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ON THE EQUATION

ax™—1) ) (x-1) = b =1 (y--1) (1D

By
T. N. SHOREY

§ 1. Letm > 1,0 >1,x> 1,y > 1anda, bwith(a,b) = 1
be positive integers satisfying a (y —1) = b (x-1), Thisequation
of Goormaghtigh arose from the question whether an integer
has all the digits identically equal in their c¢xpansions to wo
distinct bases. It follows from Baker's effective version {1]
of Thue’s theorem 6] that the equation

x" -1 y -1

1) a L,y =b oy

implies that max (m, n) is bounded by an effectively computable
number depending only on a, b, x and y. Further
Balasubramanian and the author [3] applied the theory of
linear forms in logarithms to generalise this result by showing
that equation (1) implies that max (a, b, x, y, m, n) is bounded
by an effectively computable number depending only on the
greatest prime factor of abxy. In this paper, we apply the
theory of linear forms in logarithms to obtain the following
generalisations. We shall always write z = max (x, y).

Theorem 1.
LetO & o < Yund F > 1. If positive iniegers m 5 8 1,

x>1l,v>1l,aandb witha <x,b <y,alv—1) = bix—-l)and

Q) [x -y | < max {(F,+")
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satisfy (1), then m is bounded by an effectively computable number
depending only on ¢ and F.

For an account of earlier results in the direction of equation
(1), see [3]. We combine theorem 1 with an elementary
argument to obtain the following result.

Yheorem 2.
Let Fl > 1,  There exists an effectively computable

absolute eonstant C > 0 and an effectively computable number
Gl > 0 depending only on Fl such that equation (1) in positive

integers m>»n>1, m>2 x>1, y>1, a and b with
(a,b) =1, a<x,b<y, a(y — 1) # b(x — 1) and

3) lx—-yis‘max(Fl.(logz)c)

implies that

max (m, n, X, y, 8, b) < Cl.

Combining theorem 1 with lemma 1 and an estimate on
p-adic linear forms in logarithms, we have

Theorem 3.
If m>1, n>1, x>1 and y>1 with (x,y) =1
satisfy

m n
(4) x —1 -y -1

x—1 y -1

then
max (m, 0, Xx,y) < C2

where @ 5> 0 is an effectively computable number depending

only on the greatest prime factor of x (y — X).
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If a and b are fixed, the restriction (3) in theorem 2 can be
relaxed considerably.

Theorem 4.

Let a and b be positive integers, Let F2 > 1. There exists

an effectively computable number C. > 0 depending only on a,b

3

and F2 such that equation (1) in positive integers m > n > 1,

x>1,y>1 with a(y-1) # b@—1) and
(35) ix—yl| <F2 z/(log z)2 (log log z)3

implies that
max(m, n, X, y) < C3.

$ 2. The proof of these results depend om the following
application of a theorem of Baker [2] on linear forms in
logarithms.

Lemma 1.

Let F3 >l Iletmnx>1,y>la< F3x, and b < ng
with a(y—1) # b(x—1} satisfy (1). Put z = max (x,v) and

%y 5= min ( x,y).
Then
3 2
max (m,n) < C4 (log 2)” (log log z) /(log Zl)
where C, > 0 is an effectively computable number depending only

4
en F3.

Proof of Lemma 1.
~We may assume ihat m > n. Deunote by Cl > 0 and

62 > 0 effectively computable numbers depending only on F3.



By equation (1), we have

ax byn

©® 0% |x=1 ~y-1

<C1

By:an estimate of Baker [2], the left hand side of inequality (6)

exceeds -’ xm exp(—-C2 (log m) (log 2)3 (log log 2)).

Now the lemma follows immediately by combinirjg these
estimates,

Proof of theorem 1; '

Denote by C3, C4, ..., C_ effectively computable positive

9
numbers depending only on ¢ and F. Suppose that the
assumptions of theorem | are satisfied. Then, by lemma 1 and (2),
we have !

a m<03(logx)3.

In view of {7) and (2), we may assume that

® ' ‘min (i, y) > C4
wiﬁtl'l. C4 .sufficiently large. Further, by (1), we have
o by™ 1 (1 +_2’_)’
_ ‘ y
9) byn"l<axm“1(l+%)

Now it follows from (9), (2), (7) and (R) that either m == n
or m = n+l,

Letm = n. It follows from (9), (.) and (7) that

—1+8 (log x)3“

a
log’“g l < ij



Further, by (2', we have

X x—1 —1+48
max log’; log( < C X ;
Consequently
aly-1) ~140 3
’]og b(x—1) <(C5+C6)x (log x)™.

Now it follows from an estimate of Waldschmidt [7] or
Ramachsndra and the author [5] (in the latter reference, the
arguments allow to prove the estimate without the restriction on
the multiplicative independence of ay and a2) on tinear forms

in logarithms that the left hand side of inequality (6), with
m——C7
m = n and F3 = 1, exceeds x .

m—C7
Thus, by (6), x < Cl which impliesthat m < CS’

since x > 1.

Letm = n + 1. Re-write equation (1) as

Bt b}{n—‘l
ax 7 = y_l—-a.

Now argue as in the case m = n to conclude that m < C9

This completes the proof of theorem 1.

Proof of theorem 2.
‘' We shall choose, later, an cffectively computable absolute
constant C satisfying 0 < C < 1.

T o~ Mao .C. Then | x—v ! < Fl Hen. e, by theorem

1. we see that m is bounded by an effectively computable
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number depending only on F,. Now the assertion of theorem 2
follows from (1), since (a, b) = 1.
Case 11 :

F1 < (log z)c. Then, by (3), observe that

§

Ix—yl<(logz)C<logz<max (27, z*%).

Now apply theorem 1| to conclude that m is bounded by an
effectively computable absolute constant C10 dTet2 <mg C10
be given.Denote by C1 0 CIZ’ ’CIG effectively computable
positive numbers dep:zading only on m. We may assume that
min (x,y) > C 1 with Cll sufficiently large, otherwise the

assertion of theorem 2 follows from (1) and (a,b) = 1. Then
equation (1) impliesthat m = norm = n + 1.

If x=y, then a # b and equation (1) implies that

xn(axm~n—~b) =a—->b
which, since n > 1, is not possible if C11 is sufficiently large.

Thus we may assume that x = y,

Re-write equation (1) as
( LU ( “n® )
*\ 4 = d

m

whare

= 1 ey

Xx_—1' M =3_7

Pm(X) =
and d is the greatest common divisor of Pm (x) and P_ (y). Thus

-] B
Pm (x)d < b < 2x,



Put

P - e2'm/m P - c21ti/n

m 0 s K = Q(Pm' Pn)'

For -a prime p dividing d, let ordp d) = zxp. Let  bea

prime ideal in the ring of integers of K dividing p. Then §
divides an idea)

§

t
11) [x -y — Pm 1 Pn

]
for some positive integers r < m and s < n,
Put

@ == e£ﬂ1/6’ T]_ = {6565}’1.2 = {¢2»64}'

Suppose that (11) is a zero ideal. Then, since x = y and
l<r<m J<s<n we see that |x—y! =1 Then

2%r pL 1] . f2mr . f 27s
005 (”—' = &1 + cos ( ), sin (—"): sin '"'*").
m n . m n

These cquations imply that either an ET P;S T

r 2

T s .
or Pm € T2. Pn € Tl' Thus m = n+1, since m and n are

divisible by 3. Therefore m=n. Then m is even, since m is
divisible by 6. If x—y = I, then equation (1) with m=n

implies that x = y-+1 divides a(xmﬁl—%... +1). Therefore x

divides a, which is not possible, since a < x. Similarly if
y—x=1 and m even, equation (1) with m=n has no solution.
Thus we may assume that (11) is a non-zero ideal.

Put
€ = (2m2 ) J
Then, since £ divides a non-7zero ideal {I1). we obtain by
taking norms,
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, 1
P& C12 {log x)°.

a —-C
Infact either dp < C13 or p 13 divides a non-zero
ideal of the form (11). Therefore ‘
a C

pP < (logn) M

Hence we conclude ¢ < x% which, together with - (10),
implies that

m~1

X < Pm (x) < 2x3/2.

Then, since m > 2, we conclude that x <;C‘5. Then

y < 2% <.2C15A Further, by {1} and {a, b) = !, we see that

max (@, b) < Cl 6 This completes the proof of theorem 2.

Proof of Theorem 3. o
We may assume that m = n, otherwise equation (4) has no
solution, since X # y. Denote by C17 \ C18 . C22 effectively

computable positive numbers depending only on the -greatest
prime factorof x (y — x). Ppt y — x = k. Then it follows
from equation (4) and (x, y) = 1 that k divides

e TR | W 9
Thus, for a prime p dividing k, we have

s Im-n| N
d_(k d -1).
orp()<orp(x )

Now we apply an estimate of van der Poorten [4] on p - adic
linear forms in logarithms to obtaln

' . 2
ordp (k)<C”(}ogim+ni + joglogx )™ .



Thus
log 1kiI « CIS (log I m+n | + log log x)z.

By lemma 1, we have
max (m,n) = C19 (log z)4.

Therefore

U2 loglkl « C20 (log log z)z.

Now we apply theorem 1 to conclude that max (m, n) < C2l .
If max (x, y) > G,z with C22 sufficiently large, then it follows
L

from (12) and (4) that m=n. This is not possible, since x = y.
This completes the proof of theorem 3.

Proof of theorem 4.
Suppose that the assumptions of theorem 4 are satisfied.

Denote by C )3 C2 4 ...effectively computable positive numbers

depending only on a, b and F2. By lemma 1 and (5) we have
(13) m < C23( {log x) (log log x) )2.
In view of (13) and (5), we may assume that max (x,y) > C:24

with C2 4 sufficiently large. Then we use inequality (9) to

conclude that equation (1) implies that m = n. Therefore we
may assume that a > b, otherwise x = y and equation (1) with
m = n has no solution. Then, by again applying (9), we see
from (5) and (13) that

a -1
C25< log b l < C26 (log log x)
which implies that x & C27 . Hence, by (5) and (13), we

conclude that max (m, X, y) < 028 . This completes the proof

of theorem 4.
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