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ON THE ZEROS OF A CLASS OF GENERALISED
DIRICHLET SERIES-XIX

BY
K. RAMACHANDRA

§ 1. INTRODUCTION AND PRELIMINARIES. The object of this
paper is to give a simpler approach to the following theorem (this theorem
namely Theorem 10 of X VI constitutes the main theorem on Balasubramanian-
Ramachandra functions arising out of the works i, vizl, V[S], VIB! due

to R. Balasubramanian and K. Ramachandra).

THEOREM 1. (R. BALASUBRAMANIAN AND K. RAMACHANDRA)
(i) Let Ap{n=1,2,3,---) be an increasing sequence of positive real numbers
such that A,y — A, is bounded both above and below. This sequence will be
Jurther restricted by the condition (vii) or (viii) as the case may be. 6§ will
denote a real constant.

Let f(z) and g(z) be positive real valued functions defined in & > 0, sat-
isfying '
(ii) f(z)z" is monotonic increasing and f(z)x~" is monotonic decreasing
for every fized n > 0 and all z > zo(n).

ili i -1 =
(i) Jim (o)1) = 1.
(iv) g{(z) is differentiable once for z > 0 and g'(z) lies between two posi-

tive constants. Also g(z) is twice differentiable for z > zo and (¢'(z))? -

g(x)g"(x) lies between two posilive consiants for © 2 Zo.
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Let {a.} and {b,}(n = 1,2,3,--) be two sequences of complez numbers
having the following properties
(7)1 b0 } (f(n))~" Lies between two positive constants (for all integersn > ny)
and (Z | a, [P}z does not ezceed a positive constant for all z > 1.

nlz

(Vi) Forallz 21, 37 |bay1 = b 1< fla).
z<n2z
We nect assume that {a,} and {b,} sotisfy at least one of the following

conditions, We set A, = g(n).

(vii) MONOTONICITY CONDITION. There ezists an arithmetic pro-
gression A {of natural numbers) such that

\
2 (f'Z’an) =h {8 <|hi< w0),
n<z

where the accent denotes the restriction of n to A. Also for every positive
constant v we have | b, | A\;¥ is monotonic decreasing for all n(> ng) in A.

(vii) REAL PART CONDITION. There ezisis an arithmetic progres-
sion A (of natural numbers) such that

L 1 ’
lim inf | — E Rea, | >0
=400 x
z<An<2z,Re an>0

’
lim |z} Z Rea, | =0
00
z<An<22,Re an<0

where the accent denotes the restriction of n to A.

and

(ix) Finally let {on}(n = 1,2,3,---) be a sequence of real numbers such
that | oy, | does not ezceed a small positive constant (depending on other
constants). We suppose that the series

F(s) =Y an bae®™™ (A + 0n)™* (Res>?2)

n=l1
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can be continued analytically in (0 > 3} ~ 8§, T —logT <t < 2T +1log T)
(where & is a positive constant) and there log maz(| F(s) | +100) < log T.
As usual we have written s = o + it.

Then on every line segment (o = % — 64, T <t < 2T), (64 being any
constant with 0 < &4 < &) there are >> T'(loglog T)™" well-spaced Titchmarsh
points with the lower bound > T f(T) for | F(s) | . If further

2T+4/log T 1
= | F(5 = 8a+it) |” dt < T*(£(T))?
T~+/log T

for every constant 84 (with 0 < 84 < 6), then there are > T well-spaced
Titchmarsh points on every line segment (o = % — 84, T <t < 2T) with the
lower bound 3> T% f(T) for | F(s) | .

In other words there ezist real numbersty,ty, - - -, t, (with r >> T(loglog T)™!
and r > T respectively in the two cases) such that T < t; < 2T(j =
1,2,:-+,r), the minimum of | t; — t; | taken over all pairs (j,j') with j # j'
13 bounded below and further

| F(5 = 8atit;) > TH£(T).

The proof of this theorem depends on the following two lemmas.

LEMMA 1 (van-der-CORPUT). If fi(z) is real and twice differentiable
and 0 < p; < f(z) < h'pg (or p2 < —f'(z) < h'py) throughout the interval
[a,b], and b > a + 1, then
-1 1
> Bap(zrifu(w) = O(k(b — a)ud) + O3 H).
a<n<b 3
REMARK. This result is Theorem 5.9 on page 104 of [8], with a slight

change of notation.

LEMMA 2 (H.L. MONTGOMERY AND R.C. VAUGHAN). If {An} is
any incredsing sequence of real numbers and {A,} and {B,} are any two
sequences of complez numbers, then

ZZ,,,_,,(A ) S KEH" 14, M6 1 B A,
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where 6, = m;i&n } An ~ Am | @nd K is a numerical constant.
mFED

REMARK. We need only a special case of this result where A,y — A, lies
between two positive constants (and so the same is true of né,). For the
proof in this special case and also for a reference to the paper of Montgomery
and Vaughan see [7].

§ 2. SOME MORE LEMMAS.
LEMMA 3. Lety > 0,w = u+ iv, R(w) = Ezp((Sin {%)?), and

AW =g [ RS
Then for | u |< 3 we have | R(w) |« (Ezp Exp | 1% |)~!. Consequently
A(y) =1+0(y™?) and also A(y) = O(y?).

PROOYF. By trivial computation (and moving the line of integration to
u = —2 and u = 2 respectively).

A will denote the arithmetic progression consisting of an infinite subset
of natural numbers. Let A(0 < A < 1) be a constant. We put X = TX (later
we will choose X to be a small constant). S will denote the set AN 31X, X].
All our O-constants and the constants implied by the Vinogradov symbols
> and < will be independent of A.

LEMMA 4. f’orT <t < 2T, we have,
| EE'zp(-—27rin0+ it log g(n)) |< T7.
nes

PROOF. Noting that the second derivative of —2nz6 + ¢ log g(z) is
t((¢'(z))? — g(z)g"(z))(g(z)) 2 the lemma follows by Lemma 1.

LEMMA 5. For T <t < 2T, we have

| ZE,,Ezp(—-%rinﬂ + it log g(n)) |€ T%f(X).
nes . .

PROOY¥. The proof follows by partial summation (from Lemma 4) on using
D> I bat1 = ba [< f(2) for all z > 1. ' ‘

z<nL2z
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Next we put g{n) = A,. We consider the case o, = 0 firsi. Our object

is to obtain a good lower bound for the LHS of (2) below.
LEMMA 6. Fors = %—6+it,T5 t < 2T, put

Fx(s) = ZanbnExp(%rinG),\;’A(%:)_

n=1
Then -
1 g
L[ iR taes @hiooz i,

where

2T
I= / Fx(s)ZEnE¢p(—2win0+ it log A,)dt.
T

¥ neSs :
PROOF. Follows from Lemma 5.

LEMMA 7. We have,

-1
I=TY o | ba P27 +0(0)

neS
where "
J= (b =Y Labs [P a3 (a( X))
n=} . An
and
Jy = E n|by|?.
'"-E['%'XVX]

PROOF. Follows from Lemma 2.
LEMMA 8. We have

= 0(X (X))
and

J2 = O(X (X)),

(1)

)

(3)

(4)

(5)

()

(7)

®)

PROOF. Follows from A(y) = 1+ O(y~?%) = O(y?) and also from (ii) of

Theorem 1.
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LEMMA 9. Let

3= el P00, )
nes "
Then
[=TY +0(X3(f(x))?) (10)

PROOF. Follows from Lemmas 7 and 8.

LEMMA 10. Under monotonicity condilion, we have,

130, A X)) (11)

PROOF. We write .
LY azhte

T
n€An<z

where E,,L—-}L 0 as ¢ — co. We obtain the result by the monatonicity of
—-i+is
lbn lz At 20,

LEMMA 11. Under the real part condition, we have,
145 2
Re Y, > XI(00)? (12

PROOF. Follows since the contribution from those a, with Re a, < 0'is
of a smaller order.

LEMMA 12. We have
| I]> CiT(f(X))* X3+ - Cy(f(X))2x 3+ (13)

where Cy and Cy are positive constants independent of .
PROOF. Follows from Lemma 7 to 11.

LEMMA 13. We have, with s = % ~d8+1it, X = TA, where A\(> 0) i3 some
fized small constant, the inequality

2T k
= /T | Fx(s) | dt > T* £(T). (14)
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PROOF. RHS of (13) is.

(CiT3*onk+s - GTiad+s) ()2,

Using (i} it follows that f(X)X~! > f(T)T! and so f(X) > Af(T).
Lemma 13 follows on fixing A to be a small positive constant.

LEMMA 14. Let now Y = TX where X'(0 < X < A} is a small constant.
We have

o 2T
7 [ 1R <), (15)
where 9 depends on X and is small enough if X is small.

PROOF. Note that
1T 2 26
7 [ 1@<y

and that here RHS is < YS(Y3*f(Y))2 < (N)® T®(£(T))?. Lemma 14
follows from this on using Holder’s inequality.

LEMMA 15. We have, with X = TA)Y = T)X where X\ is as before and
M(0 < XN < A). is fived to be a sufficiently small constant, the inequality

S T ; "
7 [ 1@ =By de> T p). (16)

PROOF. Follows from Lemma 13 and 14.
From now on we fix the positive constants A and A’ so that (16) is
satisfied.

LEMMA 16. Now let o, be real and let | ay, | be bounded above by a small
positive constant. Then with s = % —86+it, X =TM\Y =TXN we have

oo

1 127
‘ T/ J Zanb,,Ezp(?winO)(An +a,)”?
T n=1

(A (/\nfaﬂ) —A("\ni%)) | dt > TS £(T). (17)
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PROOF. We split the infinite series on the LHS of (17) to be ¥, with
n < TA” (where (> 0) is a small constant) and 3, the rest. Clearly (by

Lemma 2) -
7 [ 1, 1a < T )

and also in ), using

oo ()2 () (6 () - ()
[ (o () 2 ()

and Lemma 2 we are led to Lemma 16. (For details see page 173 of XIVI[4)."

LEMMA 17. We have, with o, as in Lemmma 16,

2T
%/ | Za,,b,,En:p(27rin0)(/\ﬂ +a,)"*
T n=1

X - Y 2 128 £ 2
(A ()\n—f—dn) A()\n+an)) I* dt <TZ((T))" (18)
PROOF. Follows from Lemma 2.

THEOREM 2. Denote by G(s) the infinite series in the LHS of (18).
Then there are real numbers ty,ts,---,t, as in Theorem 1 withr > T and

|Gl = 5-+its) > T (T). (19)

PROOF. Divide the interval [T, 2T] (of integration) on the LHS of (17) into
abutting intervals of length 1, ignoring a bit at one end. Ignore the integrals
over intervals of length 1 which do not exceed a small (positive) constant
times T° f(T). Now apply Hélder’s inequality for the rest and apply Lemma
17. We obtain (19). o

THEOREM 3. We have
1 2T ++flog T

- [P 264ty | de> T F(T). (20)
T T—/log T 2 i
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PROGOF. {oilows from Lemma 16 on writing G(s) as a line integral over
u = 2 and moving the line of integration to » = 0 using suitable horizontal
connecting lines.

§ 3. COMPLETION GF THE PROOF OF THEOREM 1. Using the
mean square upper bound for | F(s) | and also Theorem 3, we can obtain
(as in the proof of Theorem 2) real numbers t1,t3, -, ¢, as in Theorem 1
with r > T and

| PG~ 8 +it;) [> T £(T).

Next we use Theorem 2. Out of the numbers ¢3, - - -, £, we can omit 2 min-
imal number of them and obtain numbers 71,--:,7v such that
r' > T(loglog T)™!,| 5 — 7j |>> loglog T for all pairs (4, j') with j # j’ and

|Gz = 6+ [> TH(T).

Now writing G(s) as a line integral over 4 = 2 and moving the line of
integration to u = 0 using suitable connecting horizontal lines. We thus
obtain points 7, - -+, 7/, with

| F(G = 8+im) [> TH(T) (= 1,2,,7").

This proves Theorem 1 completely.
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