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Abstract

In our previous papers [3], [4] we obtained a closed form evaluation of Ramanujan’s type
of the values of the (multiple) Hurwitz zeta-function at rational arguments (with denominator
even and numerator odd), which was in turn a vast generalization of D. Klusch’s and M.
Katsurada’s generalization of Ramanujan’s formula. In this paper we shall continue our
pursuit, specializing to the Riemann zeta-function, and obtain a closed form evaluation
thereof at all rational arguments, with no restriction to the form of the rationals, in the
critical strip. This is a complete generalization of the results of the aforementioned two
authors. We shall obtain as a byproduct some curious identities among the Riemann zeta-
values.

1 Introduction and notation

In this paper we shall give a closed form evaluation of Ramanujan’s type of the values

of the Riemann zeta-function at positive rational arguments in the critical strip.

We have launched on this evaluation problem of zeta-values at rational arguments in

[2], where we have succeeded in getting a Ramanujan type formula for ζ(2/3) after examining

the results of D. Klusch [6] and M. Katsurada [5].

In [3] we have evaluated the values of the Hurwitz zeta-function at rational arguments

smaller than 1 (of the form 1 − b/a, with b odd, a even), which we have transformed into
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the evaluation of values of the multiple Hurwitz zeta-function through the Mellin-Vardi

decomposition thereof into a linear combination of Hurwitz zeta-functions.

On the other hand, in [4] we have adopted a method closer to Katsurada’s to obtain

the evaluation of the multiple Hurwitz zeta-f unction at positive rational arguments b/a.

In this paper we shall push forward our approach in [2] to the general situation and

evaluate the values of the Riemann zeta-function at positive rational arguments, with no

restriction to the form, thus supplying new information on them for ζ(b/a) with b even, a

odd or both odd, missing in all preceding papers [2]-[4] (cf. Corollary 1).

We obtain as by-product some curious identities among modified Lambert series which

look non-trivial and which follow by equating two expressions for them (cf. Corollary 2).

For readers’ convenience of comparison of the results in this paper and those in [2]-[4]

we shall use the same notation and give the reference to the corresponding formulas in the

latter.

Notation. Let 0 ≤ h ≤ N be integers. We put

(1.1) aj,N = cos
(
πj

2N

)
, bj,N = sin

(
πj

2N

)

(1.2) AN(y) = π(2πy)
1
N ,

(1.3) f0(x;n,N) =
e−AN (n

x
)

2 sinh(AN(n
x
))

and

(1.4) fj(x;n,N, h) =
cos(2AN(n

x
)bj,N + π(2h−1)j

2N
)− e−2AN (n

x
)aj,N cos(π(2h−1)j

2N
)

cosh(2AN(n
x
)aj,N)− cos(2AN(n

x
)bj,N)

for j ≥ 1.

2 Values of the Riemann zeta-function

We shall prove the following Ramanujan type formula for ζ(N−2h+1
N

) on the lines as

close as possible to those of proofs of the previous results. In the proof, we shall give

the corresponding formula numbers in [2] and [4] (since those in [4] are suggestive of the

corresponding ones in [3]).
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Theorem 1. Let N and h be fixed natural numbers with h ≤ N/2. Then we have for x > 0,

(2.1)
∞∑
n=1

nN−2h

enNx − 1
= P (x) + S(x),

where

(2.2) P (x) = P (x;N, h) = −1

2
ζ(−N + 2h) + ζ(2h)x−1

+
1

N
Γ

(
N − 2h+ 1

N

)
ζ

(
N − 2h+ 1

N

)
x−

N−2h+1
N

and

(2.3) S(x) = S(x;N, h) =
(−1)h+1

N

(
2π

x

)N−2h+1
N

×
∞∑
n=0

1

n
2h−1
N

f0(x;n,N) +

N−1
2∑
j=1

f2j(x;n,N, h)


for N odd, and

(2.4) S(x) = S(x;N, h)

=
(−1)h+1

N

(
2π

x

)N−2h+1
N

∞∑
n=0

1

n
2h−1
N

N
2∑
j=1

f2j−1(x;n,N, h),

for N even, with fj defined by (1.3) and (1.4).

Proof. We consider the integral with c0 > 1

(2.5) I(x) =
1

2πi

∫
(c0)

Γ(s)ζ(s)ζ(Ns− (N − 2h))x−sds,

where (c0) denotes the vertical line σ = c0, −∞ < t <∞ (cf. [2],[4,(2.6)∗]).

On the one hand, we have

(2.6) I(x) =
∞∑
n=1

nN−2h

enNx − 1
,

i.e. the left-hand side of (2.1) (cf.[2], [4,(2.6)∗]).
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We now shift the line of integration to (−c) with c > 0, whereby we encounter the

poles of the integrand at s = 0, 1, N−2h+1
N

, whence we deduce that

(2.7) I(x) = P (x) + J(x)

where

(2.8) J(x) = J−c(x) =
1

2πi

∫
(−c)

Γ(s)ζ(s)ζ(Ns− (N − 2h))x−sds

and P (x) is given by (2.2) (cf.[2], [4, (2.8)∗1]).

Hence it is enough to prove that J(x) coincides with S(x).

We make the change of variables s ↔ 1 − s and use the functional equation for the

Riemann zeta-function in the form

(2.9) Γ(1− s)ζ(1− s)ζ(2h−Ns) = (2π)2h−(N+1)s(−1)h+1CN

(
πs

2

)
×Γ(Ns− 2h+ 1)ζ(Ns− 2h+ 1)ζ(s)

(cf. [2], [4,(2.9)∗]), where CN(z) denotes the Chebyshev polynomial

(2.10) CN(z) =
sinNz

sin z
=

N−1∑
j=−(N−1)

′′
eijz,

and where
∑′′

means the summation over j which increases by 2. Hence the integrand of

J(x) =
1

2πi

∫
(1+c)

Γ(1− s)ζ(1− s)ζ(2h−Ns)x−(1−s)ds

becomes

(2.11) G(s)x−(1−s) = (−1)h+1(2π)2h−(N+1)sCN(
πs

2
)

×Γ(Ns− 2h+ 1)ζ(Ns− 2h+ 1)ζ(s)x−(1−s).

Now make the change of variables

Ns− 2h+ 1 = s1, s =
s1 + 2h− 1

N
.

Then G(s)xs−1 becomes

G

(
s1 + 2h− 1

N

)
x−1+

s1+2h−1

N = (−1)h+1
(

2π

x

)N−2h+1
N

(
x

(2π)N+1

) s1
N

×Γ(s1)ζ(s1)ζ

(
s1 + 2h− 1

N

)
CN

(
π(s1 + 2h− 1)

2N

)
.
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Incorporating these, we successively get

(2.12) J(x) =
1

2πi

∫
(1+c)

G(s)xs−1ds

= (−1)h+1
(

2π

x

)N−2h+1
N 1

2πi

∫
(c1)

(
(2π)N+1

x

)− s1
N

Γ(s1)

×ζ(s1)ζ

(
s1 + 2h− 1

N

)
CN

(
π(s1 + 2h− 1)

2N

)
ds1

N
,

where c1 = N(1 + c)− 2h+ 1 (cf. [2,(3.7)],[4, (2.18)∗1, (2.18)∗2]).

We substitute the Dirichlet series

ζ(s)ζ

(
s+ 2h− 1

N

)
=

∞∑
m,n=1

n−
2h−1
N (mn

1
N )−s

in (2.12) to obtain

(2.13) J(x) =
(−1)h+1

N

(
2π

x

)N−2h+1
N

∞∑
m,n=1

n−
2h−1
N E(Xm,n)

(cf. [2],[4,(2.18)∗3, (2.19)∗]), where (κ = c1)

(2.14) E(Xm,n) =
1

2πi

∫
(κ)
X−sm,nCN

(
π(s+ 2h− 1)

2N

)
Γ(s)ds

(cf. [2,(3.9)] [4,(2.21)∗]) with Xm,n denoting

(2.15) Xm,n = 2πm
(

2πn

x

) 1
N

= 2mAN

(
n

x

)
,

where AN(n/x) is defined by (1.3) (cf. [4,(2.22)∗]).

To evaluate E(Xm,n) we use (2.10) to write

(2.16) X−sm,nCN

(
π(s+ 2h− 1)

2N

)
=

N−1∑
j=−(N−1)

′′
e
πi(2h−1)j

2N

(
Xm,ne

−πij
2N

)−s
with

| argXm,ne
−πij

2N | < π

2
.

Hence the well-known Mellin inversion formula

1

2πi

∫
(κ)

Γ(s)Y −sds = e−Y
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applies, and we have

(2.17) E(Xm,n) =
N−1∑

j=−(N−1)

′′
e
πi(2h−1)j

2N

(
e−2AN (n

x
)e
−πij

2N

)m

(cf. [4,(2.24)∗]).

Substituting (2.17) in (2.13) and summing the geometric progression in m, we deduce

that

(2.18) J(x) =
(−1)h+1

N

(
2π

x

)N−2h+1
N

N−1∑
j=−(N−1)

′′
e
πi(2h−1)j

2N

×
∞∑
n=1

1

n
2h−1
N

1

e2AN (n
x

)e
−πij

2N − 1

=
(−1)h+1

N

(
2π

x

)N−2h+1
N

∞∑
n=1

n−
2h−1
N

N−1∑
j=−(N−1)

′′
Zj,n(x),

where

Zj,n(x) =
e
πi(2h−1)j

2N e−AN (n
x

)e
−πij

2N

2 sinh(AN(n
x
)e−

πij
2N )

(cf. [4,(2.30)∗]).

We sum Zj’s in pairs : Zj,n(x) + Z−j,n(x). Distinguishing two cases according to the

parity of N , we deduce that J(x) coincides with S(x) in (2.3) and (2.4) (cf. [4,(2.31)-(2.34)]

Corollary 1. Under the same notation as in Theorem 1, let L(x;N, h) be the function

defined by

(2.19) L(x;N, h) =
∞∑
n=1

nN−2h

enNx − 1
− S(x;N, h) +

1

2
ζ(−N + 2h)− ζ(2h)x−1.

Then we have

(2.20) ζ

(
N − 2h+ 1

N

)
=

N

Γ(N−2h+1
N

)
x
N−2h+1

N L(x;N, h)

and

(2.21) ζ

(
2h− 1

N

)
=
N

π
(2π)

2h−1
N sin

π(2h− 1)

2N
x
N−2h+1

N L(x;N, h)

Proof. The first assertion is just the restatement of Theorem 1 and the second assertion

follows from the functional equation of the Riemann zeta-function.
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3 Identities among Lambert series

We shall prove the following consequence of our Corollary 1 which may be of interest

for its own sake.

Corollary 2. In the notation of Corollary 1, we have

(3.1) lL

(
x; lN, hl − l − 1

2

)
= L(x;N, l)

holds for all l ≥ 1, odd.

Further suppose N even and put

(3.2) L̃(x;N, h) =

(
2
√
π

x

) 2h
N

Γ

(
2h− 1 +N

2N

)
L(x;N, h).

Then

(3.3) L̃(x;N, h) = L̃(x;N,N/2− h+ 1)

holds for all h, 1 ≤ h ≤ N/2.

Proof. Formula (3.1) follows from two distinct representations of ζ(s) at

s = 1− 2h− 1

N
= 1−

2(hl − l−1
2

)− 1

Nl
.

for any odd integer l.

We now turn to (3.3) and suppose N even. Equate the expressions for ζ(2h−1
N

) given

by (2.20) and by (2.21) with h replaced by h1 = N
2
− h+ 1 to obtain

N

π
(2π)

2h−1
N sin

π(2h− 1)

2N
x
N−2h+1

N L(x;N, h) =
N

Γ
(
N−2h1+1

N

)xN−2h1+1

N L(x;N, h1)

or

(3.4)
1

π
(2π)

2h−1
N sin

π(2h− 1)

2N
Γ(

2h− 1

N
)x

N−4h+2
N L(x;N, h) = L(x;N, h1).

By the duplication formula and the reciprocity relation of the gamma function, we see

that

sin
π(2h− 1)

2N
Γ

(
2h− 1

N

)
= 2

2h−1
N
−1
√
π

Γ(2h−1+N
2N

)

Γ
(

2(N/2−h+1)−1+N
2N

) ,
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and therefore (3.4) becomes

(3.5)
1

π
(2π)

2h−1
N 2

2h−1
N
−1
√
πx

N−4h+2
N Γ

(
2h− 1 +N

2N

)
L(x;N, h)

= Γ

(
2(N/2− h+ 1)− 1 +N

2N

)
L(x;N,N/2− h+ 1).

Combing (3.2) and (3.5) implies the assertion (3.3). This completes the proof.

Remark 1.It may be worth recording that the main deformation in (3.1) occurs in the first

summation and the coefficients fj’s in the definition of L, i.e. in place of
∑∞
n=1

nN−2h

enNx−1
and

fj’s, we have
∞∑
n=1

n(N−h+1)l−1

enNlx − 1
,

and

fj(x;n, lN, hl − l − 1

2
)

=
cos(2AlN(n

x
) sin πj

2lN
+ π(2h−1)j

2N
)− e−2AlN (n

x
) cos πj

2lN cos(π(2h−1)j
2N

)

cosh(2AlN(n
x
) cos πj

2lN
)− cos(2AlN(n

x
) sin πj

2lN
)

respectively.

Examples (i) In (3.1), we take N = 2, h = 1, l = 3. Then we get L(x; 2, 1) = 3L(x; 6, 2).

More explicitly, it reads that

∞∑
n=1

1

en2x − 1
− 1

2

(
2π

x

) 1
2
∞∑
n=1

f1(x;n, 2, 1)√
n

− 1

4
− π2

6x

= 3
∞∑
n=1

n2

en6x − 1
+

1

2

(
2π

x

) 1
2
∞∑
n=1

1√
n

{
f1(x;n, 6, 2) + f3(x;n, 6, 2)

+f5(x;n, 6, 2)
}
− π4

30x
.

(ii) Next we take N = 4, h = 1 in (3.2). Then L̃(x; 4, 1) = L̃(x; 4, 2). This means that

Γ(
5

8
)


∞∑
n=1

n2

en4x − 1
− 1

4

(
2π

x

) 3
4
∞∑
n=1

1

n1/4

(
f1(x;n, 4, 1) + f3(x;n, 4, 1)

)
− π2

6x


=

(
2
√
π

x

) 1
2

Γ(
7

8
)


∞∑
n=1

1

en4x − 1
− 1

4
− π4

90x
+

1

4

(
2π

x

) 1
4

×
∞∑
n=1

1

n3/4

(
f1(x;n, 4, 2) + f3(x;n, 4, 2)

)}
.
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