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A REMARK ON ((1 +it) 
K. RAMACHANDRA 

§1. INTRODUCTION. 

It is well-known that ((a+ it) f 0 for u ~ 1. Let us consider lo_q ((1 +it) 
for t :;:._ 1000. The object of this note is to prove the following theorem. 

THEOREM. LetT:;:._ 1000. Put X= Exp( 10~0T0!0r0; r)· Consider any set 
of disjoint open intervals I each of length } all contained in the interval 
T :; t ~ T + eX. Let < be any positive constant not exceeding 1. Then with 
the exception of K intervals .T (where K depend.• only on<) we have 

!log ((1 +it) !:S dog log T. 

REMARK 1. This note has its origin in the concluding ;esult in the 
Appendix to [1]. 

REMARK 2. The proof depends on the inequalities I a+ I)-'" 12
:;:.. 0 and 

I ai +I)-"' j2 :;:._ 0, where a is any real number and a runs over a finite set 

" of distinct real numbers. By replacing I)-'" by x(p).L_)-'"' where xis a 

residue class character we can work out the analogues or"the theorem stated 
above for log L(1 +it, x), where L(s, x) denotes the £-function defined with 
respect to x. In this case we can (instead of T :; t :::; T + ex) consider for 
example the interval 0 :; t :; 1. However we reserve these analogues and 
other generalisations to number fields and so on for another paper. 

REMARK 3. Letting a run over complex numbers a+ ifl with• fJ $ flo = 
(log T)-"" where J.L is a constant> ~'we can prove the following result . Let 
< be a constant satisfying 0 < E < 1. Let T 2: To(J<, E). Let X be as in the 
theorem and I as in the theorem. Let J = [1- f3o, oo) x I be the Cartesian 
product of the a interval [1 - [30 , oo) and the t interval I. Then with the 
exception of K rectangles J (where K depends only on J< and<) we have, 
for sin J 

I log ((s) I~ dog log T. 
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We postpone details of this result and refinements to a later paper. * We 
can take Po= A( log T)-"(log log T)-2" where 1-' = ~ and A is any positive 
ce>nstant. 

§ ~· PROOF OF THE THEOREM. We begin by remarking that in the 
course of the proof we give in some ways better results for I log I ((1 +it) II 
and I arg((1 +it) I . We combine these two results to get an upper bound for 
I log ((1 + it) I . Throughout this section k will be a fixed positive integer; 
a's will denote k distinct real numbers satisfying T :<:; a :<:; T +eX. We write 
Y = Exp(10 10(log T)~(log log T)10). Here A = 1 if we assume the trivial 
zero-free region rT ~ 1- 10~1 and A= ~ if we assume the Vinogradov zero­
free region rT 2 1- (log t)'''(l~ log t)''', (t ~ lOOO);p will denote a prime and 
a a real constant to be chosen later. We prove the theorem by a series of 
lemmas. 

LEMMA 1. We haue, 

0 :SI a+ 2..:>-ia 12= a 2 + k + 2al:.:Re(p-'") + L L p-i(<>-<>') (1) 
a ;I: a' 

and 

0 ~~ ai + LP-ia 12= a2 + k + 2a2::)m(p-'") + L L p-i(<>-a') (2) 

PROOF. Trivial. 

LEMMA 2. Let 

and 
S3 = LP-i(n-,')-le- f .Then 

p 

n"Fo' 

0 :s (a2 + k)Sl + 2al:Re(Sz) + L L s3. 

PROOF. Follows from the first part of Lemma 1. 

LEMMA 3. We have 

sl =log logy+ 0(1). 
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PROOF. Using 

e-f{:5~ forp~Y 
= 1 + 0( y) for p :5 Y 

the lemma follows on using the well-known result L ~ =log logY+ 0(1). 
p~Y 

LEMMA 4. We have, 

S2 =log ((1 + ia) + 0(1). (5) 

PROOF. Since, a~ ~~the prime powers contribute 0(1) to the series for 
log ((3), we have 

1 1 . S, = 
2

-·: log ({1 +~a+ w)Y"'f(w)dw + 0{1). 
11"~ Re(w)=2 

{6) 

Put L = 2(1og T)c- 1 or 2(log T) 213(log log T)113c-1 . We ass\IDI.e the zero 
free: region a ;::: 1 - t, I t I :5 2T (which comes from the two zero-free regions 
already referred to) . By a simple application of the Borel-Caratheodory 
theorem (see p.282 of(2]; see alsop. 174 of (3]) we have log((.,) = O((log T) 2 ) 

in a ;::: 1- i£, T- (log T) 2 :::; t :::; T +ex+ (log T)2 . (In fact we can get better 
estimates, but we do not need these). We deform the Contour Re{w) = 2 as 
follows. Let o = i£, Q1 = 2- ioo, Q2 = 2- i(T- (log T)2) , Q3 = -o- i(T­
(log T)2), Q4 = -o+i(T+ex +(log T)2). Q5 = 2+i(T+ex +(log T)2), Q6 = 
2 + ioo. We deform the Contour Rc(w) = 2 to be the path formed by the 
straight line segments joining the points Q1, Q2, Q3, Q4, Qs, Q6 in this order. 
The pole w = 0 gives the residue log ((1 + ia). Since f(w) = O{e- IIrnwl) 
and y 6 > (log T)30 , Lemma 4 follows by taking the upper bound for the 
integrals along the new path, obtained by replacing the integrand by its 
absolute value. 

LEMMA 5. Let r = a ~ a'. Then, we have, 

(a) Sa =log ((1 + ir) + 0(1) , if I r 1:::: (log T)10
; (7) 

{b) I s3 I~ log log z + 0{ 1) + 0{ IT II~ z) othenuise, where z is any number 
satisfying Exp(IOO(log log T)2 ) ~ Z :::; Y. {8) 

PROOF. The part (a) follows by an argument similar to that of Lemma 
4. We prove (b) as follows. By using the inequalities used in the proof of 
Lemma 3 we have 

SJ= LP-iT-1+0{1)= LP-iT-!+ L P-iT-l+O(l) , =SdSs+0{1). 
p~Y p~Z Z<p~Y 
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say. 

Clearly I S4 I~ log log Z + 0(1), and 

Ss = J: u-•.--1d'K(u) =I, + I2 

where 
I

1 
= fy u-i.--l~ and h = fy u-•.--1dE(u) 

lz log u lz 
where E(u) = 'K(u)- j 2" r!:u· Using the mean value theorem for integrals 

we see that h = 0( 1.-11~ .?. ) . Now 

I2 u-iT-1 E(u)J~ + JJ (ir + 1)~-i.-- 2 E(u)du 

0(1) + O((log T) 10 JJ u-le-2,;;;;;--;;du) 

by using the fact that E(u) = O(t£e_2..,n.g;;). This completes the proof of 
(b). 

LEMMA 6. Let 100(log log T)2 ~ X ~ logY, Z = eX , and x - 1 ~~ r ~ ~ 
ex . Then 

0 ~ (a2 + k)log logY+ 2al:Re(log ((1 + ia)) + O(log X). (9) 

PROOF. Follows from Lemmas 2 to 5 on observing that log ((1 +it) = 
O(log log t) for t ? 100. 

We now come to the proof of the theorem. 

LEMMA 7. In the theorem coruider the set of alternate intervals. Out 
of these fix k - 1 interoal..s I for which minimum of Re( log (( l + ia)) are 
successively as small as possible. If J1 denotes Re(log ((1 + ia)) for a in 
any one of the remaining intervaLs then, we have with a > 0, 

0 ~ (a2 + k)log logY+ 2akJ1 + O(log X) 

and so 
1 k 

J1 ~-
2
k (a+ ~)log logY+ O(log X) . 

COROLLARY. With the exception of2(k -1) intervals, we have, 

J1 ~ ( -k-112 -£)log lo.IJ Y 

5 

(10) 

(11) 

(12) 



forT 2 To(k,c). 

PROOF. Lemma 7 follows from Lemma 6 and the Corollary follows by 
taking a = k112 and considering the other set of alternate intervals also. 

LEMMA 8. In the theorem consider one 4et of alternate intervals. Out of 
these fix k - I intervals I for which the maximum of Re( log (( 1 + io:)} are 
successively as large as possible. If J2 denotes Re(log ((1 + ia)) for o: in 
any one of the remai'"!ing interuals then, we have, with a < 0, 

~2akJ2 -:;: (a2 + k)log logY+ O(log X) (13) 

and so 
1 k 

Jz ~ U( -a- ;;)log logY+ O(log X). (14} 

COROLLARY. With the exception of2(k -1) intervals, we have, 

h :S (k-112 +£)log logY (15) 

forT ~ To(k, E). 

PROOF. Lenuna 8 follows from Lerruna 6, and the Corollary follows by 
taking a == - k112 and considering the other set of alternate intervals also. 

LEMMA 9. With the e:z:ception of 4(k- 1) interval3 I we have, 

I Re(log ((1 +it)) !:S (k- 1
/

2 + E)log logY 

forT~- To(k,e). 

PROOF. Follows from the Corollaries to Lemmas 7 and 8. 

LEMMA 10. With the exception of 4(k- 1) interval3 I we have, 

I Im(log ((1 +it)) Is (k- 112 +£)log logY 

forT 2 To(k,E). 

(16) 

(17) 

PROOF. Just as we deduced Lemma 9 starting from the inequality (1) by 
a sequence of lemmas, we can deduce Lemma 10 from the inequality (2). 

LEMMA 11. With the e:z:ception of 8(k- 1) inte7'11al3 I we have, 

. (2 
!log ((1 + 1t) Is ( V;; + e)log logY (18) 

forT 2 To(k.c). 
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PROOF. Follows from Lemmas 9 and 10. 

Since k is an ar':Jitrary positive integer constant and £ any positive con­
stant, Lenuna 11 completes the proof of the theorem stated in the introduc­
tion . 
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