac{t_{0}}{4}}^{\frac{2 t_{0}}{7}} d t^{1} \cdots \int_{\frac{1}{2}\left(1-\frac{12 t_{0}}{7}\right)}^{\frac{t_{0}}{4}} \frac{d t^{0} \cdots d t^{6}}{t^{0} \cdots t^{6}\left(1-t^{0}-\cdots-t^{6}\right)} \\
\leq \\
(6!)\left(1-\frac{1}{\left.\frac{12(0.45)}{7}-\frac{0.45}{4}\right)}\left(\log \frac{\frac{0.9}{7}}{\frac{0.45}{4}}\right)^{6}\left(\log \frac{\frac{0.45}{4}}{0.1}\right)<\frac{4.027\left(10^{-5}\right)}{7!} .\right.
\end{gathered}
$$

Thus

$$
\begin{equation*}
\sum_{d \in D(8)} 1<\frac{9.58(10)^{-5}}{7!}\left(\frac{y}{\log x}\right) . \tag{6.12}
\end{equation*}
$$

By (6.4), (6.9) and (6.12) we have that

$$
R(y)<\frac{0.01 y}{\log x}
$$

In Theorem 2 take $e_{1}=e_{2}=0$ and $e_{1}^{\prime}=e_{2}^{\prime}=0.01$, Theorem 3 follows.

REFERENCES

[1] Hoheisel, G., Primahlprobleme in der analysis, sitzungsber der Preuss. Akad. D. Wissensch. Phys-Math. Kl. Berlin, 1930, 580-588.
[2] Ingham, A.E., On the difference betveen consecutive primes, Quart. J. Math., Oxford, 8 (1937) 255-266.
[3] Montgomery. H.L., Topics in multiplicative number theory, Lecture Notes in Math., 227, Springer, Berlin, (1971).
[4] Huxley, M.N., On the difference between consecutive primes, Invent. Math., 15 (1972), 164-170.
[5] Heath-Brown, D.R. The Number of Primes in a Short Interval, J. Reine Angew, Math. 389 (1988) 22-63.
[6] Lou, S. and Qi Yao, A Chebychev's Type of Prime Number Theorem in a Short Interval II, Hardy-Ramanujan J., 15 (1992), 1-33.
[7] Lou, S. and Yao, Q. Estimate of sums of Dirichlet's series, HardyRamanujan J., 17 (1994), to appear.
[8] Heath-Brown, D.R., and Iwaniec, H., On the difference between consecutive primes, Invent. Math. 55 (1979), 49-69.

Lou,S. and Yao, Q.
Department of Mathematics
Dalhousie University
Halifax, N.S. B3H 3J5
Canada

