A REMARK ON $\zeta(1+i t)$

K. RAMACHANDRA

§1. INTRODUCTION.

It is well-known that $\zeta(\sigma+i t) \neq 0$ for $\sigma \geq 1$. Let us consider $\log \zeta(1+i t)$ for $t \geq 1000$. The object of this note is to prove the following theorem.
THEOREM. Let $T \geq 1000$. Put $X=E x p\left(\frac{\log \log T}{\log \log \log T}\right)$. Consider any set of disjoint open intervals I each of length $\frac{1}{X}$ all contained in the interval $T \leq t \leq T+e^{X}$. Let ε be any positive constant not exceeding 1 . Then with the exception of K intervals I (where K depends only on ε) we have

* $|\log \zeta(1+i t)| \leq \varepsilon \log \log T$.

REMARK 1. This note has its origin in the concluding result in the Appendix to [1].
REMARK 2. The proof depends on the inequalities $\left|a+\sum_{\alpha} p^{-i \alpha}\right|^{2} \geq 0$ and $\left|a i+\sum_{\alpha} p^{-i \alpha}\right|^{2} \geq 0$, where a is any real nurnber and α runs over a finite set of distinct real numbers. By replacing $\sum_{\alpha} p^{-i \alpha}$ by $\chi(p) \sum_{\alpha} p^{-i \alpha}$ where χ is a residue class character we can work out the analogues of the theorem stated above for $\log L(1+i t, \chi)$, where $L(s, \chi)$ denotes the L-function defined with respect to χ. In this case we can (instead of $T \leq t \leq T+e^{X}$) consider for example the interval $0 \leq t \leq 1$. However we reserve these analogues and ather generalisations to mumber fields and so on for another paper.
REMARK 3. Letting α run over complex numbers $\alpha+i \beta$ with* $\beta \leq \beta_{0}=$ $(\log T)^{-\mu}$ where μ is a constant $>\frac{2}{3}$, we can prove the following result. Let ε be a constant satisfying $0<\varepsilon<1$. Let $T \geq T_{0}(\mu, \varepsilon)$. Let X be as in the theorem and I as in the theorem. Let $J=\left[1-\beta_{0}, \infty\right) \times I$ be the Cartesian product of the σ interval $\left(1-\beta_{0}, \infty\right)$ and the t interval I. Then with the exception of K rectangles J (where K depends only on μ and ε) we have, for s in J

$$
|\log \zeta(s)| \leq \varepsilon \log \log T
$$

We postpone details of this result and refinements to a later paper. * We can take $\beta_{0}=A(\log T)^{-\mu}(\log \log T)^{-2 \mu}$ where $\mu=\frac{2}{3}$ and A is any positive constant.
§2. PROOF OF THE THEOREM. We begin by remarking that in the course of the proof we give in some ways better results for $|\log | \zeta(1+i t)|\mid$ and $|\arg \zeta(1+i t)|$. We combine these two results to get an upper bound for $|\log \zeta(1+i t)|$. Throughout this section k will be a fixed positive integer; α 's will denote k distinct real numbers satisfying $T \leq \alpha \leq T+e^{X}$. We write $Y=E x p\left(10^{10}(\log T)^{\lambda}(\log \log T)^{10}\right)$. Here $\lambda=1$ if we assume the trivial zero-free region $\sigma \geq 1-\frac{c}{T_{0}-\frac{t}{t}}$ and $\lambda=\frac{2}{3}$ if we assume the Vinogradov zerofree region $\sigma \geq 1-\frac{10 g t}{(\log t)^{2 / 3}(\log \log t)^{1 / 3}},(t \geq 1000) ; p$ will denote a prime and a a real constant to be chosen later. We prove the theorern by a series of lemmas.
LEMMA 1. We have,

$$
\begin{equation*}
0 \leq\left|a+\sum_{\alpha} p^{-i \alpha}\right|^{2}=a^{2}+k+2 a \sum_{\alpha} R e\left(p^{-i \alpha}\right)+\sum \sum_{\alpha \neq \alpha^{\prime}} p^{-i\left(\alpha-\alpha^{\prime}\right)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq\left|a i+\sum_{\alpha} p^{-i \alpha}\right|^{2}=a^{2}+k+2 a \sum_{\alpha} I m\left(p^{-i \alpha}\right)+\sum \sum_{\alpha \neq \alpha^{\prime}} p^{-i\left(x-\alpha^{\prime}\right)} \tag{2}
\end{equation*}
$$

PROOF. Trivial.
LEMMA 2. Let

$$
S_{1}=\sum_{p}^{1} \frac{1}{p} e^{-\frac{p}{r}}: S_{2}=\sum_{p} p^{-i \alpha-1} e^{-\frac{p}{y}}
$$

and

$$
\begin{gather*}
S_{3}=\sum_{p} p^{-i\left(\alpha-\alpha^{\prime}\right)-1} e^{-\frac{k}{v}} \cdot T h e n \\
0 \leq\left(a^{2}+k\right) S_{1}+2 a \sum_{a} \operatorname{Re}\left(S_{2}\right)+\sum \sum_{\alpha \neq \alpha^{\prime}} S_{3} . \tag{3}
\end{gather*}
$$

PROOF. Follows from the first part of Lemma 1.
LEMMA 3. We have

$$
\begin{equation*}
S_{1}=\log \log Y+0(1) \tag{4}
\end{equation*}
$$

PROOF. Using

$$
e^{-\frac{P}{Y}} \begin{cases}\leq \frac{Y}{p} & \text { for } p \geq Y \\ =1+O\left(\frac{p}{Y}\right) & \text { for } p \leq Y\end{cases}
$$

the lemma follows on using the well-known result $\sum_{p \leq Y} \frac{1}{p}=\log \log Y+O(1)$.
LEMMA 4. We have,

$$
\begin{equation*}
S_{2}=\log \zeta(1+i a)+0(1) \tag{5}
\end{equation*}
$$

PROOF. Since, $\sigma \geq \frac{3}{4}$, the prime powers contribute $O(1)$ to the series for $\log \zeta(s)$, we have

$$
\begin{equation*}
S_{2}=\frac{1}{2 \pi i} \int_{R e(w)=2} \log \zeta(1+i \alpha+w) Y^{w} \Gamma(w) d w+0(1) . \tag{6}
\end{equation*}
$$

Put $L=2(\log T) c^{-1}$ or $2(\log T)^{2 / 3}(\log \log T)^{1 / 3} c^{-1}$. We assume the zero free-region $\sigma \geq 1-\frac{1}{L},|t| \leq 2 T$ (which comes from the two zero-free regions already referred to). By a simple application of the Borel-Carathéodory theorem (see p. 282 of [2]; see also p. 174 of [3]) we have $\log \zeta(s)=0\left((\log T)^{2}\right)$ in $\sigma \geq 1-\frac{1}{2 L}, T-(\log T)^{2} \leq t \leq T+e^{X}+(\log T)^{2}$. (In fact we can get better estimates, but we do not need these). We deform the Contour $\operatorname{Re}(w)=2$ as follows. Let $\delta=\frac{1}{2 L}, Q_{1}=2-i \infty, Q_{2}=2-i\left(T-(\log T)^{2}\right), Q_{3}=-\delta-i(T-$ $\left.(\log T)^{2}\right), Q_{4}=-\delta+i\left(T+e^{X}+(\log T)^{2}\right), Q_{5}=2+i\left(T+e^{X}+(\log T)^{2}\right), Q_{6}=$ $2+i \infty$. We deform the Contour $\operatorname{Rc}(w)=2$ to be the path formed by the straight line segments joining the points $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}$ in this order. The pole $w=0$ gives the residue $\log \zeta(1+i \alpha)$. Since $\Gamma(w)=0\left(e^{-|I m w|}\right)$ and $Y^{\delta}>(\log T)^{30}$, Lemma 4 follows by taking the upper bound for the integrals along the new path, obtained by replacing the integrand by its absolute value.
LEMMA 5. Let $\tau=\alpha-\alpha^{\prime}$. Then, we have,
(a) $S_{3}=\log \zeta(1+i \tau)+0(1)$, if $|\tau| \geq(\log T)^{10}$;
(b) $\left|S_{3}\right| \leq \log \log Z+0(1)+0\left(\frac{1}{T \mid \log Z}\right)$ otherwise, where Z is any number satisfying $\operatorname{Exp}\left(100(\log \log T)^{2}\right) \leq Z \leq Y$.

PROOF. The part (a) follows by an argument similar to that of Lemma 4. We prove (b) as follows. By using the inequalities used in the proof of Lemma 3 we have
$S_{3}=\sum_{p \leq Y} p^{-i \tau-1}+0(1)=\sum_{p \leq Z} p^{-i \tau-1}+\sum_{Z<p \leq Y} p^{-i \tau-1}+0(1),=S_{4}+S_{5}+0(1)$.
say.
Clearly $\left|S_{4}\right| \leq \log \log Z+0(1)$, and

$$
S_{5}=\int_{Z}^{Y} u^{-i \tau-1} d \pi(u)=I_{1}+I_{2}
$$

where

$$
I_{1}=\int_{Z}^{Y} u^{-i \tau-1} \frac{d u}{\log u} \text { and } I_{2}=\int_{Z}^{Y} u^{-i r-1} d E(u)
$$

where $E(u)=\pi(u)-\int_{2}^{u} \frac{d u}{\log u}$. Using the mean value theorem for integrals we see that $I_{1}=0\left(\frac{1}{[7 \log 2}\right)$. Now

$$
\begin{aligned}
I_{2} & \left.=u^{-i r-1} E(u)\right]_{Z}^{Y}+\int_{Z}^{Y}(i \tau+1) u_{4}^{-i r-2} E(u) d u \\
& =0(1)+0\left((\log T)^{10} \int_{Z}^{Y} u^{-1} e^{-2 \sqrt{\log u}} d u\right)
\end{aligned}
$$

by using the fact that $E(u)=0\left(u e^{-2 \sqrt{l o g} u}\right)$. This completes the proof of (b).

LEMMA 6. Let $100(\log \log T)^{2} \leq X \leq \log Y, Z=e^{X}$, and $X^{-1} \leq|\tau| \leq$ e^{x}. Then

$$
\begin{equation*}
0 \leq\left(a^{2}+k\right) \log \log Y+2 a \sum_{a} R e(\log \zeta(1+i \alpha))+0(\log X) \tag{9}
\end{equation*}
$$

PROOF. Follows from Lemmas 2 to 5 on observing that $\log \zeta(1+i t)=$ $0(\log \log t)$ for $t \geq 100$.

We now come to the proof of the theorem.
LEMMA 7. In the theorem consider the set of alternate intervals. Out of these fix $k-1$ intervals I for which minimum of $\operatorname{Re}(\log \zeta(1+i \alpha))$ are successively as small as possible. If J_{1} denotes $\operatorname{Re}(\log \zeta(1+i \alpha))$ for α in any one of the remaining intervals then, we have with $a>0$,

$$
\begin{equation*}
0 \leq\left(a^{2}+k\right) \log \log Y+2 a k J_{1}+0(\log X) \tag{10}
\end{equation*}
$$

and so

$$
\begin{equation*}
J_{1} \geq-\frac{1}{2 k}\left(a+\frac{k}{a}\right) \log \log Y+0(\log X) . \tag{11}
\end{equation*}
$$

COROLLARY. With the exception of $2(k-1)$ intervals, we have,

$$
\begin{equation*}
J_{1} \geq\left(-k^{-1 / 2}-\varepsilon\right) \log \log Y \tag{12}
\end{equation*}
$$

for $T \geq T_{0}(k, \varepsilon)$.
PROOF. Lemma 7 follows from Lemma 6 and the Corollary follows by taking $a=k^{1 / 2}$ and considering the other set of alternate intervals also.

LEMMA 8. In the theorem consider one set of alternate intervals. Out of these fix $k-1$ intervals I for which the maximum of $\operatorname{Re}(\log \zeta(1+i \alpha))$ are successively as large as possible. If J_{2} denotes $R e(\log \zeta(1+i \alpha))$ for α in any one of the remaining intervals then, we have, with $a<0$,

$$
\begin{equation*}
-2 a k J_{2} \leq\left(a^{2}+k\right) \log \log Y+0(\log X) \tag{13}
\end{equation*}
$$

and so

$$
\begin{equation*}
J_{2} \leq \frac{1}{2 k}\left(-a-\frac{k}{a}\right) \log \log Y+0(\log X) \tag{14}
\end{equation*}
$$

COROLLARY. With the exception of $2(k-1)$ intervals, we have ${ }_{1}$

$$
\begin{equation*}
J_{2} \leq\left(k^{-1 / 2}+\epsilon\right) \log \log Y \tag{15}
\end{equation*}
$$

for $T \geq T_{0}(k, \varepsilon)$.
PROOF. Lemma 8 follows from Lemma 6, and the Corollary follows by taking $a=-k^{1 / 2}$ and considering the other set of alternate intervals also.
LEMMA 9. With the exception of $4(k-1)$ intervals I we have,

$$
\begin{equation*}
|\operatorname{Re}(\log \zeta(1+i t))| \leq\left(k^{-1 / 2}+\varepsilon\right) \log \log Y \tag{16}
\end{equation*}
$$

for $T \geq T_{0}(k, \varepsilon)$.
PROOF. Follows from the Corollaries to Lemmas 7 and 8.
LEMMA 10. With the exception of $4(k-1)$ intervals I we have,

$$
\begin{equation*}
|\operatorname{Im}(\log \zeta(1+i t))| \leq\left(k^{-1 / 2}+\epsilon\right) \log \log Y \tag{17}
\end{equation*}
$$

for $T \geq T_{0}(k, \varepsilon)$.
PROOF. Just as we deduced Lemma 9 starting from the inequality (1) by a sequence of lemmas, we can deduce Lemma 10 from the inequality (2).
LEMMA 11. With the exception of $8(k-1)$ intervals I we have,

$$
\begin{equation*}
|\log \zeta(1+i t)| \leq\left(\sqrt{\frac{2}{k}}+\varepsilon\right) \log \log Y \tag{18}
\end{equation*}
$$

for $T \geq T_{0}(k, \varepsilon)$.

PROOF. Follows from Lemmas 9 and 10.
Since k is an arbitrary positive integer constant and ε any positive constant, Lemma 11 completes the proof of the theorem stated in the introduction.

ACKNOWLEDGEMENT.

I had explained the results of this paper nearly an year ago to my colleague Professor R. Balasubramanian. I am thankful to him for checking the manuscript and encouragement.

REFERENCES

(1) K. Ramachandra, Mean-value of the Riemann zeia-function and other Remarks-II, International conference on analy tic number theory (Vinogradov's 90 th birthday celebrations), Steklov Institute, Moscow (14th to 19th September 1981); Trudy Mats Inst. Steklova 163 (1984), 200204; Proceedings of the Steklov Institute of Mathematics (1985) Issue 4, p. 233-237.
(2) E.C. Titchmarsh, The theory of the Riemann zeta-function, Oxford, Clarendon Press 1951.
(3) E.C. Titchmarsh, The theory of functions, Oxford University Press, (1939).

ADDRESS OF THE AUTHOR

Professor K. Ramachandra
Tata Institute of Fundamental Research
Homi Bhatha Road
Colaba
Bombay 400005
INDIA

