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On Kronecker’s limit formula and the hypergeometric function

S. Kanemitsu, Y. Tanigawa and H. Tsukada

1 Introduction

Let £ be an imaginary quadratic field and G be its ideal class group. For
any character x of G, the L-series

L(s,x):Z%, o=Rs>1

a

decomposes into

L(s.x) = 3 x(A)(s.4), o> 1,

AeG

where ((s,A) = > c4(Na)~* is the ideal class zeta-function so that the
evaluation of L(1, x) leads to that of the constant term p(A) of ((s, A). The
closed form of p(A) is called Kronecker’s (first) limit formula, permits one
to get a closed form for L(1,x), which in turn leads to a closed form for the
residue of the Dedekind zeta-function of &.

As is well-known (cf. e.g. Siegel [7]), the norm-form can be expressed
by a positive definite quadratic form Q(z,y), and therefore it suffices to
consider the Epstein zeta-function (g(s) associated to Q:

1 1
(11) Cols)= > Qom)y > @ Thmn e © 1.

(0,0)% (m,n)€Z?

We write (a,b > 0)

(1.2) Q(z,y) = a(z + wy)(z + wy),
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2a 2a
and
(1.4) A = —(b* — 4ac) > 0.
We transform (1.1) slightly to obtain
2 2
(1.5 Cals) = C(25) + C(28) + 5(s),

where

(1.6) S(s)= > ( !

am? + bmn + cn?)$
m,neL
m##0,n#0

2 o — 1
:Ez Z (m + wn)$(m + wn)s’

n=1m=—o0
m#0

It therefore suffices to consider the limit of S(s) as s — 1. Koshlyakov [3]
uses the integral

s—1
/ (:v+a:§5(x+ﬁ)3’ 0<arga,argff<m
first with s a positive integer and then considers s as a continuous real
variable and takes the limit s — 1. This process cannot be easily justified.
In this paper, we propose a new intrinsic method of using the (connection
formula of) hypergeometric function in the spirit of Koshlyakov. The hyper-
geometric function has been used by Novikov [5] in deriving the Kronecker
limit formula for a real quadratic field. We hope to develop our method
further to treat Novikov’s case subsequently.

2 The hypergeometric functional argument

We are to express S(s) in terms of hypergeometric functions:

2 o= 1
(2.1) S(S):EZ Z (m + wn)®(m + wn)*’

n=1m=—0o0
m#0
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the branch of the power function being principal, i.e. argz € [—m, 7). We
express S(s) as

(22) S(s) = 2 () + ()},
where
o o 1
(2.3) Ji(s) = . —
! nzlmzl(m—i-wn) (m + wn)

o
= ZI(s,wn,dm),
n=1

say, and

M
Nk

(2.4) J2(s)

(—m + wn)s(—m + wn)*

3
Il
—_
3
Il
—_

M
WE

(m —wn)s(m — wn)*

3
Il
—_
3
Il
—_

ot

I(s, —wn, —wn),

Il
—

n

and where for o, § € C\R,

(2.5) I(s;,B) = Z (m—l—oz)sl(m-i-,@)s'

m=1

We shall study this function I(s;, 3) in detail. The starting point is
the formula [2, p.314, 3.197.1] (with u = p = s):

(2.6) /000 'Yz +a) (x4 B)Pde

=p"%a"°B(v,2s —v)F <s,1/; 2s:1 — %) ,

where 0 < Rv < 2Rs, B(a, ) is the beta function and F(a,b;c; z) is the
Gauss hypergeometric function 9F(a,b;c; z) (cf. [1, p.56]). The above for-
mula is valid only if

(2.7) |arga —arg 8| < 7
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(note that the argument is taken in [—m, 7)), though in [2] the condition on
the argument of a and ( is stated wrongly as

larga| <m, |argf| <.
Under condition (2.7), we may deduce (2.6) by rotating from R, to
R, e'@8® and apply [1, p.115, (5)]. Similarly, we may deduce
o
(2.8) / Nz +a) P+ B)"° dx
0

=a °p" °B(v,2s —v)F <s, v;2s;1 — é) .
a

We may confirm the consistency of (2.6) and (2.8) by Kummer’s relation

([1, p-105, (1), (3)))-

By the Mellin inversion, (2.6), respectively (2.8) becomes
(2.9) (x+a)*(z+p)""°

= ﬁi o’B(v,2s —v)F <s, v;2s;1 — g) z Vdy,
2m Jie I}
respectively
(2.10) (x+a)(z+6)"°
—S8 Q=S
=2 25. / 8" B(v,2s —v)F <s,1/;2s; 1-— é) Y dv,
) @

where 1 < ¢ < 20.

Of these we shall use (2.10) (see below) to treat J; with a = wy, 8 = @y,
a, 0 being in the right hand-side of the imaginary axis. However, we cannot
apply (2.9) directly to the treatment of Jy, since « = —wn and f = —wn
do not satisfy the condition (2.7). To overcome this difficulty, we start from
the initial domain of @ and @ lying in the first and the fourth quadrant,
respectively, and continue into another region
(2.11) g <arga <, —7r<argﬁ§—g.

For this purpose we recall the following connection formula of the hy-
pergeometric function:

(2.12)
F( b--)—(1—)*“F F bil+a—biy !
a,byc;z) = z Fc—a a,c— a —

T(c)T(a—b 1
—i—(l—z)bF( b)F()F<c a,b;1 a—l—b,:)
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valid for |arg(—z)| <, |arg(l —2)| <m, a—b ¢ Z ([1, p.109 (3)]).
This gives, in the right-hand side of (2.10), that

(2.13) B(s,2s — v)F <3,y; 9511 — g)
- <§)_s I'(2s _1:/();(” —8)p <s,28 —vl+s—u; %)

+ <§>V%F <3,1/;1—s+1/;%)

for @ and S in the first and the fourth quadrant, respectively.

We recall our previous statement that we use (2.10) to treat Ji, but
what we apply is not exactly (2.10) but the following which is obtained by
substituting (2.13) into (2.10):

(2.14) (z+a) *(z+p)"
g LL(2s —v)I'(v —s) ‘ a)
= o (C)ﬂ T(s) F<5,2s—y,1+s—l/,5>x dv
a *p° JLT(W)(s—v)
271 (c) @ F(s)

for 0 < ¢ < 20.
In deducing (2.14), we made use of the exponential law

S
a S1—Ss

(2.15) < ﬂ) o’p

valid for any s € C and «, £ in their original region. However, in the region
(2.11), the argument of 8/ should be —27 < argf/a < —= after the
analytic continuation, so that (2.13) does not hold as it stands. Here we
have to continue the function («/3)* analytically to the region (2.11) by the
exponential law (2.15).

On the other hand, the hypergeometric functions in the right hand side
of (2.13) is analytically continued into the region (2.11) by the same form,
since the argument & does not cross the segment [1, c0).

As aresult, the true form of analytic continuation of B(v, 2s—v)F(s,v; 1+
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s —v;1 — %) (@ and § are interchanged) into the region (2.11) is given by

(2.16) B(v,2s —v)F <s,u; 14+s—v;1— %)
B o 1:/()5)( )F<s,2s—1/;1+s—y;§>
g 0 (8

Substituting (2.16) into (2.9), we also get
217) (z4+ ) (z+B)"

—2 I'(2s —v)I(v —
. / o (2s —»)I(v S)F s,2s—u;1+s—y;é z Ydv
21 J(¢) F(s) !

o I’ B
A / 5” @)T(s V)F<s,y;1—s+u;é)m_”dy
!

211

for 0 < ¢ < 20.

Remark. In (2.9) and (2.10), we assumed that
0 < Rv < 2Rs.
The first term in the right hand side of (2.13) have poles at
v=s—n neN,

while as is easily checked by [4, p.243 (9.2.14)], the second term has poles at
the same points with the residue of opposite sign, which is compatible with
the holomorphy of the left hand side.

3 Treatment of Ji(s) and Jy(s)

Let 1 < 0 := Rs < 2. To treat J;(s) we apply (2.14) with @ = wn and
B = @n (in which o = wn®, 3°* = @*n*) and sum over m and n. Then we
obtain

(3.1)
w2 s—v)I'(v—s w
Ji(s) = 57 /(C) G)”F(2 F()<SF)( )F (s,23—y;1+s—1/;5> ¢(2s —v)((v)dv
w e ”w svil—s+2 s —v)((v)dv
+ 27 /(C)w T(s) F( vl + ’G)) ¢(2 ) (w)dv,
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where
(3.2) 1<ec<20—1.

On the other hand, we apply (2.17) to Jo with @ = —wn = e™wn and
B8 =—wn=e¢ ™wn to deduce

(3.3)
o
Jo(s) = Z I(s; —wn, —wn)
n=1
_ (eﬂ'zw) 2 / = UF(2S - V)F(V - S) . .
= (C)(e w) T(s) F (5,25 v;l+4+s—u; 7)
x ((2s —v)¢(v)dv
(e7i@) = (e~ miw) [ PWT(s—v), (. |
omi (C)( ) s L (S’ vil =s+v; *)
X ((2s — v)((v)dv.
We now shift the line of integration to 8 = —e, € > 0 encountering the

poles at v = 1 (from ((v)) and v = 0 (from I'(v)), where, as remarked at
the end of §2, the point ¥ = s — 1 is not a pole of the integrands of J;(s)
and Ja(s).

To find the residues we use the formulas:

(3.4) F(a,bia;2) = (1—2)7°
(3.5) F(a,0;¢;2z) = 1.

and
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while for Jo,
1 I'(2s—1)I'(1—s)

1}5? — _6—27ris ((D — w)2571 I’(S) C(2S — 1)
—G)*Swlfsr(s_l) 5,1;2 — 5; 2 s —
B F(s,1;2 ,@)((2 1)
and
Res = — (ww) "¢(2s).
Hence
(3.6)
B 1 I'(2s—1)I'(1—s)
Jl(s) - (— — w)gs_l F(s) <(2S - 1)
+ w—swl—sr(;(;)l)F (s, 1,2 —s; g) (25— 1)
~ 5(B)7¢(25)
o2 L,T(2s—v)I'(v—s) _ w
+ 9 /(_E)w T(s) F(s,25—u,1+s—1/,5)
x ((2s — v)((v)dv
(ww)™* LJL(Ww)I(s —v) _ W
5mg /(E)w TF(S,I/,I - s+ 5)((23 —v)((v)dv
and
(3.7
e 2ms  T(25 — 1)[(1 — s)
JQ(S) - ((I) — (,())25—1 F(s) C(28 - 1)
e L Gl 1)F(s, 1,2 — 5 2)¢(25 — 1)

(&) [ D25 =) )
n 1@( )

w
F(s,25 —v;1+5—v; 2
o T(s) (8,25 —v3l+s—vi7)

x ((2s —v)((v)dv

n w;‘?mjs /(_E)(e_mw)u%p(s’ vil—s+u; g)§(2s —v)((v)dv.
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We calculate J;(s) + J2(s) by summing the corresponding terms sepa-
rately. The second terms cancel each other and the sum of the third term
is

(3.8) ~(ww) *¢(2s) = = () ¢ (29).

If factor out in the sum of terms, we have the remaining factor 1 — e=27% =
e ™521sin s, which is 27ie” ™ m by the reciprocity relation. There-
fore the sum of first terms is
2mie” ™5 T['(2s — 1)
25— 1 525 —1),
) I'(s)

(w—w
which becomes by (1.3) and (1.4) and by the duplication formula for the
gamma function
925—1,25—1 I'(s—1

VAL~ 3) gy ),
A2 I'(s)
We denote the sum of the fourth terms by 7i(s) and that of the fifth

terms by T5(s), respectively. Substituting the expression for Ji(s) + Ja(s)
obtained by adding (3.8), (3.9) etc., we deduce that

(3.9)

2 22sa571ﬁ I(s— l) 9

(3.10) S = —=((25) + N F(S)Q C(2S—I)+E{T1(s)+T2(s)},
where

@2 ; s—v)['(v—s
(3.11) Ti(s) = s /( | (1 + em(”_zs)> GJ”F(2 F()SI;( )

x F <3,23 —v;l4s—v; g) C(2s — v)((v)dv

and
(312)  Ty(s) =" ;;‘; : /( , (14+e™™) w”—F(V)II:((::)_ V)

x F (s, vl — s+ v; ﬁ) C(2s —v)((v)dv.
@
Hence we deduce the integral formula:

Theorem 3.1. We have for o > 0

225051/ T(s — 3)
Az T(s)

2 {T(9) + Do)},

(313)  Cls) = —C(29) + (25— 1)

where Ty(s) and Ty(s) are given by (3.11) and (3.12) respectively.
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4 The Kronecker limit formula

It is easy to see that

2%¢57 1 /ml(s — 1)
4.1 2s—1
@) roA e
2m 1 2n a
:\/Z-S_1+\/Z<2fy+logg)+0(s—l),

where v indicates Euler’s constant (cf. also [6, (36), p.96]). It therefore
suffices to find the limit of T%(s) and Ts(s) as s — 1.
First we find that

(I)_Q

21_1)1% Ti(s) =Ti(1) = Py (75)(1 + ™)' T(2 —v)I'(v —1)

x F (1,2 —v;2—v; g) (2 —v)((v)dv.
By using (3.4), the functional equation of the Riemann zeta-function
C(v) = 27" Lsin |p%f‘(l —v)((1—v)
and changing the variable y = 1 — v, we have
2mi 1

T(1) =———- 5~ " )(2m@)’“T(M)C(1 + u)C(p)dp.

We note that

e = A,

n=1
where o.(n) = 3_;, d°, hence we obtain
2mi = 01(n) 1
4.2 T (1) = — — r 2minw) *d
(4.2) 1(1) GJ—wZ P /(H—e) (u)(2minw) *du
n=1
210~ 01(1) oming
T o—w Z n '
n=1
Similarly we have
(4 3) Tl(].) - _ 27 i Ol(n) e?ﬂ'inw
' O—w n '

n=1
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Substituting (4.1), (4.2) and (4.3) into (3.13), we conclude that

21 21 a 2¢(2)
(14) o) = T ooyt o (v e g) + =
Ar - 0'1(?7,) —2min@ N Ul(n) 2minw
€ —e O(s—1).
* \/Z{Zl " + }+ (s — 1)

The remaining part is standard routine and can be summarized as fol-
lows.
Integrating the Lambert series

o o n
Za(n)e_"s = Z T Rs > 0,
n=1 n=1

we have

(4.5) Z U(nn) e " =— Z log(1 — e ™).
n=1 n=1

On the other hand, the Dedekind eta-function is defined by

o0
n(r) = e’5t H(l — 2Ty G >0,
n=1
whence
T ad .
(4.6) log (1) = —5- + nzllog(l — 2T 7 > 0.

Combining (4.5) and (4.7), we have

2 01(n) 9rimy  WT
(4.7) Z 172 )62 = ﬁ—logn(f),

n=1

so that

o (n) o (n)
1 —27inw 1 2minw

4.8 E E —

( ) n=1 n ’ +n:1 n ’

VA
12a

= —logn(w)n(-w) —

Subatituting (4.8) in (4.4), we obtain
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Corollary 4.1 (The Kronecker limit formula).

, o 1 4 2 4 .
glgi{gQ(s)—\/%S_l}: ;§+\/%log%—\/—%logn(w)n(—w)-

Remark. The following equivalent form of (4.4)

is Formula (39) of [6, p.97].
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