A NOTE
 TO A PAPER BY RAMACHANDRA ON TRANSCENDENTAL NUMBERS

By
K. RAMACHANDRA AND $\$$ SRINIVASAN

TC
PROFESSOR Th. SCHNEIDER ON HIS SEVENTIETH BIRTHDAY

§ 1 Introduction

A typi al result proved is that out of the numbers $2^{\pi^{n}}(\mathrm{n}=1,2, \ldots, \mathrm{~N})$ the number of algebraic numbers dees rot exceed $\frac{1}{2}+\sqrt{ }\left(4 N-4+\frac{1}{4}\right)$ The same bound is true for the rumbers $2^{\mathrm{t}^{\mathrm{n}}}$ where t is ony transcendental number and more gererally of the numbers Exp ($\alpha \mathrm{t}^{n}$) where α is any non-zeto complex number. Nex !f $\wp(z)$ is any Weierstrass elliptic function with algebraic invariants g_{2}, g_{3} the coresponding b und for the numbers $\wp\left(\alpha t^{\mathbf{n}}\right)$ is $\frac{1}{2}+\sqrt{ }\left(8 N-8+\frac{1}{4}\right)$ (Here the value x of $\wp(z)$ is regarded as algebrate by convention). Actually our argument in § 2 shows that the
number of algebraic numbers in $2^{\pi^{n}}(n=M+1, M+2, \ldots M+N)$ does not exceed $\frac{1}{2}+V\left(4 \mathrm{~N}-4+\frac{1}{4}\right)$ and simllar resul:s in othe: casea stated aboye. We show that these results are easy corpllaries to the folowing Theorem (see [$\because]$).

Theorem

(1) Let a and b be non-zero complex numbers such that $\frac{\mathrm{a}}{\mathrm{b}}$ is irrational. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be complex numbers such that $t_{1} \alpha_{1}+t_{2} \alpha_{2}+t_{3} \alpha_{3}=0\left(t_{1}, t_{2}, t_{3}\right.$ integers $)$ is possible only when $\mathrm{r}_{1}=\mathrm{t}_{2}=\mathrm{t}_{3}=0$. Then at least one of the six numbers Exp $\left(a \alpha_{1}\right), \operatorname{Exp}\left(b \alpha_{1}\right)(1=1,2,3)$ is transcendental.
(2) Let a and b be non-zero complex numbers such that $\frac{\mathrm{a}}{\mathrm{b}}$ is irrational. Let $\mathcal{\alpha}_{1}, \alpha_{2}, \ldots, \mathcal{\alpha}_{5}$ be complex numbers such that $t_{1} \alpha_{1}+t_{2} \alpha_{2}+\ldots+t_{5} \alpha_{5}=0\left(t_{1}, \ldots, t_{5}\right.$ integers $)$ is possible only when $\mathrm{t}_{1}=\mathrm{t}_{2}=\ldots=\mathrm{t}_{5}=0$. Then at least one of the ten numbers $\left.\wp\left(a \alpha_{i}\right), \wp: b \alpha_{i}\right),(1=1$ to 5$)$ is transcendental.

Remarks

Tae first part of the Theorem is orlginally due to Siegel, Schneider, and Galfond (see Picblem 1 on page 138 of [4]). The first part was redis sovered and the second part was proved by K. Ramachajdra In his paper [2], by developing the method of Siegel, Schneider, and Gelfond. Some progress in the direction of the Theorem was made (around the same time) independently by S. Ling, who in particular redis covered the first part of the Thesrem (ses page 119 of A. Biker's brok [1]).

§ 2 Praof of the Results
 We first prove the following Lemma

Lemma

Let S be a non-empty set of natural numbers and $\mathrm{S}(\mathrm{N}, \mathrm{M})$ the sub-set of those natural numbers contained in $[\mathrm{M}, \mathrm{M}+\mathrm{N}-1]$, (where M and \mathbf{N} are any two natural numbers) Suppose that
for every non-zero integer r, the equation

$$
x+r=y,(x, y \text { in } S)
$$

does not have more than D solutions(where D is a natural number independent of r). Let $\mathrm{f}(\mathrm{N}, \mathrm{M})$ be the number of na:ural numbers in $\mathrm{S}(\mathrm{N}, \mathrm{M})$. Then there holds,

$$
\mathrm{f}(\mathrm{~N}, \mathrm{M})<\frac{1}{2}+V\left(2 \mathrm{DN}-2 \mathrm{D}+\frac{1}{4}\right)
$$

Proof

Let $g(r, N, M)$ denote the namber of solutions of the equation in the Lemma with the restriction that x, y should be in $\mathrm{S}(\mathbf{N}, \mathrm{M})$. Then

$$
\begin{aligned}
& =\Sigma_{\mathbf{r}}=0 \quad+\sum_{\mathbf{r}} \neq 0 \\
& \leqslant \mathrm{f}(\mathrm{~N}, \mathrm{M})+2 \mathrm{D}(\mathrm{~N}-1) .
\end{aligned}
$$

Ttis proves the Lemma completely.
Using the lemma our results can be deduced essily from the Theorem as follows. Take S to be the set of those natural numbers for which Exp $\left(\alpha t^{n}\right)$ is algebraic. We take $M=1$. In the first part of the Theorem we take $a=\alpha, b=\alpha t^{r}$. Then the Theorem tells us tha* we can take $\mathrm{D}=2$. For our assertio is about $\wp(z)$ we can take $\mathbf{a}=\boldsymbol{\alpha}, \boldsymbol{b}=\boldsymbol{\alpha} \mathbf{t}^{\mathrm{r}}$. Then the Theorem tells us that we thke $D=4$.

This proves our assertions completely.

Remark

In a paper to appear [3], R. Balasubramanian and K. Ramachandra prove that the number of algebraic numbers amongst $2^{\pi}, 2^{\pi^{2}}, \ldots, 2^{\pi^{N}}$ is $\sqrt{2 N}(1+o(1))$.They also prove slmilar improvements of results in section 2 .
§ 3. Further Results. The Gelfond-Siegel-Schneider meihod (of proving the transcendence of e^{π} and $2^{\sqrt{ } 2}$)was developed In a deep way by Gelfond to prove the algebraic indepeadence
of 2^{β} and $2^{\beta^{2}}$ where $\beta=\sqrt[2]{ }$. These ;essarches of Geifond have been continued by R. Tijdeman, D. Brownawell, and M. Waldschmidt. More profound results have been obtained by G. V. Choodnovskt and we now quote a result fiom his paper: Algebraic independance of values of exponential and elliptic functions (Proceedings of the International Congress of Mathematiciaos, Helsinkı (1978) pages 339-350,. Let $\alpha_{1}, \ldots, \alpha_{M}$ be complex numbers Iinearly independent over the rationals and let $\beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{N}}$ be complex numbers linearly independent over the rationals where $\mathrm{M} \geqslant(\mathrm{N}+1)(\mathrm{M}+\mathrm{N})$, M, N, and n being fixed natural numbers. Then at least $\mathrm{n}+1$ of the M N numbers $\operatorname{Exp}\left(\alpha_{\mathrm{i}} \beta_{\mathrm{j}}\right)$ are algebraically independent. Let t be any fixed iranscendental number and ler t_{1}, \ldots, t_{n} be any n fixed algebraicaliy independent compiex numbers. Let α bo a fixed non-zero complex number. zutting $\alpha_{i}=\alpha t^{r_{i}}, \beta_{i}=\alpha t^{m_{j}}$, where $r_{i}(i=1$ to $M)$ are any non-zero distinct integers ado $\mathrm{m}_{\mathrm{j}}(\mathrm{j}=1$ to N$)$ are distinct natural numbers, we deduce the tollewing corollary. Let S be the set of those natural numbers m for which Exp (αi^{m}) depends algebraically on t_{1}, \cdots, t_{n} and further let S_{0} be the set of those numbers in S which satisfy $x \leqslant m \leqslant x+y$, where $x>1, y>1$. We now set $M=\mathrm{a}+2$ and by choosing N to be a large consiant and m_{j} to be in S_{0} we deduce that one at least of the zumbers $\operatorname{Exp}\left(\alpha t^{r}{ }^{2}+m_{j}\right)$ does wor belong to S_{0}. From this we deduce that the number of incegers in S_{0} dues
not exceed $C y^{0}$ where $0-1-\frac{1}{n+3}$, and C depeads only OD n . The last deduction is facilitared by the following lemma which is an extension of the lemma proved in section 2.

Extension

Let k be a natural number and S_{0} a subset of natural numbers consisting of at least two and ai most finiteiy natural numbers. Consider the differen e set R consisting of all nonzero differences of numbers in S_{0}. Let T de any non-empty subset of $\mathbf{R}^{\mathbf{k}}$ the set of all possible \mathbf{k}-tuples of numbers in R. For any integer r in $\mathrm{R}, \operatorname{put} \mathbf{S}_{\mathbf{r}}=\left\{\mathrm{a} \mid \mathrm{a}\right.$ in $\left.\mathrm{S}_{0}, a+\mathrm{r} \ln \mathrm{S}_{0}\right\}$. Now for $r=\left(r_{1}, \ldots, r_{\mathbf{k}}\right)$ in $\mathbf{R}^{\mathbf{k}} p u t \mathrm{~S}_{\mathbf{r}}=\mathrm{S}_{\mathrm{r}_{1}} \cap \ldots \cap \mathrm{~S}_{\mathbf{r}_{\mathrm{k}}}$.

Then

Further if \mathbf{T} consists of all possible $r=\left(r_{1}, \ldots, r_{k}\right)$, where r_{1}, \ldots, r_{k} are distinct then R.H.S. here is \gg and \ll $\left(\mathrm{a}_{\mathrm{a}} \mathrm{In}_{\mathrm{S}}\right)^{\mathrm{k}+1} \quad$ where the implied constants depend only on k .

Remark

Taking $k=n+2$ and S_{0} as described before the extenstion we get the result stated slace max $\quad \begin{aligned} & \text { in } \\ & \text { in }\end{aligned}$ $r \ln T$ $\mathrm{z}_{\mathrm{a} \text { in }} \mathrm{S}_{\mathrm{r}}$ it
bounded by a constant dependiag only on n by the deep result of Cíoodnovski.

Proof of the extension follows by interchanging the summation. The bounds for the R. H. S. comes from the fact that $\sum 1$ is closely related to the number r in T, S_{r} containing a of comblnations of $\left(\begin{array}{lll}\Sigma & 1 \\ a & \text { in } & S_{0}\end{array}\right)$, taken k at a time.

We now srate the final result which we have deduced as an easy corollary to the deep result of G. V. Choodnovski

Final Result

Let $\alpha, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ be $\mathrm{n}+\mathrm{I}$ non-zero complex numbers where n is a fised natural number. Let m run through those natural numbers for which $\operatorname{Exp}\left(\alpha \mathrm{t}^{\mathrm{m}}\right)(\mathrm{t}$ being a fixed transcendental number) depends algebraically on t_{1}, \ldots, t_{n}. Put $N(x)=\underset{m<x}{\underset{x}{x}} \underset{\sim}{1}$. Then $N(x+y)-N(x)$ does not exceed $C y^{\theta}$ where $0=1-\frac{1}{\mathrm{n}+3}$ and C is an effective positive constaot depending only on n . Here as usual $\mathrm{x}>1$, and $\mathrm{y}>1$.

Remark 1

When t_{1}, \ldots, t_{n} are algebraic numbers the results of section 2 are better.

Remark 2

This note began with the observation that in section 2 the set S does not contain any sub-set with $\mathrm{D}+1$ elements in arithmetical progressioa (this follows 1mmediately from the Theorem) and so by Szemeredi's Theorem $f(N, 1)=0(N$:. Next in a correspondence with us Professor R.Tijdeman pointed out that it is possible to use Roth's theorem in the
direc:ion of Szemeredi's Tneorem and get

$$
f(N, 1)=O\left(\frac{N}{\log \log N}\right) .
$$

Remark 3

It is possibe to reduce 0 to $1-\frac{1}{n+2}$ in the final result.
Remark 4
The lemma can be improved slightly. In particular the numb:r of algebraic numbers amongst $2^{\pi}, 2^{\pi^{2}}, \ldots, 2^{\pi^{N}}$ is $<\frac{1}{4}(-1+\sqrt{(16 N-7)})$.

Remark 5.

Let $\phi(N)$ be the number of transcendental numbers of the form $2^{t^{f(n)}}$ where $1 \leqslant n<N$ and it is a fixed transcendental. If $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}$
then $\left.\phi(N)=\left(1+O \quad\left(\sqrt{(} \frac{\log \log N}{\log N}\right)\right)\right) N$. This ls a consequence of the fact tha: the number of integers in $\left(-N^{2}, N^{2}\right)$ which have at mo t two representations of the form $\mathrm{f}\left(\mathrm{n}_{1}\right)-1\left(\mathrm{n}_{2}\right)\left(\mathrm{n}_{1} \neq \mathrm{n}_{2}\right)$ is $O\left(\mathrm{~N}^{2} \frac{\log \log \mathrm{~N}}{\log \mathrm{~N}}\right)$. Next since there is a positive iateger which is a difference of 2 positive cubes in 3 different ways it follows that if $f(n)=n^{3}, \phi(N) \gg N$ for $N>10^{30}$.

Starting from $37=4^{3}-3^{3}=\left(\frac{10}{3}\right)^{3}-\left(\frac{1}{3}\right)^{3}$ we get by the chord process a new point. The tangent process at this point gives $\left(19\left(19^{3}+2.18^{3}\right)\right)^{3}-\left(18\left(217^{3}+18^{3}\right)\right)^{3}$ $=\left(7\left(19^{3}-18^{3}\right)\right)^{3} 37$.

References

1. A. Baker, Transcendentel Number Theory; Cambridge University Press (1975).
2. K. Ramachandra, Contributions to the theory of transcendental numbert - I. Acta Arith., 14 (1968) 65 - 72, - Il lbld., 14 (1968) $73-88$.
3. R. Balasubramanian and K. Ramachandra, Tianscendental aumber Theory and a lemma in combinaiorics (to appear)
4. Th. Schenider, Einfubruug in die Transzendenten Zablen, Springer - Verlag (1957).
(Manuscript completed in final form on 17th January 1982)

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Ruad, Bombay 400005
1ndia.

