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SOME LOCAL CONVEXITY THEOREMS FOR THE
ZETA-FUNCTION-LIKE ANALYTIC FUNCTIONS

R. Balasubramanian and K. Ramachandra

§ 1. INTRODUCTION. Suppose f(s) is an analytic function of s = o+ it
defined in the rectangle R = {a < ¢ < b,ip — H <t < tp + H} where a
and b are constants with a < b. We assume that | f(s) |< M (with M > 2
sometimes we assume implicitly that M exceeds a large positive constant)
throughout R. We are interested in the question of lower bounds for

1(0) = —/u'ungr | o + ito + iv) * dv (1)

where k& > 0 is a real constant. The method we employ is very much re-
lated to the methods of our paper [1] in combination with the results in
the appendix to [5]. Some of our results regarding (1) are improvements of
some lemmas in Ivié’s book [3] (see page 172 of this book). It should be
mentioned that our results (though of some interest in themselves) do not
give any new impaortant applications except (5),(6) and (7). In § 2 we prove
a general result on local-convexity from which the following theorem is &
consequence. (All our constants will be effective and we do not state this
fact every time).

THEOREM 1. Suppose there ezists a constant d such that a < d < b
and that ind < ¢ < b,| f(8) | is bounded below and above by B and f~!
where B < 1 is a positive consiant, (it is enough to assume this condition for
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I{c) with H replaced by an arbitrary quantity lying between H/2 and H, in
place of | f(s) |). Lete > 0 be any constani. Then for H = D where D isa
certain positive constant depending only on ¢ and other constants mentioned
before, we have, for a < o < d,

I{o) >» M~=. | (2)

We next prove a §-convexity theorem which is simply this.

THEOREM 2. Let Ag,01 and § be any three consiants satisfying Ay >
0,6 <oy <bandd > 0 and let H = §. Then we have, with o = o0, +

(logM)™1, the inequality
| flor + ito) [*€ M~4° 4 I(o)logM. (3)

Also, we have,
j}u _— | f(or + ito + iu) [* du € M~4* { I(0) loglog M. (3)

we have also similar results with 0* = oy — (log M)~ in place of 0.
The third of our theorems is

THEOREM 3. Let 01 be a constent satisfyinga < oy < b and H be a
large constant depending on other constants. Then we have (with any large
positive constant Ay and any consiant k > 0)

| flon + ito) I* &« M4 + I(01)logM (%)

and because of Theorem 1, we have, (assuming on f(s) the conditions of
Theorem 1) the ineguality

| flou + ito) [* < I{o1)logM. (»)
For a remark on equations marked with an asterisk see the post-script at
the end.

Theorems 1 to 3 have immediate applications to {(s) and L-functions
we can take for example f(s) = {(s) and we obtain the following theorem
as a corollary. We state only two applications of each of these theorems.

THEOREM 4. Let k and £ be any two positive constants, Ag any large
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positive constant, o a constant satisfying 1/2 < o < 1. Then, we have, for
to > 10 and D a certain large positive constant,

/Msn | ¢(o +ito+iv) I* dv > £5°. (5)
Combining this with the functional equation we obtain,
v/I l<D | — 1/2+ ito + iv) [* dv > 50—~ (6)
Also
fl P [ ¢(1 + ito + iv) |* dv > (logto)~* )

and here we can (if we assume Riemann Hypothesis) replace RHS by (loglogto)—¢

Nezt, we have
| (o + ito) [F 549 + (logto) /l | o+ togto)™ + it + i) do (8)

and the same inequality holds if we replace on the RHS (logto) ™! by —(logte)™!.
Finally '

| ¢(o + ito) [*< (logto) /.,,.m |¢(o +ito+iv) [Fdv.  (9)()

Next we can apply our method to other problems such as proving that the
large values of | {(s) | are “rare” in a certain sense providing an alternative
approach to some results of A. Ivi¢ [4]. More specifically we prove
THEOREM 5. Let ap be a small positive constant and let t; exceed a
sufficiently large positive constant and ag > § > (logty 34 Let 81 =14
#lg,30 = g9 + it; where 0 <1 — 09 < § and | t1 — o |< 8. Suppose that for
| 81 — 8 |< 208 we have ((s) # 0. Then

| {{oo + it1) |€ Ezp(Z*~"*(loglegZ + 1)) (10)

where 10 -
Z= Ezp(?loglogto + —'6'-) (11)

REMARK. This theorem can be generalised very much by our method for
example to {-functions and L-functions of number fields.
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Before concluding this section we make a few remarks. In a series of
papers the second of us started with the kernel function Ezp((Sinz)?) and
made extensive use of this kernel proving a number of convexity results over
short intervals. Some of them are (with H » loglog M with a suitable -
implied constant) that we can replace the RHS in (2) by H. Also he proved
(H subject to the same condition) things like [6]

1

1 1, .\ 12k k?
;- - | “5 + ity + iv) |** dv > (logH)

where k > 0 is any rational constant. (With k = 3 this was first proved by
Ramachandra [7]. Next Heath-Brown proved this with £ > 0 any rational
constant and H = ¢ [2]. Next Ramachandra extended Heath-Brown’s result
to tg > H » loglog ty. For positive irrational constants & Ramachandra
proved {8}, subject to the same conditions on H, the result

1
H Jyoi<u

1. log H
14 +ito +iv) P* do > (5 < Ll

oglog H
Later he proved a stronger result {9] where RHS here was replaced by a
bigger function depending on the simple continued fraction expansion of k).

§ 2. A GENERAL RESULT ON LOCAL CONVEXITY.

First of all a remark about the real constant k > 0. We will (for technical
simplicity) assume that k is an integer. To prove the general case we have to
proceed as we do in this section and to use the Riemann mapping theorem
(with zero cancelling factors for a certain rectangle i.e. (#(w))* suitably) as
given in the appendix to [5] (see Lemmas 2,3 and 4 of the appendix). If & is
an integer we can consider f(s) in place of ( f(s))* without loss of generality.

Leta< o9 <oy <03<b,0<D< H,s = 0o1+itp and let P denote the
contour P1P2P3P4P1 where P} = —(0‘1 - 0’0) - I'D,Pz =03 — 01 — iD,Ps =
o2 — oy + D and Py = —(0y — op) + iD. Let w = u + iv be a complex
variable. We have

2xif(s) = jp f(s1 + w)X"’gs- where X > 0. (12)

We put
X=Ezp(Y +u1+uz+ ..+ u) (13)
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where Y > 0 and (uy, ua, ..., 4, ) is any point belonging to the r-dimensional
cube [0,C]x[0,C]x...x[0, C], C being a positive constant to be chosen later.
The contour P consists of the two vertical lines —Vp and V; respectively given
by PP, and P2 Ps and two horizontal lines Q1,—Q3 respectively given by
P, P; and P3P,. Averaging the equation (12) over the cube we get

2xif(s1)=C" joc ./00 jp (s + w)%dw du;...du,. (14)

Over Vp and V3 we do not do the averaging. But over @; and Q3 we do
average and replace the integrand by its absolute value. We obtain

| 22 f(81) |< Ezp(-Y (01 — 00)) [y, | (81 + w)22 |
+Ezp((Y + Cr)(o2 — 1)) [y | f(a1 +w)52 |
+ e Ezp((Y + Cr)(03 — 01))(mazweqiuas | f(51+ w) |)(o2 — 00)
and thus
| 20 f(s1) I< (BEzp(-Y (o1 — a0) ) o
+H{Ezp(Cr(oz — 01)))(Ezp(Y (02 — 01))) (T2 + M~4)
+2M (o3 — 00)(Ezp(Y (0 — 01)))( 2 E2R(Clrz=crllyr (15)

where A is any positive constant and

o= [ 1 fer) sl min=[ [ fotrwiT]. (o)

Choosing Y to equalise the first two terms on the RHS of (15), i.e. choose
Y by

Bap(¥ (1 - o0)) = (5 =) Bap(~Crlos - 1))
ie.
Bap(¥ (01-01)) = (o )220 Bl ~Cr{os-on)(o3-00) )

and noting that

(02 ~ a1) — (02 — 1) (02 — 00) ! = (02 — o1 )(o1 — 00)(@2 — 7o)},
we obtain

I 2ﬂ'f(31) ls 2{13‘2—01 (I2 + M—A)ax—u'o}(an—a-o)—l {Ezp(C(o'g——o'l)(al —ayg) )},

o3 -0

+2M (o2 — a’o)(h__'_lh)(n—n}(n—ao)—l{C%Ezp( Cloz—ai){or—ag) ). (17)

a3—0op
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Collecting we state the following convexity theorem.

THEOREM 8. Suppose f(s) s an analytic function of s = o + it defined
in the rectangle R : {a < o < btg — H <t < tg+ H} where a and b are -
constants with a < b. Let the mazimum of | f(s) | taken over R be < M.
Leta < 00 < 0q1 <03 < bandlet A be any large positive consiant. Let r be
any positive integer, 0 < D < H and 81 = o1 + sto. Then for any positive
consiant C, we have,

| 22 £ (1) 1< 2T (B + M Ayi=oe}oroo) ™ { g Slrspullmmlyyy
+2MA (03 — 00)(2(1 + (log(=2-))* Yler—1)iez—o0) " «

1~
x { gy Exp(Loe-zillizoly)r . (18)

where

I = f | flon + ot el | (19)

jwl<D o0 — 01 + v

and

L= [ | flos+ito+in) & (20)

7= pi<D 4 o3 —o+iv'"

and we have written (z)* = maz(0,z) for any real number z.

PROOF. We haveused I, + M4 > M~4 and (03 — 01)(02 — 00) ' < 1
and if D > o1 — o9,

1—on D
o< M g___d_"__~_..|52M{[o 5 +j gy
jvi<b  0g — o1+ W 0 oy — O ovy—ap U

This completes the proof of Theorem 6.

In {18) we replace £, by £y + a and integrate with respect to o in the
range | a |< D, where now 2D < H. LHS is now I{o,) defined by

J(o) = 2% /M(D | f(or +ito + ia) | da. (21)

Next

Sajep(I3 ™" (I + M4 - 1) (e2—00)"!
< (ajep To da)fr=ona=stl™ (o p(fs + M~4)da)er—osdlea—eo) ™,
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Now
Jiatcp 1o 4@ = Jiyi<p flaicp | £(0 +ito +da + iv)fad |
< (Jui<ap | foo +ito + iv) | dv) fii<p | |
< 2(1 + (log(525))" ) (e0) (22)
where
I{oo) = /lvlsw | f(oo + ito + iv) | dv. (23)

Proceeding similarly, with
I(o —-—/ f(oa + itg + dv) | dv 24
(o2) }o]<2DI (o3 + itg + iv) | (24)

ve have

/' (T2 + M~4)do < 2DM~4 4 21+ (log( =)' M(e2).  (25)

[hus we have the following corollary.

THEOREM 7. In addition to the conditions of Theorem 6, let 2D < H
ind let J(o1),1(o0) and I{o2) be defined by (21),(23) and (24). Then, we

ave,

2xJ(o1) < 4{I(o0)(1 + (log(ﬂ_%
x{I(o2)(1 + (log(25))") + M-A}e1=o0)ea—o0) ™ x

x{ Eap(Sleazzilloizsel ) 4 4 M4+2(0; — 0){1 + (log(
x{ghy Bap(Llzz=zler=mlyyr,

o3 —0q

))*)}(vn—n Hoz—ae) '

a] —70

3. PROOF OF THEOREM 1. In Theorem 7 replace D by D/2 and
issume that J(o1) is bounded below (by $4D) and I{o3) is bounded above
¥ B~1 D (these conditions are implied by the conditions of Theorem 1). Put
?=1,r=[e log M]+1and D = Ezp(¢~'E) where E is a large constant.
.t 09, o1 and o3 be constants satisfying a < ¢ = 09 < 01 < 3 < b. We see
hat the second term on the RHS of (26) is < M~ so that

18D < J(o1) < 4{I(00)(1 + (log(=2
x{B71D(1 + (log(5-

))*)}ez—o1)oa-a0) "

Ty —09

) )}er-enden=en)™ { Epp((m=zrlleromlyyr (97)

g3—03 T3~

))*}(ﬂ ~o3 )(ra—o0) ! o

(26)
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This proves Theorem 1.

§4. $-CONVEXITY AND PROOF OF THEOREM 2. In theorems
6 and 7 choose @ = § (§ any positive constant), o2 — 01 = (logM )1, 02 =
o,00 = a,r = {logM], E‘:.» a large constant times §—1. We obtain the first
part of Theorem 2 numely {3) and {3'). To obtain the second part we argue
as in the oroof of Theorems 6 and 7 but now with

5715' / f(s,+w)x—"'i’w£

along the same e¢ontour P with the same X as before (note X~ in the
present integrard). The rest of the details are similar.

§ 5. PROOY¥ OF THEOREM 3. We follow closely the notation of § 2.
We now put a¢ = a, o3 = b. Now consider the integral

1

/ dw
2xi Re w=b- a1 |Im w|<H

(o1 +uw)Xx™ —— (28)

This i8 O(M~4) provided X exceeds a suitable power of M. On the other
hand, the integral

| i | fatox= (29)
over the same path equals
flo) + e[+ [+ [0+ w)xe (30)

where 81 + w runs over the paths Hy, H; and V where H; and H; are the
horizontal gideg of R and V is the left vertical line boundary of R. (The
contribution from V is O{M~4) if X is a large power of M). Hence

1 dw
— ‘ w_ x-wyZl
o [ s w)x o (31)
taken over the path in (28) {same as for (29) also) equals the integral (29)
plus O(M~4). Now move the line of integration to Re w = 0 and do the
averaging as before writing X = E2p(Y + ¥1 + ... + 1) and we are led to
the proof of Theorem 3.

§6. ANOTHER APPLICATION OF OUR METHOD. In this sec-
tion we prove Theorem 5 {(our proof is quite general and goes through for
zeta and L-functions of algebraic number fields and so on). We need from
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Titchmarsh’s book {10] (see § 5.5, pages 174-175) the following theorem (we
state it in the notation of this book). .

THEQREM 8 (BOREL-CARATHEODORY). Let f(z) be analytic in
| 2z |< R and M(r) denote the mazimum of | f(z) | in| 2z |[< r < R. Let
A(R) denote the mazimum of the real part of f(z) on | z |= R. Then

2r R+r

M(r) < =——A(R)+ 22— | f(0) .

We now take f(z) to be log {(s1 + z). We will assume that ¢y exceeds a large
constant. It is not hard to prove that log {(s1) = O(loglog tg). Taking R =
208, r = 19§ we see that in | z |[< 19§ we have | log ((s1 + 2) |< 800 § log to.
Let now | —t; [< § and 1 — § < og < 1. (We now use a notation not to
be confused with the earlier one). Let P, = 1 + %ito,Pg =8 —4i6, P =
14§+ ito — 4i6, Py = 1 — 46 + ito + 4i8, P5 = 81 + 4i6, Pg = 1 + 2itg. Let P
denote the contour Py Pa P3Py PsPgP1. Put X = Ezp(Y +u1 +ua + ... + ur)
where (uy, ..., %, ) i8 as before with the earlier notation. Averaging over the
cube we have

| tog C(20) 1< 5 [ - [ [ log {(s0 + w) &~ dw duy..du, | C~"
+C~" [ ... [ £p 595 Ezp(—§)dus..duy +10.

The contribution (to the integral involving {(so+ w)) from P3 P4 has absolute
value < 10 if
Ezp(Y §) > 8000 log to.

To satisfy this we put Y = } (loglog to + 13). The average over other parts
of the same integral has absolute value

< 800(6 log tg)(-g%)' Ezm(Y + Cr)(1 - ao)).
We put C = 2 and r = [loglog tg], so that this expression is
3

< & Ezp{(}(loglog to + 13) + $ loglog to)(1 — ag))
= & Ezp((152)(10 loglog to + 13))

The average of the sum over primes is

< S=) ™ Ezp(—%)
P
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where Z = Ezp(}(10 loglog to+13)), since Z > maximum value of X during
the averaging. Now

S<Yp ™+ Y Zp i~ = 5, + 51 say.
p<3 2z

Here

51 < Zi-os E }- and §; < eZ“"",
p<z ¥

where £ > 0 is an arbitrary constant. We have

1
E;sloglogz+1— 3 (mp™) ! +e

psZ pm22

where £ > 0 is an arbitrary constant (see [11], p.58, Equation (3.14.5)) and
7 i8 the Euler’s constant. Hence

| log {(s0) |< O(1)}+£2'~"0+ 2 ~*%(loglog Z+7—a+e) wherea = Y, (mp™)
pm22

Therefore
| {(s0) |« Ezp(Z~**(loglog Z + 1)).

This completes the proof of Thecrem 5.
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If k > 0is an integer then by the method of § 5 the followirg improvement
of equation (3) can be proved under the only assumptions 0 < § < 1,
| fis1+w) < M,(M >6)in | w |< 10§, and | o — 0y |< §(log M)~*. Then
I(o)log M on the RHS can be replaced by 6§ 1I(o)log M. The implied
constant in < would then be independent of §. Professor A. Ivi¢ pointed
out that the method of § 5 allows one to take H = 1+ § in Theorem 3. The
authors then succeeded in proving the above improvement.
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POST-SCRIPT. In all the equations marked with an asterisk there i8 no
change if k is an integer. But if k is not an integer there will be a loss
of a loglog factor. To see this we apply (3) and (8) with the last remark
in Theorem 2. Thus if k is not an integer, we have for any constant o in
a < o < b (and 24 in place of §),

| flo +it) |k€ M~ 4 I(o)log M loglog M.

(But if & is an integer loglog M on RHS can be dropped provided in place
of § we choose a large constant). It will be nice if we can remove loglog M
even if k is not an integer.

The reference [8] i3 to be taken with the following.
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