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ON THE EQUATION 

By 

T. N. SHOREY 

§ 1. Letm > l,n > l, x > l,y > 1 aod a,bwith(a,b) ~ l 

be positive integers satisfying a (y -1) ;;e b (x --1 ). This equation 

of Ooormaghtigh arose from the question whether an integer 

has all the digits identically equal in their expansions to two 

distinct bases. It follows from Baker's effective version [ll 

of Thue's theorem [6] that the equation 

(1) 

n 
y -1 

b --
y - 1 

implies that max (m, n) is bounded by an effectively computable 

number depending only on a, b, x and y. Further 

Balasubramanian and the author [3] applied the theory of 

linear forms in logarithms to generalise this result by showing 

that equation (1) implies that max (a, b, x, y, m, n) is bounded 

by an effectively computable number depending only on the 

greatest prime factor of abxy. In this paper, we apply the 

theory of linear forms in logarithms to obtain the following 

generalisations. We shall always write z '"' max (x, y). 

Theorem l, 

Let 0..,;,;. u < 1 und F > 1. jjpositire i11te~ers m ~ n ;:. 1, 
x. > l, y > 1, a andb <rith a< x, b < y, a(y-1) ~ b(x--l)and 

(2) I X -- y I < max (F, 



2 

satisfy (l), then m is bounded hy an effectively computtJble number 

depe11ding only on e and F. 

Por an account of earlier results in the direction o~ equation 
(1), see [3]. We combine theorem 1 with an elementary 
arsument to obtain the following result. 

'l'uerem 2. 

Let F 
1 

> 1. f'here exists an effet:tively computable 

absolute coMtant C > 0 and an effectively computable number 

t:
1 

> 0 tkptnding only on F 
1 

such that equation (I) in positive 

integer• m > n > 1, m > 2, x > J, y > 1, a and h with 

(a, b) = l, a < x, b < y, a(y - 1) r6 b(x - I) and 

c 
(3) I x - y I ...;. max ( F 

1
, (los z) ) 

implies that 

max (m, n, :.:, y, a, b)...;;; C 
1
· 

Combining theorem 1 with lemma 1 and an estimate on 
p-adie linear forms in logarithms, we have 

Tkeorem 3. 
If m > 1, n > 1. x > 1 and y > 1 with (x, y) = I 

sati1jy 

(4) ttm- 1 
- ---

X - 1 

the11 

max (m, D, X, y) <:; C
2 

where ~ 
2 

> 0 is an effectively computable numbu depending 

Qn/y on the greatest prime factor of ~ (y - x). 



If a and b are fixed, the restriction (3) in theorem ! c.an be 
relaxed considerably. 

Theorem 4. 

Let a and b be positive integers. Let F 
2 

:> 1. There exlstt 

an effectively computable number c
3 

> 0 depending only on a,b 

and F 
2 

such that equation (1) in positive inttJgers m > n > 1. 

x >I, y > 1 with a(y-1) 7JC b(Jt-1) and 

2 3 
(5) lx -yl <F 

2 
z/(log z) (log log z) 

implies that 

max(m, n, X, y) < C
3
, 

I 2. The proof of these results depend on the followine 
application of a theorem of Baker [2] on linear forms In 

logarithms . 

Lemma 1. 

Let F
3 

>!.Let m,n, x > l, y >I, a< F
3

x, andb < !'
3

y 

with a(y-1) ~ b(x - 1) s•tisfy (i). Put z::::: mall (1,y) and 

z 
1 

= min ( x,y ). 

Then 

where C 
4 

> 0 ts an effectively computable number depending (mly 

Qn F
3

. 

Proof of Lemma 1. 

We may assume lhat m > n. Denote hy c
1 

> 0 and 

~2 > 0 effedively c,>mputable numben depending only on F
3

. 



By equation (1), we have 

(6) 
byn 

y-1 <C 
1 

By an, estimate of Baker [2], the left hand side of inequality (6) 

ex~;eeds ' x m exp( ~ c
2 

(log m) (log z)
3 

(log log z)). 

Now the lemma follows immediately by combining these 

estimates. 

Proof of theorem 1. 

Denote by c
3

, C
4

, . .. ,(" 
9 

effectively computable positive 

numbers depending only on e and F. Suppose that the 

assumptions of theorem J are satisfied. Then, by lemma I and (2), 

we have ' 

(7) 
3 

m < c
3 

(log x) . 

In view of (7) and (2), we may assume that 

(8) min (x, y) ::> c4 

with c
4 

sufficiently large. Further, by (1), we have 

ax m - l .::. by n 1 ( 1 + ~ ) , 

(9) n-1 m-1( 2) 
hy <~X } +-; . 

Now it follows from (9), (2) , (7J and (8) that either m :...-:: l'1 

or m = n+ 1. 

Let m = n . It follows from (9), ~~)and (7) that 

I
. al -1 -H J 3 
. Iogb ..:. c

5
x · (log x) . 



Further, by (2.', we have 

Consequently 

I ary-l)/ -I+e 3 log ----- < (C + C ) x (log x) . 
b(x -I) 5 6 

Now it follows from an estimate of Waldschmidt [7] or 

Ramachandra and the author [5] (in the latter reference, the 

arguments allow to prove the estimate without the restriction on 

the multiplicative independence of a
1 

and a
2

) on linear forms 

in logarithms th<tt the left hand side of inequality (6), with 

m-C 
m = n and F

3
:::... I, exceeds x 7. 

m-C 
Thus, by (6), X 

7 < cl which implies that m...:. c8, 

since x > I. 

Let m = n t I. Re-write equation (I) as 

n 
X -

ax 
X-

n 
y - I =- b ----·--· - a. 
y-1 

Now argue as in the case m = n to conclude that m < c
9

. 

This completes the proof of theorem I. 

Proof of theorem 2. 

We shall choose, lilter, an cffeL'tively computable absolute 

constant C satisfying 0 < C < I. 

Case I: 

'TJ·u~n I v _ U I 
.J. iJo ..... •• I •• J I Hen. P:, hy theorem 

I , we see that rn is bounded by an effectively computable 



6 

number depending only on F 
1

. Now the assertion of theorem l 

follows from (1), since (a, b) :::;; 1. 

Case II: 

c 
F 1 < (log z) • Then, by (3), observe that 

I x- y 1.;;;; (logz)C <log z <max (27, zi). 

Now apply theorem 1 to conclude that m is bounded h)' an 

effectively computable absolute constant C 
10 

.Let 2 < m < C10 

be givcm. Denote by c
11

, c
12

, ...... , C 
16 

effectively computable 

pllsitive numbers dep~ndir.g only on m. We may assume that 

min (x, y) > C 
11 

with C 
11 

sufficiently large. otherwise the 

assertion of theorem 2 follows from (l) and (a, b) = 1. Then 

equatien (I) implies that m = norm = n + I. 

If x=y, then a~ band equation (1) implies that 

n m-n x (ax -b) = a - b 

which, since n > I, is not posiiblc if C
11 

is sufficiently large. 

Thus we may assume that x rf. y. 

Re-write equation ( l) as 

a ( ~~:x) ) = b ( ~~d~~ ) 

Yn-1 
p (Y) ""--~ 

n Y- 1 

and d is the greatest common divisor of P (x) an~ P (y). Thus m n 

-1 
P (x) d < b '~. 2x, m 



7 

Put 

2'"i/n P = e , K = Q(P , P ). 
n m n 

For· a prime p dividing d, Jet ord (d) = .x • Let FfJ be a 
p p 

prime ideal in the ring of integers of K diTiding p. Then gJ 

divides an ideal 

(11) 

for some positive integers r < m and s < n. 

Put 

Suppose that (11) is a zero ideal. Then, since x r!i y and 

1 ..; r < m, J < s < n, we see that 1 x - y : = 1. Then 

eoi ( 
2
:r) = :t: 1 +cos { 

2
:

5
). sin ( 

2
:r- )=sin( 

2:s_). 

These equations imply that either P~ E T 
1
, P: E T

2 

or P~ € T 
2

• P~ E T 
1
. Thus m ,c n + I, since m and n are 

divisible by 3. Therefore m=n· Then m is even, since m is 

divisible by 6. If x- y = 1, then equation (1) with m == n 

impliesthatx = y+l dividesa(xm-l+ ... +l). Therefore ;,c 

divides a, which is not possible, since a < x. Similarly if 
y-x=l and m even, equation (1) with m=n has no solution. 

Thus we may asaume that (11~ is a non-zero ideal. 

Put 

Then. since SJ divides a non-tero ideal ( 11 ). w~ obt2in by 
taktns norms, 



8 

l p "cl2 (log x) • 

a -C 
Ittfact either a p ~ c

13 
or&<> P 13 · divides a non-z~ro 

ideal of the rorm (II). Therefore 

a cl4 
p p < (log x) • 

Hence we conclude q c;; x t which, together with (I 0), 

implies that 

m-1 3/2 
x < P (x) ~ 2x • 

m 

Then, since m > 2, we conclude that x ...;. C 
15

. Then 

y ..;. 2x <. 2C
15 

Further, by (l) and (a, b) :::: 1, we see that 

mu (a, b)..;;;. c
16

. This completes the proof oftheorem2. 

Proof of Theorem 3. 

We may assume that m ;t£ n, otherwise equation (4) has no 

solution, since X ;;il y. Denote by cl7. cl8' ... ' c22 effectively 

computable posidvc numbers depending only on the greatest 

prime factor of x (y - x). Put y - x = k. Then it follow~ 

from equation (4) and (x, y) =- 1 that k divides 

(x 1 m-n 1 - 1) I (x--1). 

Tbu8, for a prime p dividing k, we have 

· I m-n 1 
ord (k) .:; ord (x -1). 

p p 

Now we apply an estimate of van der Poorten [4] on p - adic 
linear forms in logarithms to obtain 

Ofdp {k) <; C
17 

(log j rn+n j +jog iog X )
2 



Thus 

9 

2 
log I k 1 < c

18 
(log I m+n 1 +log logx) . 

By lemma J, we have 

Therefore 

(121 

4 
max (m, n) :{~ c

19 
(log z) . 

2 
log I k I '- C

20 
(log log z) • 

Now we apply theorem 1 to ~~onclude tbat max (m, n) < c
21 

. 

If max {x, y) > en with c22 sufficiently Jarge, then it follows 

from (l.l) and (4) that m =n. This is not possible, since x ~ y. 
This completes the proof of theorem 3. 

Proof of theorem 4. 

Suppose that the assumptions of theorem 4 are satisfied. 

Denote by C 
23 

, c
24 

, .. effectively computable positive numbers 

depending only on a, band F
2

. By lemma 1 and (5) we have 

2 (13) m < C
23 

{ (log X) (log log x)) . 

In view of (13) and (5), we may assume that max (x, y) > c
24 

with c
24 

sufficiently large. Then we use inequality (9) to 

conclude that equaltion (1} implies that m = n. Therefore we 

may assume that a .,t. b, otherwise x .,t. y and equation (1) with 

m = n has no solution. Then, by again applying (9), we see 

from (5) and (13) that 

c25 < I log ~ 1 < c
26 

(log log x) -I 

which implies that x 'c
27

. Hence, by (5) and {13), we 

conclude that max (m, x, y) < c
28 

. This completes the proof 

of theorem 4. 
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