Hardy-Ramanujan Journal
Vol. 11 (1988) 1-12.

SOME LOCAL CONVEXITY THEOREMS FOR THE ZETA-FUNCTION-LIKE ANALYTIC FUNCTIONS

R. Balasubramanian and K. Ramachandra

§1. INTRODUCTION. Suppose $f(s)$ is an analytic function of $s=\sigma+i t$ defined in the rectangle $R=\left\{a \leq \sigma \leq b, t_{0}-H \leq t \leq t_{0}+H\right\}$ where a and b are constants with $a<b$. We assume that $|f(s)| \leq M$ (with $M \geq 2$ sometimes we assume implicitly that M exceeds a large positive constant) throughout R. We are interested in the question of lower bounds for

$$
\begin{equation*}
I(\sigma)=\int_{|v| \leq H}\left|f\left(\sigma+i t_{0}+i v\right)\right|^{k} d v \tag{1}
\end{equation*}
$$

where $k>0$ is a real constant. The method we employ is very much related to the methods of our paper [1] in combination with the results in the appendix to [5]. Some of our results regarding (1) are improvements of some lemmas in Ivic's book [3] (see page 172 of this book). It should be mentioned that our results (though of some interest in themselves) do not give any new important applications except (5),(6) and (7). In § 2 we prove a general resuit on local-convexity from which the following theorem is a consequence. (All our constants will be effective and we do not state this fact every time).

THEOREM 1. Suppose there exists a constant d such that $a<d<b$ and that in $d \leq \sigma \leq b,|f(s)|$ is bounded below and above by β and β^{-1} where $\beta \leq 1$ is a positive constant, (it is enough to assume this condition for
$I(\sigma)$ with H replaced by an arbitrary quantity lying between $H / 2$ and H, in place of $|f(s)|$. Let $\varepsilon>0$ be any constant. Then for $H=D$ where D is a certain positive constant depending only on ε and other constants mentioned before, we have, for $a \leq \sigma \leq d$,

$$
\begin{equation*}
I(\sigma)>M^{-\epsilon} \tag{2}
\end{equation*}
$$

We next prove a δ-convexity theorem which is simply this.
THEOREM 2. Let A_{0}, σ_{1} and δ be any three constants satisfying $A_{0}>$ $0, a<\sigma_{1}<b$ and $\delta>0$ and let $H=\delta$. Then we have, with $\sigma=\sigma_{1}+$ $(\log M)^{-1}$, the inequality

$$
\begin{equation*}
\left|f\left(\sigma_{1}+i t_{0}\right)\right|^{k}<M^{-\Lambda_{0}}+I(\sigma) \log M \tag{3}
\end{equation*}
$$

Also, we have,

$$
\int_{|u| \leq \delta / 2}\left|f\left(\sigma_{1}+i t_{0}+i u\right)\right|^{k} d u \ll M^{-A_{0}}+I(\sigma) \log \log M
$$

we have also similar results with $\sigma^{*}=\sigma_{1}-(\log M)^{-1}$ in place of σ.
The third of our theorems is
THEOREM 3. Let σ_{1} be a constant satisfying $a<\sigma_{1}<b$ and H be a large constant depending on other constants. Then we have (with any large positive constant A_{0} and any constant $k>0$)

$$
\begin{equation*}
\left|f\left(\sigma_{1}+i t_{0}\right)\right|^{k} \ll M^{-A_{0}}+I\left(\sigma_{1}\right) \log M \tag{*}
\end{equation*}
$$

and because of Theorem 1, we have, (assuming on $f(s)$ the conditions of Theorem 1) the inequality

$$
\begin{equation*}
\left|f\left(\sigma_{1}+i t_{0}\right)\right|^{k} \ll I\left(\sigma_{1}\right) \log M \tag{*}
\end{equation*}
$$

For a remark on equations marked with an asterisk see the post-script at the end.

Theorems 1 to 3 have immediate applications to $\zeta(s)$ and L-functions we can take for example $f(s)=\zeta(s)$ and we obtain the following theorem as a corollary. We state only two applications of each of these theorems.
THEOREM 4. Let k and ε be any two positive constants, A_{0} any large
positive constant, σ a constant satisfying $1 / 2 \leq \sigma \leq 1$. Then, we have, for $t_{0} \geq 10$ and D a certain large positive constant,

$$
\begin{equation*}
\int_{i v \mid \leq D}\left|\zeta\left(\sigma+i t_{0}+i v\right)\right|^{k} d v>t_{0}^{-\epsilon} . \tag{5}
\end{equation*}
$$

Combining this with the functional equation we obtain,

$$
\begin{equation*}
\int_{|v| \leq D}\left|\zeta\left(\sigma-1 / 2+i t_{0}+i v\right)\right|^{k} d v \gg t_{0}^{k(1-\sigma)-\epsilon .} \tag{6}
\end{equation*}
$$

Also

$$
\begin{equation*}
\int_{|v| \leq D}\left|\zeta\left(1+i t_{0}+i v\right)\right|^{k} d v>\left(l \log t_{0}\right)^{-\varepsilon} \tag{7}
\end{equation*}
$$

and here we can (if we assume Riemann Hypothesis) replace RHS by $\left(\log \log t_{0}\right)^{-\varepsilon}$

Next, we have

$$
\begin{equation*}
\left|\zeta\left(\sigma+i t_{0}\right)\right|^{k} \ll t_{0}^{-\Lambda_{0}}+\left(l \log t_{0}\right) \int_{|v| \leq \delta}\left|\zeta\left(\sigma+\left(\log _{0}\right)^{-1}+i t_{0}+i v\right)\right|^{k} d v \tag{8}
\end{equation*}
$$

and the same inequality holds if we replace on the $R H S\left(\log t_{0}\right)^{-1}$ by $-\left(\log _{0}\right)^{-1}$. Finally

$$
\begin{equation*}
\left|\zeta\left(\sigma+i t_{0}\right)\right|^{k} \ll\left(l o g t_{0}\right) \int_{|v| \leq D}\left|\zeta\left(\sigma+i t_{0}+i v\right)\right|^{k} d v \tag{9}
\end{equation*}
$$

Next we can apply our method to other problems such as proving that the large values of $|\zeta(s)|$ are "rare" in a certain sense providing an alternative approach to some results of A. Ivic [4]. More specifically we prove
THEOREM 5. Let α_{0} be a small positive constant and let t_{0} exceed a sufficiently large positive constant and $\alpha_{0} \geq \delta \geq\left(\operatorname{logt}_{0}^{-3 / 4}\right.$. Let $s_{1}=1+$ $i t_{0}, s_{0}=\sigma_{0}+i t_{1}$ where $0 \leq 1-\sigma_{0} \leq \delta$ and $\left|t_{1}-t_{0}\right| \leq \delta$. Suppose that for $\left|s_{1}-s\right| \leq 20 \delta$ we have $\zeta(s) \neq 0$. Then

$$
\begin{equation*}
\left|\zeta\left(\sigma_{0}+i t_{1}\right)\right| \ll \operatorname{Exp}\left(Z^{1-\sigma_{0}}(\log \log Z+1)\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
Z=\operatorname{Exp}\left(\frac{10}{\delta} \log \log t_{0}+\frac{13}{\delta}\right) \tag{11}
\end{equation*}
$$

REMARK. This theorem can be generalised very much by our method for example to ζ-functions and L-functions of number fields.

Before concluding this section we make a few remarks. In a series of papers the second of us started with the kernel function $\operatorname{Exp}\left((\operatorname{Sinz})^{2}\right)$ and made extensive use of this kernel proving a number of convexity results over short intervals. Some of them are (with $H>\log \log M$ with a suitable implied constant) that we can replace the RHS in (2) by H. Also he proved (H subject to the same condition) things like [6]

$$
\frac{1}{H} \int_{|v| \leq H}\left|\zeta\left(\frac{1}{2}+i t_{0}+i v\right)\right|^{2 k} d v \gg(\log H)^{k^{2}}
$$

where $k>0$ is any rational constant. (With $k=\frac{1}{2}$ this was first proved by Ramachandra [7]. Next Heath-Brown proved this with $k>0$ any rational constant and $H=t_{0}$ [2]. Next Ramachandra extended Heath-Brown's result to $t_{0} \geq H>\log \log t_{0}$. For positive irrational constants k Ramachandra proved [8], subject to the same conditions on H, the result

$$
\frac{1}{H} \int_{|v| \leq H}\left|\zeta\left(\frac{1}{2}+i t_{0}+i v\right)\right|^{2 k} d v \gg\left(\frac{\log H}{\log \log H}\right)^{k^{2}} .
$$

Later he proved a stronger result [9] where RHS here was replaced by a bigger function depending on the simple continued fraction expansion of k).

§ 2. A GENERAL RESULT ON LOCAL CONVEXITY.

First of all a remark about the real constant $k>0$. We will (for technical simplicity) assume that k is an integer. To prove the general case we have to proceed as we do in this section and to use the Riemann mapping theorem (with zero cancelling factors for a certain rectangle i.e. $(\theta(w))^{k}$ suitably) as given in the appendix to [5] (see Lemmas 2,3 and 4 of the appendix). If k is an integer we can consider $f(s)$ in place of $(f(s))^{k}$ without loss of generality.

Let $a \leq \sigma_{0}<\sigma_{1}<\sigma_{2} \leq b, 0<D \leq H, s_{1}=\sigma_{1}+i t_{0}$ and let P denote the contour $P_{1} P_{2} P_{3} P_{4} P_{1}$ where $P_{1}=-\left(\sigma_{1}-\sigma_{0}\right)-i D, P_{2}=\sigma_{2}-\sigma_{1}-i D, P_{3}=$ $\sigma_{2}-\sigma_{1}+i D$ and $P_{4}=-\left(\sigma_{1}-\sigma_{0}\right)+i D$. Let $w=u+i v$ be a complex variable. We have

$$
\begin{equation*}
2 \pi i f\left(s_{1}\right)=\int_{P} f\left(s_{1}+w\right) X^{v} \frac{d w}{w} \text { where } X>0 . \tag{12}
\end{equation*}
$$

We put

$$
\begin{equation*}
X=E x p\left(Y+u_{1}+u_{2}+\ldots+u_{r}\right) \tag{13}
\end{equation*}
$$

where $Y \geq 0$ and $\left(u_{1}, u_{2}, \ldots, u_{r}\right)$ is any point belonging to the r-dimensional cube $[0, C] \times[0, C] \times \ldots \times[0, C], C$ being a positive constant to be chosen later. The contour P consists of the two vertical lines $-V_{0}$ and V_{2} respectively given by $P_{4} P_{1}$ and $P_{2} P_{3}$ and two horizontal lines $Q_{1},-Q_{2}$ respectively given by $P_{1} P_{2}$ and $P_{3} P_{4}$. Averaging the equation (12) over the cube we get

$$
\begin{equation*}
2 \pi i f\left(s_{1}\right)=C^{-r} \int_{0}^{C} \cdots \int_{0}^{C} \int_{P} f\left(s_{1}+w\right) \frac{X^{w}}{\approx} d w d u_{1} \ldots d u_{r} \tag{14}
\end{equation*}
$$

Over V_{0} and V_{2} we do not do the averaging. But over Q_{1} and Q_{2} we do average and replace the integrand by its absolute value. We obtain

$$
\begin{aligned}
& \left|2 \pi f\left(s_{1}\right)\right| \leq \operatorname{Exp}\left(-Y\left(\sigma_{1}-\sigma_{0}\right)\right) \int_{V_{0}}\left|f\left(s_{1}+w\right) \frac{d w}{w}\right| \\
& +E x p\left((Y+C r)\left(\sigma_{2}-\sigma_{1}\right)\right) \int_{V_{2}}\left|f\left(s_{1}+w\right) \frac{d w}{w}\right| \\
& +\frac{2^{r+1}}{C^{r} D^{F}} E x p\left((Y+C r)\left(\sigma_{2}-\sigma_{1}\right)\right)\left(m a x_{w \in Q_{1} \cup Q_{2}}\left|f\left(s_{1}+w\right)\right|\right)\left(\sigma_{2}-\sigma_{0}\right)
\end{aligned}
$$

and thus

$$
\begin{align*}
& \left|2 \pi f\left(s_{1}\right)\right| \leq\left(E x p\left(-Y\left(\sigma_{1}-\sigma_{0}\right)\right)\right) I_{0} \\
& +\left(\operatorname{Exp}\left(\operatorname{Cr}\left(\sigma_{2}-\sigma_{1}\right)\right)\right)\left(\operatorname{Exp}\left(Y\left(\sigma_{2}-\sigma_{1}\right)\right)\right)\left(I_{2}+M^{-A}\right) \\
& +2 M\left(\sigma_{2}-\sigma_{0}\right)\left(\operatorname{Exp}\left(Y\left(\sigma_{2}-\sigma_{1}\right)\right)\right)\left(\frac{2 \operatorname{Exp}\left(C\left(\sigma_{2}-\sigma_{1}\right)\right)}{C D}\right)^{r} \tag{15}
\end{align*}
$$

where A is any positive constant and

$$
\begin{equation*}
I_{0}=\int_{V_{0}}\left|f\left(s_{1}+w\right) \frac{d w}{w}\right| \text { and } I_{2}=\int_{V_{2}}\left|f\left(s_{1}+w\right) \frac{d w}{w}\right| \tag{16}
\end{equation*}
$$

Choosing Y to equalise the first two terms on the RHS of (15), i.e. choose Y by

$$
\operatorname{Exp}\left(Y\left(\sigma_{2}-\sigma_{0}\right)\right)=\left(\frac{I_{0}}{I_{2}+M^{-A}}\right) \operatorname{Exp}\left(-\operatorname{Cr}\left(\sigma_{2}-\sigma_{1}\right)\right)
$$

i.e.
$\operatorname{Exp}\left(Y\left(\sigma_{2}-\sigma_{1}\right)\right)=\left(\frac{I_{0}}{I_{2}+M^{-A}}\right)^{\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}} \operatorname{Exp}\left(-\operatorname{Cr}\left(\sigma_{2}-\sigma_{1}\right)^{2}\left(\sigma_{2}-\sigma_{0}\right)^{-1}\right)$
and noting that

$$
\left(\sigma_{2}-\sigma_{1}\right)-\left(\sigma_{2}-\sigma_{1}\right)^{2}\left(\sigma_{2}-\sigma_{0}\right)^{-1}=\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{1}-\sigma_{0}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}
$$

we obtain

$$
\begin{aligned}
& \left|2 \pi f\left(s_{1}\right)\right| \leq 2\left\{I_{0}^{\sigma_{2}-\sigma_{1}}\left(I_{2}+M^{-A}\right)^{\sigma_{1}-\sigma_{0}}\right\}^{\left(\sigma_{2}-\sigma_{0}\right)^{-1}}\left\{E x p\left(\frac{C\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{1}-\sigma_{0}\right)}{\sigma_{2}-\sigma_{0}}\right)\right\}^{r} \\
& +2 M\left(\sigma_{2}-\sigma_{0}\right)\left(\frac{I_{0}}{I_{2}+M^{-\Lambda}}\right)^{\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}}\left\{\frac{2}{C D} \operatorname{Exp}\left(\frac{C\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{1}-\sigma_{0}\right)}{\sigma_{2}-\sigma_{0}}\right)\right\}^{r} .(17)
\end{aligned}
$$

Collecting we state the following convexity theorem.
THEOREM 6. Suppose $f(s)$ is an analytic function of $s=\sigma+$ it defined in the rectangle $R:\left\{a \leq \sigma \leq b, t_{0}-H \leq t \leq t_{0}+H\right\}$ where a and b are constants with $a<b$. Let the maximum of $|f(s)|$ taken over R be $\leq M$. Let $a \leq \sigma_{0}<\sigma_{1}<\sigma_{2} \leq b$ and let A be any large positive constant. Let r be any positive integer, $0<D \leq H$ and $s_{1}=\sigma_{1}+i t_{0}$. Then for any positive constant C, we have,

$$
\begin{align*}
& \left|2 \pi f\left(s_{1}\right)\right| \leq 2\left\{I_{0}^{\sigma_{2}-\sigma_{1}}\left(I_{2}+M^{-A}\right)^{\sigma_{1}-\sigma_{0}}\right\}^{\left(\sigma_{2}-\sigma_{0}\right)^{-1}}\left\{\operatorname{Exp}\left(\frac{C\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{1}-\sigma_{0}\right)}{\sigma_{2}-\sigma_{0}}\right)\right\}^{r} \\
& +2 M^{A+2}\left(\sigma_{2}-\sigma_{0}\right)\left(2\left(1+\left(\log \left(\frac{D}{\sigma_{1}-\sigma_{\theta}}\right)\right)^{*}\right)^{\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}} \times\right. \\
& \times\left\{\frac{2}{C D} E x p\left(\frac{C\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{1}-\sigma_{0}\right)}{\sigma_{2}-\sigma_{8}}\right)\right\}^{r} \tag{18}
\end{align*}
$$

where

$$
\begin{equation*}
I_{0}=\int_{|v| \leq D}\left|f\left(\sigma_{0}+i t_{0}+i v\right) \frac{d v}{\sigma_{0}-\sigma_{1}+i v}\right| \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\int_{|v| \leq D}\left|f\left(\sigma_{2}+i t_{0}+i v\right) \frac{d v}{\sigma_{2}-\sigma_{1}+i v}\right|, \tag{20}
\end{equation*}
$$

and we have written $(x)^{*}=\max (0, x)$ for any real number x.
PROOF. We have used $I_{2}+M^{-A} \geq M^{-A}$ and $\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1} \leq 1$ and if $D \geq \sigma_{1}-\sigma_{0}$,

$$
I_{0} \leq M \int_{|v| \leq D}\left|\frac{d v}{\sigma_{0}-\sigma_{1}+i v}\right| \leq 2 M\left\{\int_{0}^{\sigma_{1}-\sigma_{0}} \frac{d v}{\sigma_{1}-\sigma_{0}}+\int_{\sigma_{1}-\sigma_{0}}^{D} \frac{d v}{v}\right\} .
$$

This completes the proof of Theorem 6.
In (18) we replace t_{0} by $t_{0}+\alpha$ and integrate with respect to α in the range $|\alpha| \leq D$, where now $2 D \leq H$. LHS is now $I\left(\sigma_{1}\right)$ defined by

$$
\begin{equation*}
J\left(\sigma_{1}\right)=2 \pi \int_{|\alpha| \leq D}\left|f\left(\sigma_{1}+i t_{0}+i \alpha\right)\right| d \alpha \tag{21}
\end{equation*}
$$

Next

$$
\begin{aligned}
& \int_{|\alpha| \leq D}\left(I_{0}^{\sigma_{2}-\sigma_{1}}\left(I_{2}+M^{-A}\right)^{\sigma_{1}-\sigma_{0}}\right)^{\left(\sigma_{2}-\sigma_{0}\right)^{-1}} \\
& \leq\left(\int_{|\alpha| \leq D} I_{0} d \alpha\right)^{\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}}\left(\int_{|\alpha| \leq D}\left(I_{2}+M^{-A}\right) d \alpha\right)^{\left(\sigma_{1}-\sigma_{0}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}}
\end{aligned}
$$

Now

$$
\begin{align*}
& \int_{|\alpha| \leq D} I_{0} d \alpha=\int_{|v| \leq D} \int_{|\alpha| \leq D}\left|f\left(\sigma_{0}+i t_{0}+i \alpha+i v\right)_{\frac{d \alpha}{\sigma_{0}-\sigma_{1}+i v}}\right| \\
& \leq\left(\int_{|v| \leq 2 D}\left|f\left(\sigma_{0}+i t_{0}+i v\right)\right| d v\right) \int_{|v| \leq D}\left|\frac{d v}{\sigma_{0}-\sigma_{1}+i v}\right| \\
& \leq 2\left(1+\left(\log \left(\frac{D}{\sigma_{1}-\sigma_{0}}\right)\right)^{*}\right) I\left(\sigma_{0}\right) \tag{22}
\end{align*}
$$

where

$$
\begin{equation*}
I\left(\sigma_{0}\right)=\int_{|v| \leq 2 D}\left|f\left(\sigma_{0}+i t_{0}+i v\right)\right| d v \tag{23}
\end{equation*}
$$

Proceeding similarly, with

$$
\begin{equation*}
I\left(\sigma_{2}\right)=\int_{|v| \leq 2 D}\left|f\left(\sigma_{2}+i t_{0}+i v\right)\right| d v \tag{24}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{|\alpha| \leq D}\left(I_{2}+M^{-A}\right) d \alpha \leq 2 D M^{-A}+2\left(1+\left(\log \left(\frac{D}{\sigma_{2}-\sigma_{1}}\right)\right)^{*}\right) I\left(\sigma_{2}\right) \tag{25}
\end{equation*}
$$

Thus we have the following corollary.
[HEOREM 7. In addition to the conditions of Theorem 6, let $2 D \leq H$ ind let $J\left(\sigma_{1}\right), I\left(\sigma_{0}\right)$ and $I\left(\sigma_{2}\right)$ be defined by (21),(23) and (24). Then, we iave,

$$
\begin{align*}
& 2 \pi J\left(\sigma_{1}\right) \leq 4\left\{I\left(\sigma_{0}\right)\left(1+\left(\log \left(\frac{D}{\sigma_{1}-\sigma_{0}}\right)\right)^{*}\right)\right\}^{\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}} \times \\
& \times\left\{I\left(\sigma_{2}\right)\left(1+\left(\log \left(\frac{D}{\sigma_{2}-\sigma_{1}}\right)\right)^{*}\right)+M^{-A}\right\}^{\left(\sigma_{1}-\sigma_{0}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}} \times \\
& \times\left\{\operatorname{Exp}\left(\frac{C\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{1}-\sigma_{0}\right)}{\sigma_{2}-\sigma_{0}}\right)\right\}^{r}+4 M^{A+2}\left(\sigma_{2}-\sigma_{0}\right)\left\{1+\left(\log \left(\frac{D}{\sigma_{1}-\sigma_{0}}\right)\right)^{*}\right\}^{\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}} \times \\
& \times\left\{\frac{2}{C D} \operatorname{Exp}\left(\frac{C\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{1}-\sigma_{0}\right)}{\sigma_{2}-\sigma_{0}}\right)\right\}^{r} . \tag{26}
\end{align*}
$$

3. PROOF OF THEOREM 1. In Theorem 7 replace D by $D / 2$ and issume that $J\left(\sigma_{1}\right)$ is bounded below (by $\frac{1}{2} \beta D$) and $I\left(\sigma_{2}\right)$ is bounded above) $\beta^{-1} D$ (these conditions are implied by the conditions of Theorem 1). Put $\gamma=1, r=[\varepsilon \log M]+1$ and $D=\operatorname{Exp}\left(\varepsilon^{-1} E\right)$ where E is a large constant. et σ_{0}, σ_{1} and σ_{2} be constants satisfying $a \leq \sigma=\sigma_{0}<\sigma_{1}<\sigma_{2} \leq b$. We see hat the second term on the RHS of (26) is $\leq M^{-1}$ so that

$$
\begin{align*}
& \frac{1}{2} \beta D \leq J\left(\sigma_{1}\right) \leq 4\left\{I\left(\sigma_{0}\right)\left(1+\left(\log \left(\frac{D}{\sigma_{1}-\sigma_{0}}\right)\right)^{*}\right)\right\}^{\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{2}-\sigma_{0}\right)^{-1}} \times \\
& \times\left\{\beta^{-1} D\left(1+\left(\log \left(\frac{D}{\sigma_{2}-\sigma_{1}}\right)\right)^{*}\right)\right\}^{\left(\sigma_{1}-\sigma_{0}\right)\left(\sigma_{2}-\sigma_{\theta}\right)^{-1}}\left\{\operatorname{Exp}\left(\frac{\left(\sigma_{2}-\sigma_{1}\right)\left(\sigma_{1}-\sigma_{0}\right)}{\sigma_{2}-\sigma_{0}}\right)\right\}^{r} . \tag{27}
\end{align*}
$$

This proves Theorem 1.
§ 4. δ-CUNVEXITY AND PROOF OF THEOREM 2. In theorems 6 and 7 choose $\bar{y}=\delta\left(\delta\right.$ any positive constant), $\sigma_{2}-\sigma_{1}=(\log M)^{-1}, \sigma_{2}=$ $\sigma, \sigma_{0}=a, \Gamma=\{\log M\rceil, \mathbb{C}=$ a large constant times δ^{-1}. We obtain the first part of Theorem 2 namely (${ }^{\prime}$) and (3^{\prime}). To obtain the second part we argue as in the proof of T heorems 5 and 7 but now with

$$
\frac{1}{2 \pi i} \int f\left(s_{1}+w\right) X^{-w} \frac{d w}{w}
$$

along the same contour P with the same X as before (note X^{-w} in the present integrand). The resi of the details are similar.
§ 5. PROOR OF THEOREM 3. We follow closely the notation of § 2. We now put $\sigma_{0}=a, \sigma_{2}=b$. Now consider the integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{R e w=b-\sigma_{1},|I m w| \leq H} f\left(s_{1}+w\right) X^{-w} \frac{d w}{w} \tag{28}
\end{equation*}
$$

This is $O\left(M^{-\Lambda}\right)$ provided X exceeds a suitable power of M. On the other hand, the integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int f\left(s_{1}+w\right) X^{w} \frac{d w}{w} \tag{29}
\end{equation*}
$$

over the same path equals

$$
\begin{equation*}
f\left(s_{1}\right)+\frac{1}{2 \pi i}\left(\int_{H_{1}}+\int_{H_{2}}+\int_{V}\right) f\left(s_{1}+w\right) X^{w} \frac{d w}{w} \tag{30}
\end{equation*}
$$

where $s_{1}+w$ runs over the paths H_{1}, H_{2} and V where H_{1} and H_{2} are the horizontal sioies of R and V is the left vertical line boundary of R. (The contribution from V is $O\left(M^{-A}\right)$ if X is a large power of $\left.M\right)$. Hence

$$
\begin{equation*}
\frac{1}{2 \pi i} \int f\left(s_{1}+w\right)\left(X^{w}-X^{-w}\right) \frac{d w}{w} \tag{31}
\end{equation*}
$$

taken over the path in (28) (same as for (29) also) equals the integral (29) plus $O\left(M^{-A}\right)$. Now move the line of integration to $R e w=0$ and do the averaging as before writing $X=\operatorname{Exp}\left(Y+u_{1}+\ldots+u_{r}\right)$ and we are led to the proof of Theorem 3.
§ 6. ANOTHER APPLICATION OF OUR METHOD. In this section we prove Theorem 5 (our proof is quite general and goes through for zeta and L-functions of algebraic number fields and so on). We need from

Titchmarsh's book [10] (see § 5.5, pages 174-175) the following theorem (we state it in the notation of this book).
THEOREM 8 (BOREL-CARATHEODORY). Let $f(z)$ be analytic in $|z| \leq R$ and $M(r)$ denote the maximum of $|f(z)|$ in $|z| \leq r<R$. Let $A(R)$ denote the maximum of the real part of $f(z)$ on $|z|=R$. Then

$$
M(r) \leq \frac{2 r}{R-r} A(R)+\frac{R+r}{R-r}|f(0)|
$$

We now take $f(z)$ to be $\log \zeta\left(s_{1}+z\right)$. We will assume that t_{0} exceeds a large constant. It is not hard to prove that $\log \zeta\left(s_{1}\right)=O\left(\log \log t_{0}\right)$. Taking $R=$ $20 \delta, r=19 \delta$ we see that in $|z| \leq 19 \delta$ we have $\left|\log \zeta\left(s_{1}+z\right)\right| \leq 800 \delta \log t_{0}$. Let now $\left|t_{0}-t_{1}\right| \leq \delta$ and $1-\delta \leq \sigma_{0} \leq 1$. (We now use a notation not to be confused with the earlier one). Let $P_{1}=1+\frac{1}{2} i t_{0}, P_{2}=s_{1}-4 i \delta, P_{3}=$ $1-4 \delta+i t_{0}-4 i \delta, P_{4}=1-4 \delta+i t_{0}+4 i \delta, P_{5}=s_{1}+4 i \delta, P_{6}=1+2 i t_{0}$. Let P denote the contour $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{1}$. Put $X=\operatorname{Exp}\left(Y+u_{1}+u_{2}+\ldots+u_{r}\right)$ where (u_{1}, \ldots, u_{r}) is as before with the earlier notation. Averaging over the cube we have

$$
\begin{aligned}
& \left|\log \zeta\left(s_{0}\right)\right| \leq\left|\frac{1}{2 \pi i} \int \ldots \iint \log \zeta\left(s_{0}+w\right) \frac{X^{w}}{w} d w d u_{1} \ldots d u_{r}\right| C^{-r} \\
& +C^{-r} \int \ldots \int \sum_{p} \frac{1}{p^{* 0}} \operatorname{Exp}\left(-\frac{p}{X}\right) d u_{1} \ldots d u_{r}+10 .
\end{aligned}
$$

The contribution (to the integral involving $\zeta\left(s_{0}+w\right)$) from $P_{3} P_{4}$ has absolute value ≤ 10 if

$$
\operatorname{Exp}(Y \delta) \geq 8000 \log t_{0}
$$

To satisfy this we put $Y=\frac{1}{\delta}\left(\log \log t_{0}+13\right)$. The average over other parts of the same integral has absolute value

$$
\leq 800\left(\delta \log t_{0}\right)\left(\frac{2}{C \delta}\right)^{r} \operatorname{Exp}\left((Y+C r)\left(1-\sigma_{0}\right)\right)
$$

We put $C=\frac{9}{6}$ and $r=\left[\log \log t_{0}\right]$, so that this expression is

$$
\begin{aligned}
& \leq \varepsilon \operatorname{Exp}\left(\left(\frac{1}{6}\left(\log \log t_{0}+13\right)+\frac{9}{\delta} \log \log t_{0}\right)\left(1-\sigma_{0}\right)\right) \\
& =\varepsilon \operatorname{Exp}\left(\left(\frac{1-\sigma_{0}}{\delta}\right)\left(10 \log \log t_{0}+13\right)\right)
\end{aligned}
$$

The average of the sum over primes is

$$
\leq S=\sum_{p} p^{-\sigma_{0}} \operatorname{Exp}\left(-\frac{p}{Z}\right)
$$

where $Z=\operatorname{Exp}\left(\frac{1}{8}\left(10 \log \log t_{0}+13\right)\right)$, since $Z \geq$ maximum value of X during the averaging. Now

$$
S \leq \sum_{p \leq Z} p^{-\sigma_{0}}+\sum_{p>Z} Z p^{-1-\sigma_{0}}=S_{1}+S_{2} \text { say. }
$$

Here

$$
S_{1} \leq Z^{1-\sigma_{0}} \sum_{p \leq Z} \frac{1}{p} \text { and } S_{2} \leq \varepsilon Z^{1-\sigma_{0}}
$$

where $\varepsilon>0$ is an arbitrary constant. We have

$$
\sum_{p \leq Z} \frac{1}{p} \leq \log \log Z+\gamma-\sum_{p, m \geq 2}\left(m p^{m}\right)^{-1}+\varepsilon
$$

where $\varepsilon>0$ is an arbitrary constant (see [11], p.58, Equation (3.14.5)) and γ is the Euler's constant. Hence

$$
\left|\log \zeta\left(s_{0}\right)\right| \leq O(1)+\varepsilon Z^{1-\sigma_{0}}+Z^{1-\sigma_{s}}(\log \log Z+\gamma-\alpha+\varepsilon) \text { where } \alpha=\sum_{p, m \geq 2}\left(m p^{m}\right)
$$

Therefore

$$
\left|\zeta\left(s_{0}\right)\right|<E \operatorname{Exp}\left(Z^{1-\sigma_{0}}(\log \log Z+1)\right)
$$

This completes the proof of Theorem 5.
ACKNOWLEDGEMENT. This work was done while the authors met for a month in Ramanujan Institute, Madras. The authors are thankful to Professor K.S. Padmanabhan and Professor M.S. Rangachari for providing us a nice atmosphere for this work. Finally the authors are also thankful to Professor A. Ivic for encouragement.

If $\boldsymbol{k}>\mathbf{0}$ is an integer then by the method of $\S 5$ the following improvement of equation (3) can be proved under the only assumptions $0<\delta \leq 1$, $\left|f\left(s_{1}+w\right)\right| \leq M,(M \geq 6)$ in $|w| \leq 10 \delta$, and $\left|\sigma-\sigma_{1}\right| \leq \delta(\log M)^{-1}$. Then $I(\sigma) \log M$ on the RHS can be replaced by $\delta^{-1} I(\sigma) \log M$. The implied constant in < would then be independent of δ. Professor A. Ivic pointed out that the method of $\S 5$ allows one to take $H=1+\delta$ in Theorem 3. The authors then succeeded in proving the above improvement.

REFERENCES

[1] R. BALASUBRAMANIAN AND K. RAMACHANDRA, Some Problems of Analytic Number T'heory-II, Studia Sci. Math. Hungarica, 14 (1979), 193-202.
[2] D.R. HEATH-BROWN, Fractional moments of the Riemann zetafunction, J. London Math. Soc., 21 (1981), 65-78.
[3] A. IVIC', The Riemann zeta-function, John Wiley and Sons, Interscience Publication (1985).
[4] A.IVIC, Large values of some zeta-functions near the line $\sigma=1$, Hardy-Ramanujan J., 11 (1988), 1.3-29.
[5] K. RAMACHANDRA, A brief summary of some results in the Analytic Theory of Numbers-II, Lecture notes in Mathematics No.938, Springer-Verlag (1981), 106-122.
[6] K. RAMACHANDRA, Mean-value of the Riemann zeta-function and other remarks-I, Colloq. Math. Soc. János Bolyai, 34 (Topics in Number Theory, Budapest, Hungary (1981)), North Holland, Amsterdam (1984), 1317-1347.
[7] K. RAMACHANDRA, Some remarks on the mean-value of the Riemann zeta-function and other Dirichlet series-II, Hardy-Ramanujan J., 3 (1980), 1-24.
[8] K. BAMACHANDRA, Some remarks on the mean-value of the Riemann zeta-function and other Dirichlet series I, Hardy-Ramanujan J., 1 (1978), 1-15.
[9] K. RAMACHANDRA, Mean-value of the Riemann zeta-function and other remarks-III, Hardy-Ramanujan J., 6 (1983), 1-21.
[10] E.C. TITCHMARSH, Theory of functions, Oxford University Press (1952).
[11] E.C. TITCHMARSH, The theory of the Riemann zeta-function, Oxford University Press (1951).

ADDRESS OF THE AUTHORS

```
1.PROFESSOR R. BALASUBRAMANIAN
    (ON DEPUTATION FROM T.I.F.R.)
    MATSCIENCE, THARAMANI P.O.
    MADRAS 600 113 INDIA
2 .PROFESSOR K. RAMACHANDRA
    SCHOOL OF MATHEMATICS
    TATA INSTITUTE OF FUNDAMENTAL RESEARCH
    HOMI BHABHA ROAD
    BOMBAY 400 005
    INDIA
```

(MANUSCRIPT COMPLETED ON 11TH APRIL, 1989).

POST-SCRIPT. In all the equations marked with an asterisk there is no change if \boldsymbol{k} is an integer. But if \boldsymbol{k} is not an integer there will be a loss of a loglog factor. To see this we apply (3) and (3^{\prime}) with the last remark in Theorem 2. Thus if k is not an integer, we have for any constant σ in $a<\sigma<b$ (and 2δ in place of δ),

$$
|f(\sigma+i t)|^{k} M^{-A_{0}}+I(\sigma) \log M \log \log M .
$$

(But if k is an integer $\log \log M$ on RHS can be dropped provided in place of δ we choose a large constant). It will be nice if we can remove $\log \log M$ even if k is not an integer.
The reference $[8]$ is to be taken with the following.
K. RAMACHANDRA, Mean-value of the Riemann zeta-function and other remarks-II, International Conference on Analytic Number Theory (VINOGRADOV'S 90th BIRTHDAY CELEBRATIONS) STEKLOV INSTITUTE, MOSCOW, 14th-19th September (1981), Trudy Matz. Inst. Steklova 163 (1984), 200-204.

