ON THE EQUATION

$$
a\left(x^{m}-1\right) /(x-1)=b\left(y^{n}-1\right) /(y-1)(I 1)
$$

By

T. N. SHOREY

§ 1. Let $m>1, n>1, x>1, y>1$ and a, b with $(a, b)=1$ be positive integers satisfying $a(y-1) \neq b(x-1)$. This equation of Goormaghtigh arose from the question whether an integer has all the digits identically equal in their expansions to two distinct bases. It follows from Baker's effective version [1] of Thue's theorem [6] that the equation

$$
\begin{equation*}
a^{\frac{x^{m}-1}{x-1}}=b^{y^{n}-1} \frac{y-1}{x-1} \tag{1}
\end{equation*}
$$

implies that max (n, n) is bounded by an effectively computable number depending only on a, b, x and y. Further Balasubramanian and the author [3] applied the theory of linear forms in logarithms to generalise this result by showing that equation (1) implies that max $(a, b, x, y, m, n$) is bounded by an effectively computable number depending only on the greatest prime factor of $a b x y$. In this paper, we apply the theory of linear forms in logarithms to obtain the following generalisations. We shall always write $z=\max (x, y)$.

Theorem 1 .

Let $0<v<1$ und $\mathrm{F}>1$. If positive integers $\mathrm{m}>\mathrm{a}>1$; $\mathrm{x}>1, \mathrm{y}>1$, a and b with $\mathrm{a}<\mathrm{x}, \mathrm{b}<\mathrm{y}, \mathrm{a}(\mathrm{y}-1)=\mathrm{b}(\mathrm{x}-1)$ and

$$
\begin{equation*}
|x-y| \leq \max \left(1, t^{\theta}\right) \tag{2}
\end{equation*}
$$

satisfy (1), then m is bounded by an effectively computable number depending only on θ and F .

For an account of earlier results in the direction of equation (1), see [3]. We combine theorem 1 with an elementary argument to obtain the following result.

Thearem 2.

Let $\mathrm{F}_{1}>1$. There exists an effectively computable absolute constant $\mathbf{C}>0$ and an effectively computable number $\mathrm{C}_{1}>0$ depending only on F_{1} such that equation (1) in positive integers $\mathrm{m}>\mathrm{n}>1, \mathrm{~m}>2, \mathrm{x}>1, \mathrm{y}>1$, a and b with $(\mathrm{a}, \mathrm{b})=1, \mathrm{a}<\mathrm{x}, \mathrm{b}<\mathrm{y}, \mathrm{a}(\mathrm{y}-1) \neq \mathrm{b}(\mathrm{x}-1)$ and

$$
\begin{equation*}
|x-y|<\max \left(F_{i},(\log z)^{G}\right) \tag{3}
\end{equation*}
$$

implies that

$$
\max (m, n, x, y, a, b)<C_{i} .
$$

Combining theorem 1 with lemma 1 and an estimate on p-adic linear forms in logarithms, we have

Theorem 3.

$$
\text { If } \mathrm{m}>1, \mathrm{n}>1, \mathrm{x}>1 \text { and } \mathrm{y}>1 \text { with }(\mathrm{x}, \mathrm{y})=1
$$ satiafy

$$
\begin{equation*}
\frac{x^{m}-1}{x-1}=\frac{y^{n}-1}{y-1} \tag{4}
\end{equation*}
$$

then

$$
\max (\mathrm{m}, \mathrm{n}, \mathrm{x}, \mathrm{y})<\mathrm{C}_{2}
$$

where $\mathbf{G}_{2}>0$ is an effectively computable number depending only on the greatest prime factor of $x(y-x)$.

If a and b are fixed, the restriction (3) in theorem 2 can be relaxed considerably.

Theorem 4.

Let a and b be positive integers. Let $\mathrm{F}_{2}>1$. There exists an effectively computable number $\mathbf{C}_{3}>0$ depending only on a, b and F_{2} such that equation (i) in positive intogers $\mathrm{m}>\mathrm{n}>1$, $\mathrm{x}>1, \mathrm{y}>1$ with $\mathrm{a}(\mathrm{y}-1) \neq \mathrm{b}(\mathrm{x}-1)$ and

$$
\begin{equation*}
|x-y|<F_{2} z /(\log z)^{2}(\log \log z)^{3} \tag{5}
\end{equation*}
$$

implies that

$$
\max (\mathrm{m}, \mathrm{n}, \mathrm{x}, \mathrm{y})<\mathrm{C}_{3} .
$$

82. The proof of these results depend on the following application of a theorem of Baker [2] on linear forms in logarithms.

Lemma 1.
Let $\mathrm{F}_{3}>$ 1. Let $\mathrm{m}, \mathrm{n}, \mathrm{x}>1, \mathrm{y}>1, \mathrm{a}<\mathrm{F}_{3} \mathrm{x}$, and $\mathrm{b}<\mathrm{F}_{3} \mathrm{y}$ with $\mathrm{a}(\mathrm{y}-1) \neq \mathrm{b}(\mathrm{x}-1)$ satisfy (1). Put $\mathrm{z}=\max (\mathrm{x}, \mathrm{y})$ and $z_{1}=\min (x, y)$.

Then

$$
\max (m, n) \leqslant C_{4}(\log z)^{3}(\log \log z)^{2} /\left(\log z_{1}\right)
$$

where $C_{4}>0$ is an effectively computable number depending only on F_{3}.

Proof of Lemma 1.
We may assume that in $>n$. Denote by $C_{1}>0$ and $\boldsymbol{E}_{2}>0$ effectively computable numbers depending only on F_{3}.

By equation (1), we have

$$
\begin{equation*}
0 \neq\left|\frac{a x^{m}}{x-1}-\frac{b y^{n}}{y-1}\right|<C_{1} \tag{6}
\end{equation*}
$$

By an estimate of Baker [2], the left hand side of inequality (6) exceeds $x^{m} \exp \left(-C_{2}(\log m)(\log z)^{3}(\log \log z)\right)$.

Now the lemma follows immediately by combining these estimates.

Proof of theorem 1.

Denote by $\mathrm{C}_{3}, \mathbf{C}_{4}, \ldots, \mathrm{C}_{9}$ effectively computable positive numbers depending only on θ and F. Suppose that the assumptions of theorem I are satisfied. Then, by lemma 1 and (2), we have

$$
\begin{equation*}
\mathrm{m} \leq C_{3}(\log x)^{3} \tag{7}
\end{equation*}
$$

In view of (7) and (2), we may assume that

$$
\begin{equation*}
\min (x, y)>C_{4} \tag{8}
\end{equation*}
$$

with C_{4} sufficiently large. Further, by (1), we have

$$
\begin{align*}
& a x^{m-1}<b y^{n}\left(1+\frac{2}{y}\right), \\
& b y^{n-1}<a x^{m-1}\left(1+\frac{2}{x}\right) \tag{9}
\end{align*}
$$

Now it follows from (9), (2), (7) and (8) that either $m=a$ or $m=n+1$.

Let $m=n$. It follows from (9), (:) and (7) that

$$
\left|\log \frac{a}{b}\right|<C_{5} x^{-1+\theta}(\log x)^{3}
$$

Further, by (2', we have

$$
\max \left(\left|\log \frac{x}{y}\right|,\left|\log \left(\frac{x-1}{y-1}\right)\right|\right)<c_{6} x^{-1+\theta}
$$

Consequently

$$
\left|\log \frac{a(y-1)}{b(x-1)}\right|<\left(C_{5}+C_{6}\right) x^{-1+\theta}(\log x)^{3}
$$

Now it follows from an estimate of Waldschmidt [7] or Ramachandra and the author [5] (in the latter reference, the arguments allow to prove the estimate without the restriction on the multiplicative independence of α_{1} and α_{2}) on linear forms in logarithms that the left hand side of inequality (6), with $\mathrm{m}=\mathrm{n}$ and $\mathrm{F}_{3}=1$, exceeds $\mathrm{x}^{\mathrm{m}-\mathrm{C}_{7}}$.

Thus, by (6), $x^{m-C_{7}}<C_{1}$ which implies that $m<C_{8}$, since $x>1$.

Let $m=n+1$. $\operatorname{Re}-w r i t e$ equation (1) as

$$
a x \frac{x^{n}-1}{x-1}=b \frac{y^{n}-1}{y-1}-a
$$

Now argue as in the case $m=n$ to conclude that $m<C_{9}$. This completes the proof of theorem 1 .

Proof of theorem 2.

We shall choose, later, an effectively computable absolute constant C satisfying $0<\mathrm{C}<1$.

Case I :

$$
\Gamma_{1}=\log _{\overline{\mathcal{Z}} ;} \mathrm{C} \text {. Then }: x-y:<F_{1} \text { Hen. e, hy theorem }
$$

1 . we see that m is bounded by an effectively computable
number depending only on F_{1}. Now the assertion of theorem 2 follows from (1), since $(a, b)=1$.

Case 1I:

$$
\begin{aligned}
& F_{1}<(\log z) C \text { Then, by (3), observe that } \\
& |x-y|<(\log z)^{C}<\log z<\max \left(27, z^{\frac{1}{2}}\right) .
\end{aligned}
$$

Now apply theorem 1 to conslude that m is bounded by an effectively computable absolute constant C_{10}. Let $2<\mathrm{m}<\mathrm{C}_{10}$ be given. Denote by $\mathrm{C}_{11}, \mathrm{C}_{12}, \ldots \ldots, \mathrm{C}_{16}$ effectively computable positive numbers depzndicg only on m. We may assume that $\min (x, y)>C_{11}$ with C_{11} sufficiently large, otherwise the assertion of theorem 2 follows from (1) and $(a, b)=1$. Then equation (1) implies that $m=n$ or $m=n+1$.

If $x=y$, then $a \neq b$ and equation (1) implies that

$$
x^{n}\left(a x^{m-n}-b\right)=a-b
$$

which, since $n>1$, is not possible if C_{11} is sufficiently large. Thus we may assume that $\mathrm{x} \neq \mathrm{y}$.

Re-write equation (1) as

$$
a\left(\frac{P_{m}(x)}{d}\right)=b\left(\frac{P_{n}(y)}{d}\right)
$$

where

$$
P_{m}(X)=\frac{X^{m}-1}{X-1}, \quad P_{n}(Y)=\frac{Y^{n}-1}{Y-1}
$$

and d is the greatest common divisor of $P_{m}(x)$ and $P_{n}(y)$. Thus

$$
P_{m}(x) d^{-1}<b<2 x
$$

Fut

$$
P_{m}=e^{2 \pi i / m}, P_{n}=e^{2 \pi i / n}, K=Q\left(P_{m}, P_{n}\right)
$$

For a prime p dividing d, let ord $_{p}(d)=\alpha_{p}$. Let \wp be a prime ideal in the ring of integers of K dividing p. Then $\wp 0$ divides an ideal

$$
\begin{equation*}
\left[x-y-P_{m}^{r}+P_{n}^{s}\right] \tag{11}
\end{equation*}
$$

for some positive integers $\mathrm{r}<\mathrm{m}$ and $\mathrm{s}<\mathrm{n}$.
Put

$$
\sigma=e^{2 \pi i / 6}, \mathrm{~T}_{1}=\left\{\sigma, \sigma^{5}\right\}, \mathrm{T}_{2}=\left\{\sigma^{2}, \sigma^{4}\right\} .
$$

Suppose that (11) is a zero ideal. Then, since $x \neq y$ and $1<\mathrm{r}<\mathrm{m}, \quad \mathrm{J} \leqslant \mathrm{s}<\mathrm{n}$, we see that $|\mathrm{x}-\mathrm{y}|=1$. Then $\cos \left(\frac{2 \pi r}{m}\right)= \pm 1+\cos \left(\frac{2 \pi s}{n}\right), \sin \left(\frac{2 \pi r}{m}\right)=\sin \left(\frac{2 \pi s}{n}\right)$.

These equations imply that either $\rho_{m}^{r} \varepsilon T_{1}, P_{n}^{s} \varepsilon T_{2}$ or $P_{m}^{r} \varepsilon T_{2}, P_{n}^{s} \in T_{1}$. Thus $m \neq n+1$, since m and n are divisible by 3. Therefore $m=n$. Then m is even, since m is divisible by 6. If $x-y=1$, then equation (1) with $m=n$ implies that $\mathrm{x}=\mathrm{y}+1$ divides $\mathrm{a}\left(\mathrm{x}^{\mathrm{m}-1}+\ldots+1\right)$. Therefore x divides a, which is not possible, since $a<x$. Similarly if $y-x=1$ and m even, equation (1) with $m=n$ has no solution. Thus we may assume that (11) is a non-zero ideal.

Put

$$
\epsilon^{\prime}=\left(2 m^{2}\right)^{-1}
$$

Then, since 80 divides a non-zero ideal (11), we obtain by taking norms,

$$
\mathrm{p}<\mathrm{C}_{12}(\log \mathrm{x})^{\frac{1}{2}} .
$$

Infact either $a_{\mathrm{p}}<\mathrm{C}_{13}$ or $\wp^{a_{\mathrm{p}}-\mathrm{C}_{13}}$. divides a non-zero ideal of the form (11). Therefore

$$
{ }_{p^{a}}{ }^{p}<(\log x)^{C_{14}} .
$$

Hence we conclude $q<x^{\frac{1}{2}}$ which, together with (10), implies that

$$
\mathrm{x}^{\mathrm{m}-1}<\mathrm{P}_{\mathrm{m}}(\mathrm{x})<2 \mathrm{x}^{3 / 2}
$$

Then, since $m>2$, we conclude that $x \leqslant C_{15}$. Then $\mathrm{y}<2 \mathrm{x}<2 \mathrm{C}_{15}$. Further, by (1) and $(\mathrm{a}, \mathrm{b})=1$, we see that $\max (\mathrm{a}, \mathrm{b}) \leqslant \mathrm{C}_{16}$. This completes the proof of theorem 2 .

Proof of Theorem 3.

We may assume that $m \neq n$, otherwise equation (4) has no solution, since $x \neq y$. Denote by $C_{17}, C_{18}, \ldots, C_{22}$ effectively computable positlve numbers depending only on the greatest prime factor of $x(y-x)$. Put $y-x=k$. Then it follows from equation (4) and (x, y) $=1$ that k divides

$$
\left(x^{|m-n|}-1\right) /(x-1)
$$

Thus, for a prime p dividing k, we have

$$
\operatorname{ord}_{p}(k)<\operatorname{ord}_{p}\left(x^{|m-n|}-1\right)
$$

Now we apply an estimate of van der Poorten [4] on p-adic linear forms in logarithms to obtain

$$
\operatorname{ord}_{p}(k)<C_{17}(\log i m+n i+\operatorname{iog} \operatorname{iog} x)^{2}
$$

Thus

$$
\log |k| \leqslant C_{18}(\log |m+n|+\log \log x)^{2}
$$

By lemma 1, we have

$$
\max (m, n) \leq C_{19}(\log z)^{4}
$$

Therefore

$$
\begin{equation*}
\log |k| \leqslant C_{20}(\log \log z)^{2} \tag{12}
\end{equation*}
$$

Now we apply theorem 1 to conclude that $\max (m, n) \approx C_{21}$. If $\max (x, y)>\boldsymbol{C}_{22}$ with \mathbf{C}_{22} sufficiently large, then it follows from (12) and (4) that $m=n$. This is not possible, since $x \neq y$. This completes the proof of theorem 3.

Proof of theorem 4.

Suppose that the assumptions of theorem 4 are satisfied. Denote by $\mathrm{C}_{23}, \mathrm{C}_{24}$, ..effectively computable positive numbers depending only on a, b and F_{2}. By lemma 1 and (5) we have

$$
\begin{equation*}
m \leqslant C_{23}((\log x)(\log \log x))^{2} \tag{13}
\end{equation*}
$$

In view of (13) and (5), we may assume that $\max (x, y)>C_{24}$ with C_{24} sufficiently large. Then we use inequality (9) to conclude that equation (1) implies that $m=n$. Therefore we may assume that $a \neq b$, otherwise $x \neq y$ and equation (1) with $\mathrm{m}=\mathrm{n}$ has no solution. Then, by again applying (9), we see from (5) and (13) that

$$
\mathrm{C}_{25}<\left|\log \frac{\mathrm{a}}{\mathrm{~b}}\right|<\mathrm{C}_{26}(\log \log \mathrm{x})^{-1}
$$

which implies that $\mathrm{x}<\mathrm{C}_{27}$. Hence, by (5) and (13), we conclude that $\max (\mathrm{m}, \mathrm{x}, \mathrm{y}) \leqslant \mathrm{C}_{28}$. This completes the proof of theorem 4.

References

1. A. Baker, Contributions to the theory of Diophantine equations 1: On the representation of integers by binary forms, Phil. Trans. Roy. Soc. London, A 263 (1968), 173-208.
2. A. Baker, The theory of linear forms in logarithms, Transcendence theory: Advances and applications, Academic Press, London and New York (1977), 1-27.
3. R. Balasubramanian and T. N. Shorey, On the equation $a\left(x^{m}-1\right) /(x-1)=b\left(y^{n}-1\right) /(y-1), M a t h$. Scand. 46 (1980), 177-182.
4. A. J. Van der Poorten, Linear forms in logarithms in the p-adic case, Transcendence theory: Advances and applications, Academic Press, London and New York (1977), 29-57.
5. K. Ramachandra and T. N. Shorey, On gaps between numbers with a large prime factor, Acta Arlth. 24 (1973), 99-111.
6. A. Thue, Über Annaherungswerte algebraischer Zahlen, J. reine angew. Math. 135 (1909), 284-305.
7. M. Waldschmidt, A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257-283.

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Rombay 400005 (India)

