PRIMES BETWEEN $p_n + 1$ AND $p_{n+1}^2 - 1$ By A. VENUGOPALAN

§ 1. Introduction

We prove the following four theorems. We begin with some notation. Let $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, ... be the sequence of all prime numbers. Let Q be the product of the first n prime numbers. Let $Q_i = Qp_i^{-1}$ for i = 1, 2, 3, ..., n. Let K = n. Let J stand for $\underset{i=1}{\overset{n}{=}} a_i Q_i - b Q$

Theorem 1

We have.

and • denotes the omission of some integers m.

Theorem 2

• The Author is currently a Visiting Member at the Tata Institute of Fundamental Research, Bombay.

1

where
$$\phi$$
 (x) = $\sum_{n=1}^{\infty} m^{2}$
 $p_{n+1}^{2} \sqrt{1} < m < KQ, (m, Q) = 1$
 $+ \sum_{n=1}^{\infty} \sqrt{1} \sqrt{1}$
 $p_{n+1}^{n} < m < p_{n+1}^{2} - 1, (m, Q) = 1$

and • denotes the omission of some integers m.

Theorem 3

Let
$$(a'_{1}, ..., a'_{n})$$
 be the unique solution of
 $-2 \equiv \sum_{i=1}^{n} a'_{i} Q_{i} \mod Q$, with
 $0 < a'_{i} < p_{i} - 1$, $(i = 1, 2, ..., n)$.

Then

$$p_{1} - 1 \quad p_{2} - 1 \qquad p_{n} - 1$$

$$\sum_{a_{1} = 1}^{x} \quad a_{2} - 1 \qquad a_{n} = 1 \quad 0 < b < K$$

$$a_{1} \neq a'_{1} \quad a_{2} \neq a'_{2} \quad a_{n} \neq a'_{n}$$

$$= \sum_{(m(m+2), Q) = 1}^{x} m$$

where the sum on the right sums over the relevant range for m.

Theorem 4

We have, $\mathbf{x} \dots \mathbf{x} \mathbf{x} \mathbf{x}^{\mathbf{J}^2} = \mathbf{x}^{\mathbf{m}^2}$ $\mathbf{a}_1 \mathbf{a}_n \mathbf{b} \quad (\mathbf{m} (\mathbf{m}+2), \mathbf{Q}) = 1$

The sum over m on the right bring over the same set of integers as in Theorem 3.

Remark 1

Note that
$$\mathbf{a'_1} = 0$$
 and that $1 \le \mathbf{a'_i} \le \mathbf{p_i} - 1$
(1=2, 3, ..., n)

Remark 2

In the first two theorems the m's that satisfy

PRIMES BETWEEN $P_n + 1$ and $P_{n+1}^2 - 1$

 $p_n + 1 < m < p_{n+1}^2 - 1$ are precisely all the primes in this interval. In the next two theorems they are all the twin primes in this interval.

§ 2 Proof

The proofs of theorems 1 and 2 follow from the following two remarks.

First given any integer c there is a unique solution of **n a** $a_i \quad Q_i \equiv c \pmod{Q}$ subject to $0 < a_i < p_i - 1$ i = 1 (i = 1, 2, ..., n). Out of these solutions (c, Q) = 1 is setisfied if end only if $1 < a_i < p_i - 1$ (i = 1, 2, 3, ..., p).

The proof of theorems 3 and 4 follow from the following remark. Subject to $1 < a_i < p_i - 1$ for all i we have already secured (m, Q) = 1. If in addition m + 2 is to be coprime to Q we should have $(z a_i Q_i - z a'_i Q_i, Q) = 1$, i. e. $a_i - a'_i \neq 0$ for each i.

§ 3. Further Remarks

We can find by the method above conditions to ensure (m (m+2) (m+6), Q) = 1 and so on. Next one can easily get a formula for the nth prime from Theorem 2. It is :

$$p_{n+1}^{2} - 1 = \left[-\log \left(\frac{1}{2} \sum_{a_{1}=1}^{p_{1}-1} \sum_{a_{2}=1}^{p_{2}-2} \dots \right) \right]$$
$$\dots \sum_{a_{n}=1}^{p_{n}-1} \sum_{b=1}^{n} e^{-(2a_{1}Q_{1}-bQ)^{2}} - \frac{1}{e} \right)$$

47

What we have done corresponds nearly to the Eratos hanese sieve. It will be interesting to modify our investigations in a way which correspond to Brun's sieve.

Acknowledgement

I am thankful to Professor K. Ramachandra for encouragement.

Reference

 K. Ramachandra, Viggo Brun (13-10-188) to 15-8-1978), The Mathematics Student, Vol. 49, No. 1 (1981) p 87-95

Manuscript completed on 22 September 1981.

School of Mathematics Fata Institute of Fundamental Research Homi Bhabha Road, Bombay 400 003, INDIA.