PRIAES BETWEEN $p_{n}+1$ AND $p_{n+1}^{2}-1$

Δy
 A VENUGOPALAN

§ 1. Introduction

We prove the following four theorems. We bsgin with some notation. Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ be the sequence of all prlme numbers. Let Q be the product of the first n prime nombers. Let $Q_{i}=\mathrm{Qv}_{\mathrm{i}}^{-1}$ for $1=1,2,3, \ldots, \mathrm{n}$.
Let $K=n$. Let J stand for $\sum_{i=1}^{n} a_{1} Q_{1}-b Q$
Theorem 1
We have,

where $\mathrm{f}(\mathrm{x})=\mathrm{z}^{*} \quad \mathrm{x}^{\mathrm{m}}$

$$
\begin{aligned}
& \mathrm{p}_{n+1}^{2}+1<m<K Q,(m, Q)=1 \\
& +\quad \geq \mathrm{x}_{n}^{m} \\
& \mathrm{p}_{\mathrm{n}}+1<m<\mathrm{p}_{\mathrm{n}+1}^{2}-1,(m, Q)=1
\end{aligned}
$$

and e denotes the omission of some integers m.
Theorem 2
$\underset{a_{i}}{p_{1}-1}{ }^{p_{n}-1} \sum_{a_{n}}^{p_{i}=1} \underset{0<b<K}{\sum_{x}^{j^{2}}}=2 x+2 \phi(x)$

[^0]where $\phi(x)=\sum \quad \mathrm{m}^{2}$
\[

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{n}+1}^{2}{ }^{1 / \gamma}<\mathrm{m} \leqslant \mathrm{KQ},(\mathrm{~m}, \mathrm{Q})=1 \\
& \quad+\sum \text { K }^{m^{2}} \\
& \mathrm{p}_{n}+1 \leqslant \mathrm{~m} \leqslant \mathrm{p}_{\mathrm{n}+1}^{2}-1,(\mathrm{~m}, \mathrm{Q})=1
\end{aligned}
$$
\]

and denotes the omission of some integers m.
Theorem 3

$$
\begin{aligned}
& \text { Let }\left(\mathrm{a}_{1}^{\prime}, \ldots, \mathrm{a}_{\mathrm{n}}^{\prime}\right) \text { be the unique solutlon of } \\
& \\
& -2=\sum_{i=1}^{n} \mathrm{a}_{i}^{\prime} Q_{i} \bmod \mathrm{Q} \text {, with } \\
& 0<a_{1}^{\prime}<p_{i}-1,(\mathrm{i}=1,2, \ldots, \mathrm{n}) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \begin{array}{cccc}
p_{1}-1 & p_{2}-1 & & p_{n}-1 \\
\sum_{1}=1 & a_{2} \sum_{i}^{-1} & \cdots & \sum_{n}=1
\end{array} \quad \sum_{0<b<K}^{\Sigma} x^{J} \\
& a_{1} \neq a_{1}^{\prime} \quad a_{2} \neq a_{2}^{\prime} \quad a_{n} \neq a_{n}^{\prime} \\
& =\underset{\left(m(m+2), \stackrel{x^{m}}{Q}\right)=1}{\mathbf{x}^{m}}
\end{aligned}
$$

Where the sum on the right sums over the relevant range for m.

Theorem 4

We have,

The sum over mon the right bring over the same cet of integers as in Theorem 3.
Remark 1
Note that $\varepsilon_{1}^{\prime}=0$ and that $1 \leqslant a_{i}^{\prime} \leqslant p_{i}-1$

$$
(1=2,3, \ldots, n)
$$

Remark 2
In the first two theorems the m's that satirfy

$$
\text { PRIMES BETZWEEN } \dot{P}_{n}+1 \text { AND } \mathrm{P}_{\mathrm{n}+1}^{2}-1
$$

$p_{n}+1<m<p_{n+1}^{2}-1$ are precisely all the primes in this interval. In the next two theorems they are all the twin primes in this interval.
§ 2 Proof
The proofs of theorems 1 and 2 follow from the following two remarks.
First given any Integer c there is a unique solution of n
$\sum_{i=1} a_{i} \quad Q_{i} \equiv c(\bmod Q)$ subject to $0 \leqslant a_{i} \leqslant p_{i}-1$
($\mathrm{i}=1,2, \ldots, \mathrm{n}$). Out of these solutions $(c, Q)=1$ is satisfied if and only if $1<a_{i}<p_{i}-1\left(i=1,2,3, \ldots, D^{\prime}\right)$.

The proof of theorems 3 and 4 follow from the following remark.
Subject to $1<\theta_{i}<p_{i}-1$ for all i we have already secured $(m, Q)=1$. If in addition $m+2$ is to be coprime :o Q we should have

$$
\left(\Sigma_{i} a_{i} Q_{1}-\Sigma \Sigma_{i}^{\prime} Q_{i}, Q\right)=1 \text {, 1. e. } a_{i}-a_{i}^{\prime} \neq 0 \text { for each } i
$$

§ 3. Further Remarks

We can find by the method above conditions to ensure ($m(m+2)(m+6), Q)=1$ and so on. Next one can easily get a formula for the $n^{\text {th }}$ prime from Theorem 2. It is:

$$
\begin{gathered}
\mathfrak{p}_{n+1}^{2}-1=\left[-\log \left(\frac{1}{2} \sum_{a_{1}=1}^{p_{1}-1} \sum_{a_{2}=1}^{p_{2}^{-2}} \ldots\right.\right. \\
\left.\quad p_{n-1}^{n} \sum_{a_{n}=1}^{n} \sum_{b=1}^{n} e^{\left.-\left(2 a_{i} Q_{i}-b Q\right)^{2} \cdots \frac{1}{e}\right)}\right]
\end{gathered}
$$

What we have done corresponds nearly so the Eratos'hanese sieve. It will be interesting to modify our investlgations in a way which correspoad to Brun's sieve.

Acknowledgement

I am thankful to Professor K Ramachandra fer encouragement.

Reference

1) K. Ramachaodea, Viggo Brun (13-10-1885 to 15-8-1978), The Mathematics Student, Vol. 49, No. 1 (1981) p 87-95

Manutcript completed on 22 September 1981.

School of Mathematics
rata Institute of Fundamental Research
Homi Bhabha Road,
Bumbay 400 005, INDIA.

[^0]: - The Author is currently a Visiting Member at tae Tate Institute of Fundamental Research, Bombay.

