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PROGRESS TOWARDS A CONJECTURE
ON THE MEAN-VALUE OF TITCHMARSH
SERIES-II o

By K. RAMACHANDRA

§ |I. Introduction

The result of this paper may be considered as comple~
mentary to that of my earlier paper [2], on Titchmarsh series.
Although not as interesting as the earlier result, the result of
the present paper finds a nice application, (See [1]). In[3] I
defined a class of series called Titchmarsh series and I now
start by recalling its definition.

‘fitchmarsh Series. (or briefly K D T series).
Let A > 10 be a constant.

1
Let A < ,l‘l < ,“2 < ... Where

;\1_ <K, —-HF <A(orn =123,...).
(In [2] the notation is slightly different and we have used there
)‘n instead of # and for simplicity assumed X\ =L Also we
have used there a,, ay,... in place of our present b 1> b2 ... and
assumed for simplicity a = 1. We have written there F (s)
instead of Fy (s) ). Let by, b,, ... bea sequence of complex

humbers possibly depending on a parameter H > 10 such that
A © -
|bn| < (,“n H)". Put Fo9) = 2 1b" B wheres = ¢ + it,
B ns= n
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FO (s) iscalled a KDT series if there exists a constant A > 10

and a system of rectangles R (T, T + H) defined by { ¢>0,
T<t< T+ H)} wherel0 <K HT,and T (which may be
related to H) tends to infinity, and F0 (s) admits an analytic

continuation into these rectangles and the maximum of
IFq (s)| taken over R (T, T + H) does not exceed Exp (HA).

I then made the following coajecture

Conjecture
For a KDT series E( (5), we have,
- LIE G0 di > Cy Fnixlbnlz,
where X = 2 + D\ H, L denotes the side (¢ = 0, T< 1< T+H)
of R(T, T + H), and Ca and D, are positive constants
depending only on A, provided Py= b1 = 1.

I proved the following theorem.

Theotem |

Under the restrictions #= bI = 1, we huve,

= R Gord>cy 3 bR <
L

/‘n’"< X ‘n_)
(—(_T— log Fn

1 &
" logH T log ,logH)’
where X‘= 2 4 DAH and, CA and DA are effective

Dpositive constants depending only on A.

1 now prove the following theorem.



MEBAN-VALUE OF TITEHMARSH SERIES-II 3

Theorem 2

For some convenience let us assume in the definition of
Titchmarsh series F (s) the rectangles R (T, T + H) to be

(¢ >B, T<t< T+ H) where B isa positive constant such
that 0 < B < g(] < §, where "ll is another constant. Let

k>2 be an integer and write F (s) = (Fy(s)) ¥

-5
), a series which is surely convergent where F, (s)

A
is absolutely convergent. Pur Y = (M + H) where

100 -~ 10
A=kA (- B) and M = maximum of |F0 )1

taken over R (T, T + H). Define the entire function ¢ (s) by

[o o]
) 7Y
$ () = Z anxn A\k)
n =1 &
where for X > 0, A (X) is defined by
24+ iw
w 4a+2 dW
2 - i

a being a suitable positive integer constant at our choiee. We
now suppose that J, 3, oy, oly, oly are constants satisfying

1
J<B<Jl<e(2<d3<el+ 5 -

Put X - [2 H] + 2 and

' 1 2/ H\ 2e0.
Ve -5 2 5 ()
Pn<X
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Then we have,
1 k_l
2
;{—f|¢(d+n)| d
L

ody - o
o, — ol
1—2g (VL 372
A% H 3
> V() T

provided only that V (&) = 0 and (log V (o) ) (log H )"l is
bounded below by a negative constant. Here the constant implied
by the Vinogradov symbol 3> depends only on A, k, o, B, oy »

.(2' s ol g and the negative constant referred to just now. Further

it is effective.
Remark : It will be clear from the proof that if

: H
‘un =n(n = 1,2,3,...) then we can choose X = [100] + 2.

_ The object of this paper is to prove theorem 2. The proof
of the theorem is fairly long. The proof depends upon a
special case of a convexity theorem of R.M. Gabriel which
we state below (in the notation of D. R. Heath-Brown’s paper
‘12] ; for the more general theorem of Gabriel see the reference
in [2] or Titchmarsh’s famous book [5] pages 203 and 337.)

Theorem 3

Let f(z) be regular in the infinite strip ofl <Rez < f3
and continuous for J < Rez < 8. Suppose f(z)—+0 as
| Imz | — oo, uniformly in of < Rez « 3. Then for o <Y< 8.
and any q > 0, we have =



MEAN-VALUE OF TITCHMARSH SERIES-II ..

@ q @ q
J If(y+it)yl &a< (S 1f(L+it))| dt)
- Q0

®© q — ol
(S 1f(B+it)) dt) .
-
provided the right hand side is finite.

Apart from this we have to use a well-known theorem of
Montgomery and Vaughan. For reference see for instance my
paper [4], where 1 give a simple proof of a weaker result which
is sufficient for the purposes of this paper.

We now split up the proof of theorem 2 into several
steps and give a brief sketch of these steps.

§ 2. Proof of Theorem 2

Step . Let
T+H ®

I(v)=—:;{ ([ 19 017

| Exp ((s — it0)4a+2)|dt)dt0,

and assume that I (d) < V () Hl—z"". The constant a
shall be a sufficiently large positive integer. As already stated
we set

~A-100
X = [2 H} + 2, and

V(o) - H z 2¢ and
P <X

we impose 4<B<.[1 <42<d3<4+%'
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Step 2. Next we write
T+H

@=xf  (f |s0-Fo
T —®

. A4a42
Exp( (s—lto) ) I d’) dto

2/k

where P(s) = 3 b, I-": 5 It is easily seen that
b <X
n
AX)=0 (XB) and also 1 + O (X 'B) where B >0 is an
arbitrary constant and the O-constant depends onlyon B and a.

Again a = ) (b, b, ..b ) and for
I R T B k
1 k
all N > 1, we have > 1 = o®". From
N < F”l P”k < 2N

these remarks it is clear that ¢ (s) — Pk (s) decays fast enough
to ensure J(¢) < 1 when o is large enough. Now from an
easy application of a theorem of Gabriel (Theorem 3 above) it

follows that in & > o, J(9) is &, [J () ]] ~ % for every

positive constant € uniformly in o, and so in (¢ > f3,
T<t< T+ H), 1¢(s)| is bounded above by a constant
power of H. (Here for getting the last bound we have to use

the fact that for any analytic function ¢ (s), 19 (s)izlk is
bounded by its mean value over a disc of (positive but
sufficiently small) constant radius with s as centre).

Step 3. An easy application of a well-known Montgomery-
Vaughan theorem (refer [4] for instance) shows that

T+H ©

s (S

4a+42
] dt
Expl(s lto) ]| )dto

= 0 (V) H' 7%,
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From this and the estimate J(0) &, (J(.al))l_s it
follows that -

A3 T+H o0
f (5 (f wo- o™
o T -5

+ IP(s)\Z)’Exp ((s—it0)4a+2)| dt )dto ) do

- 0 (UEN! % + v H! T2,

Note that V(o) and V* (o) H! 727 are respectively monotonic
increasing and monotonic decreasing functions of ¢, where

V* (o) is the same as V(¢) with the terms # < 1 omitted.

From now on we assume that V (J) is bounded below by a
constant negative power of H. Under this assumption it
follows that the integral just considered is

0, (V(a)H! ~2L*E

Hence there exist intervals Il and I2 contained in

) for every positive constant €.

H» H
(T, T+ 10 and (T + H - 10 T+ H ) respectively for
¢ ?
which the lengths are 4H® (® being any fixed constant

. . 1
satisfying 0 < & < 100 ) each and further I(Il’ o)

A' 2]
[ (af [ wo-Pol
o I, -

2
+ |P ()| )|Exp ((s—it0)4a+2)tdt dto ) do

and 1(12, o) defined similarly (by replacing I1 by 12) satisfy

11, o) + Iy ol) = O(V(el) H 7245,
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Hence by the principle for the mean value over discs
referred to in the second step, we see that in (3 <9< A2 .
t in any of the intervals I1 5 1'2 ) we have
k - L)
182 = o(v(d) HT2LT2E T,

Step 4. Let H; and Hy be the mid points of I and 1,

respectively. We now obtain a lower bound for at least one
of the mean-values K (g(l) or K (e[z) where K(¢) is defined

by
1 2 2 - 2
K@) = m— f IF. ()] df, (B<o<A ).
H
1
Note that when we replace H1 and H2 by other points in L

and I, the mean value K (o) changes by an amount which is at

most O (E) where E = V (o) g2l + 28 + ® . Hence if o
denotes any of o, or .(3 and H1 I H2, we see that if j

is a large positive integer constant,
Fy (s+w) (2X)
M Zni f w(w+1)...(w+j)

L .
Y J
oS s Fa
= Oy Py (1“2x ’
#,<2X

dw

where L0 is the lineRe w = A2. Deform the line L0 to thc
contour described by the lines Ll , L2 . L3 s L4 . L5 (in

this order) defined as follows. Let H, = H1 - H8 ;

H, = H, + H8 where & is a small positive constant. L, and



MEAN-VALUE OF TITCHMARSH SERIES-II 9

L 5 are the portions Imw g — Hj and Imw > H, respectiv—

ely of L. L2 is the line segment

2

(Imwn=—H3, g(l-agkew < A7)

and L 4 is the line segment
(Imw = H4, °ll — 0 <Rew<A2).

L3 is the line segment (Re w = dy -0, - H3 <Im w<Hy).
Taking the mean square after deformation of L0 we find

from the equation (1), (Note that the only pole to be taken
care of is w = 0),

IrK (@) KLV (o) s (o J+B) g—2(—d,)
(2)'{' (where Vl (¢) is defined below) and also
1-=20

V@ B K @+ K @) +B H72 ),
The reason for this is that the mean square of the RHS of
(1) is > and & V, (@) H' "** where V| (¢) i's defined by

1 2 BN j
Vi@ =5 Z 16 6—-15,"" J(_}i)
po< X 2X "

Since V () < V (¢) we may omit the term containing E
in the second of the equations (2), provided d; —eol <14

20

(which is true because of our assumptions). This gives us
V(@) H' ™% &K @) + K () H 2O 79D; g aod, dy)

If we put@ = of, we getalower bound for one at leést
of the quantities K (g{l) or K (0(2).

We now deduce from the last inequality
V@) B2 g 1(0) + 1) H ~2 =),

©@=df o).
Z 3
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This is possiblé since in the range (¢ > '[l . H3<(< H4),

lFO (s)! 2 is a very good apptoximation (in the mean) to

19 () 2%

and we leave the details as an exercise. From the

20

last inequality it follows that 1(g) 3> V(o) 2 L , for one

at least of the values ¢ = 41 or "l2‘

Next by thé convexity theorem of Gabriel (Theorem 3),
we find that with the value of ¢ (;11 or ol, determined),

d3‘d 0{3 -0 o "d
@ 1) ° < 1) (1(el3))
Moreover by the arguments used in the first of the
inequalities in (2) we get (by taking X in place of 2X in (1)).

2 —2(dy~0)

ely) KVl H  ° + (1) +E)H

24 + 28 + 2B 1 - 2dl,
Now E = V(o) H < V(ly H

1
(since by our assumptions, 43 - o < 5) by a small choice

of the positive constants €, 3. Thus we get

: 1—2dl4 =2(ely - 9)
1(dl;) K V(dy) H +1(@) H :

and so by (3)

43 - d
@ 1)

23l

—2d — )\ —
i@ HE "))‘r <

d3—0’ 1-
< @3 (vay u

This holds for either ¢ = o oro = o, and gives us
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( Either I() > V(o) H' =2 > v(o) H! 72

43—0 1-20 o[3—g[
)4 or (1= > (V(e) H )
l 1—213 d——@'
L VelpH )
The second of these inequalities gives
¢ — o
-2 vy, 337°
) > H Ve {5
—d

Since V(d) < V (ol )gV(0)<V(g()andsmced _

is an increasing function of u in B < u < 0(3 , we get finally

dz-d

g ( V(g L3R

T >V () H ————
) e V(dy)

Step 5. Step 4 nearly completes the proof. For we could

have started with a slight modification of I (¢) by averaging

over a slightly smaller interval contained in (T, T + H)

instead of (T, T + H). For instance by cutting off bits of

length H8 on cither side. The decaying factor

Exp ( (s - ity ) 4a + 2) enables us to replace the modified
T+H
1 2/k
I (o) by *ﬁ—f K- RON dt
T o =

in the last lower bound.

Steps 1,2,3,4 and 5complete the proof of theorem 2,
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Theorem 4

With the notation of theorem 2, we have,
T+H

1 2
Ef I (L +it)! dt >
T

oLy — o\ K

V()
1-2d ds—d
v H T o 3
¥ {V(ds)} ;

where the constant implicd by the Vinogradov symbol is effective

Remark. This theorem will be used in [1].
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