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SOME LOCAL CONVEXITY THEOREMS FOR THE 
ZETA-FUNCTION-LIKE ANALYTIC FUNCTIONS 

R. Balasubramanian and K. Ramaehandra 

§ 1. INTRODUCTION. is an analytic function cr+U 
defined in the rectangle R = {a cr b, to - H t to + H} where a 
and bare constants with a< b. We assume that 1/(1) M (with M 2 
sometimes we assume implicitly that M exceeds a large positive constant) 
throughout R. We are interested in the question of lower bounds for 

J(cr) = 1. 1/(cr +ito+ iv) I" dv (1) 

where le > 0 is a real constant. The method we employ is very much re-
lated to the methods of our paper fl] in combination with the results in 
the appendix to [5]. Some of our results regarding {1) are improvements of 
some lemmas in lvit's book [3] (see page 172 of this book). It should be 
mentioned that our results (though of some interest in themselves) do not 
give any new important applications except (5),(6) and (7). In§ 2 we prove 
a general resu1t on local-convexity from which the following theorem is a 
consequence. (All our constants will be effective and we do not state this 
fact every time). 

THEOREM 1. Suppose there t:Nts a constant d such that a < d < b 
and that in d cr I is bounded below and above b71/3 and p-l 
where 13 1 is a positive constant, (it i.s enough to assume this condition for 
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l(IT) with B replGced by an arbitra'l' quantitu lying between B/2 and H, in 
place of I/(&) IJ. Lett> 0 be Then for H = D where D u a 
certain po&itive corutant depending on £ and other c:Omtanu mentioned 
before, we have, for a $ IT $ d, 

(2) 

We next prove a 6-convexity theorem which is simply this. 

THEOREM 2. Let Ao,ITt and 6 be thr« corutant& &atUfring Ao > 
O,a < ITt < 6 and 6 > 0 and let H = 6. Then we have, with IT = ITt + 
(logM)-1 , the inet]WJlitr 

1/(ITt +ito) 14< M-Ao + l(IT)logM. (3) 

Also, we have, 

f 1/(tTt +ito+ iu) 14 du < M-A, +I( IT) loglog M. (3') 
JJul<if/2 

we have also 8imil6r re8UlU with IT* = ITJ - (log M)-1 in place of IT. 
The third of our theorems is 

THEOREM 3. Let IT! be a corutant &atuf71ing a < ITt < b and H be a 
large corutant depending on other corutant&. Then we have {with large 
po&itive con8tant Ao and corutant t > 0) 

I /(ITt+ ito) 14< M-Ao+ l(trt)logM (•) 

and becaue of Theorem 1, we have, (cwuming on /(•) the condition. of 
Theorem 1) the inequality 

I /(ITt +ito) 14< l(ITt)logM. 

For a remark on equations marked with an asterisk see the post-script at 
the end. 

Theorems 1 to 3 have immediate applications to ((1) and £-functions 
we can take far example /(•) = ((•) and we obtain the following theorem 
as a corollary. We state only two applications of each of these theorems. 
THEOREM 4. Let i and£ be anJ two pomive con.stant&, Ao large 
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po.sitive con.stant, q a constant .satisfying 1/2 $ q $ 1. Then, we have, for 
to 10 and D a certain large positive con.stant, 

f I ((q +ito+ iv) !' dv > t0e. (5) 

Combining thi.s with the functional equation we obtain, 

f I ((q- 1/2 +ito+ iv) I' dv > (6) 
Jlvi5,D 

ALto 
f I ((1 +ito+ iv) I' dv > (logto)-e (7) 

and here we can (if we a.s.nsme Riemann H1JPOthem) replace RHS btl (loglogto)-e 

Next, we have 

I ((q +ito) I'< t0.Ae + (logto) f I ((q + (logto)-1 +ito+ iv) !' dv (8) 

and the .same inequalittl hold.s if we replace on the RHS (logt0 )-1 by-(logt0 )-1 • 
Finally . 

I ((q +ito) I*< (logto) f I ((q + ito+ iv) I* dv. (9)( •) 
Jlvi5,D 

Next we can apply our method to other problems such as proving that the 
large values of I ((.s) I are "rare" in a certain sense providing an alternative 
approach to some results of A. [4]. More specifically we prove 

THEOREM 5. Let ao be a .small positive con.stant and let to exceed a 
sufficiently large positive con.stant and a:0 6 (logt0314 . Let .s1 = 1 + 
ito, .so = qo + ih where 0 $ 1 - qo $ 6 and I t1 -to I$ 6. Suppose that for 
I .s1-" I$ 206 we .'lave((&) :f. 0. Then 

! ((q0 +itt) I< Exp(z1-"'0 (loglogZ + 1)) (10) 

where 
(11) 

REMARK. This theorem can be generalised very much by our method for 
example to (-functions and £-functions of number fields . 
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Before concluding this section we make a few remarks. In a aeries of 
papers the second of us started with the kernel function and 
made extensive use of this kernel proving a number of convexity results over 
short intervals. Some of them are (with H > loglog M with a suitable 
implied constant) that we can replace the RHS in (2) by H. Also he proved 
(H subject to the same condition) things like (6] 

H
1 f I (( -2

1 +ito+ iv) 121: dv > (logH)lo2 

where A: > 0 is any rational constant. (With A: = this was first proved by 
Ramachandra (7]. Next Heath-Brown proved this with A: > 0 any rational 
constant and H = to (2]. Next Ramachandra extended Heath-Brown's result 
to t 0 H > loglog t0 • For positive irrational constants A: Ramachandra 
proved [8], subject to the same conditions on H, the result 

1 1 1 . . ) n log H 1c2 
H I (( -2 + •to + sv I dv > ( l l H) . 

Later he proved a litronger result [9] where RHS here was replaced by a 
bigger function depending on the simple continued fraction expansion of A:). 

§ 2. A GENERAL RESULT ON LOCAL CONVEXITY. 
First of all a remark about the real constant A: > 0. We will (for technical 

simplicity) assume that A: is an integer. To prove the general case we have to 
proceed as we do in this section and to use the Riemann mapping theorem 
(with zero cancelling factors for a certain rectangle i.e. (6(w))" suitably) as 
given in the appendix to [5] (see Lemmas 2,3 and 4 of the appendix). H A: is 
an integer we <!an consider f( & ) in place of(!('))" without loss of generality. 

Let u0 < u1 < u2 b,O < D H,,t = u1 +ito and let P denote the 
contour P1P2P3P4 Pt where Pt = -(ut- uo)- iD,P2 = u2- Ut- iD,Ps = 
u2 - u1 + iD and P4 = -(u1 - u0 ) + iD. Let "' = u + iv be a complex 
variable. We have 

2ri/(,1) = f /(•1 + w)X.,dw where X> 0. (12) )p tu 

We put 
X = Ezp(Y + Ut + u2 + ... + u,.) (13) 
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where Y 0 and ( u1, u2, ... , u,.) is any point belonging to the r-dimensional 
cube [0, C] x [0, C] x ... x [0, C], C being a positive constant to be chosen later. 
The contour P consists of the two vertical lines -V0 and V2 respectively given 
by P4P1 and P2P3 and two horizontal lines Q1,-Q2 respectively given by 
P1P2 and P3P4. Averaging the equation {12) over the cube we get 

Lc kcl xw 2ri/(.tt) = c-r ... /(11 + w)-dw dul ... du,.. 
0 0 p 

(14) 

Over V0 and V2 we do not do the averaging. But over Q1 and Q2 we do 
average and replace the integrand by its absolute value. We obtain 

12-x'/(lt) Ezp{ -Y(u1- uo)) fv. 1/(11 + w)'!:' I 

+Ezp((Y + Cr)(u2- u1)) fv, 1/(lt + w)'!:' I 

+a:;
1
.Ezp((Y + Cr)(u2- ut))(mazwEQluQ, l/(11 + w) l)(u2- uo) 

and thus 
j2rf(.st) (Ezp(-Y(u1- uo)))Io 

+(Ezp(Cr(u2- u1)))(Ezp(Y(u2- u1)))(I2 + M-A) 

+2M(u2- uo)(Ezp{Y(u2- u1)))( 2 (15) 

where A is any positive constant and 

1 dw 1 dw Io = 1/(-'t + w)- I and !2 = 1/(.st + w)-1. 
Vo w v, w 

(16) 

Choosing Y to equalise the first two terms on the RHS of (15), i.e. choose 
y by 

i.e. 

Ezp(Y(u2-D'1)) = ( 
12 

.. A )(cr,-<Ft)(<r.:-<Fo)-1 Ezp( -Cr(u2-ud(u2-uot1) 

and noting that 

(u2- ul)- (u2- u!)2(u2- uo)-1 = (u2- u!)(u1 - uo)(u2- D'o)-1, 

we obtain 
I2'X'/(.s1) + M-A)crt-"'o}<.,.,-.,.o)-1 {Ezp{c(cr2;;tli:t-crol)Y 

+2M(u2- uo)( I,+if-A )(v,-cr,)(cr,-cro)-' )Y. {17) 
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Collecting we state the following convexity theorem. 

THEOREM 6. Suppo.se /{.s) u an analJitic junction of 1 = u +it defined 
in the rectangle R : {a u b,to- H t t0 + H} where a and b are. 
comtanu with a< b. Let the mazimum of If(•) I taken over R M. 
Let a uo < u1 < u2 b and let A be anJI large po8ititJe comtant. Let r be 
anJI positive integer, 0 < D H and .s1 = u1 + ito. Then for anJI positive 
con.stant C, tJJe have, 

I 2% /(.st) 2{JO'-"• {12 + M-A)"'•-"•}(172-.,oJ-·• )Y 

+2MA+2(uz - uo)(2{1 + (log(.,
1 

)t)("2-"t}{u2-vo)-• x 
x{ 2 Ezp{C(172 17t)(,t-170))}r 

VJ1 "2-41"1 (18) 

where 
1o = ( I f(uo +ito+ iv) dv . 1 

uo - Ut + IV 
(19) 

and 

(20) 

and we have written (z)• = maz(O,z) for anJI real number z. 
PROOF. We have used 12 + M-A M-A and {u2 - ul)(u2 - u0 )-1 :; 1 
and if D u1 - uo, 

1 dv [1-uo dv 1D dv Io M ! . 1:<::; 2M{ --- + -}. 
0"0- 0"1 +IV 0 0"1- O"Q ..-1 -..-o V 

This completes the proof of Theorem 6. 

In {18) we replace to by t0 + a and integrate wlth respect to a in the 
range I a D, where now 2D LHS is now I(ut) defined by 

J(ut) = 2rJ. I /(ut +ito+ ia) Ida. (21) 

Next 

+ M-A)"'•-aa)(<¥2-"'9)-• 
< ( r I. da)<"'2_.,.,)(..-,-wo)-1

( r (I + M-A)da)<"•-"o)( ... 2-"o)-1 
- 0 2 · 
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N'ow 

where 

l!ai!'>D Io da = JiaiSD 1/(uo +ito+ ia + •• I 
lf(uo +ito+ iv) I dv) I .,8 I 

2{1 + (log(.,.
1 

.. 0 )t)I(u0 ) (22) 

I(uo) = I lf(uo +ito+ iv) I dv. 
Jlvi$2D 

Proceeding similarly, with 

li'e have 

I(u,) = I l/(112 +ito+ iv) I dv 
Jlvi$2D 

rhus we have the following corollary. 

1 

(23) 

(24) 

rHEOREM 7. In addition to the of Theorem 6, let 2D H 
md let J(ui),I(uo) and I(u2) be defined by {21},{23} and (2i}. Then, we 
1ave, 

2'lrl(u1) 4{/(uo)(l + X 

X {J(u2)(l. + ))•) + M-A }(.,.,-.,.o)(v,-vo)-1 x 

x{ Ezp(C("'? ;,tl!;t-vo) W + 4MA+2(u2 - u0 ){1 +(log(.,, .. 
0 
))*}("'-"'' )(cr,-vo)-' x 

X { 2 Ez'"' C(.,.,_.,., )(.,.,_.,.,) )}". 
(;IJ P\ .,., "O 

: 3. PROOF OF THEOREM 1. In Theorem 7 replaceD by D/2 and 
1Ssume that J(u1) is bounded below (by !.BD) and I(u2) is bounded above 
,Y {J-1 D (these conditions are implied by the conditions of Theorem 1). Put 
-.: = 1, r = (t log M] + 1 and D = Ezp(e-1 E) where Eisa large constant. 
,et uo, u1 and 112 be constants satisfying a u = uo < u1 < 112 $ b. We see 
hat the second term on the RHS of (26) is M-A so that 

J(u1) 4{I(u0)(1 + x 

x{p-l D(l ))")}("t-vo)(v,-cre)-' {Ezp( _.,ol )Y. (27) 

(26) 
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Thill prov!ls Theorem 1. 

§ 4. 6-CUNVEXITY AND PROOF OF THEOREM 2. In theorems 
6 &nd 1 choose:JJ = 6 (6 any positive cr2 - cr1 = (logM)-1·, cr2 = 
cr, cro = a, r = [logM], a large const.mt times 6-1 . We obtain the first 
part of 2 tmmely {3) and (3'). To obtain the second part we argue 
as ;.n the yroof o! Theorems 6 and 1 but now with 

along tbe :1ame co:atour P with the same X as before (note x-"' in the 
present intE3fard). The rest of the details are similar. 

§ 5. PROOF OF THEOREM 3. We follow closely the notation of§ 2. 
We now put n0 =a, a-2 =b. Now consider the integral 

1 l f( ) "' dw -. -'1 +ur x- -. 
2ra Re w=b- .. 1 .lim wi$H W 

(28) 

This is O(M-A) provided X exceeds a suitable power of M. On the other 
hand, the integral 

-
2
1

. j /(-'t + w)X"'dw 
rt w (29) 

over the same path equals 

/(-'t) + -
2
1 .( { + { + { )/(1Jt + w)X"' dw (30} 
rt 1H1 1H2 lv w 

where -'t + w runs over the paths H1 , H2 and V where H 1 and H 2 are the 
horizontal sid.:ls of R and V is the left vertical line boundary of R. (The 
contribution from Vis O(M-A) if X is a large power of M). Hence 

j f(•t + w)(X"'- x-w)dw 
2ra w (31} 

taken over the path in (28) {same as for (29j also) equa1B the integral (29} 
plus O(M-A). Now mow the line of integration to Re w = 0 and do the 
averaging as before writing X = E%p(Y + Ut + ... + u,.) and we are led to 
the proof of Theorem 3. 

§ 6. ANOTHER APPLICATION Ol' OUR METHOD. In this sec-
tion we pro-ve Theorem 5 (our proof is quite general and goes through for 
zeta and £-functions of algebraic number fields and so on). We need from 
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Titclunarsh's book [10] (see§ 5.5, pages 174-175) the following theorem (we 
state it in the notation of this book). 
THEOREM 8 (BOREL-CARATHEODORY). Let f(z) be analytic in 
1 z R and M(r) denote the mazimum of I f(z) I in I z r < R. Let 
A(R) denote the mazimum of the real part of f(z) on I z I= R . Then 

M(r) f(O) J. 

We now take f(z) to be log ((&t tz). We will assume that to exceeds a large 
constant. It is not hard to prove that log ((61) = O(loglog t0). Taking R = 
205,r = 195 we see that in I z 195 we have !log ((61 + z) 800 5 log to . 
Let now I t0 - tt 5 and 1- 5 uo 1. (We now use a notation not to 
be confused with the earlier one). Let P1 = 1 + lit0 , P2 = &1 - 4i5, Pa = 
1 - 45 + ito - 4i5, P4 = 1 - 45 +ito+ 4i5, P5 = -'t + 4i5, P6 = 1 + 2ito. Let P 
denote the contour P1P2PaP4P5P6Pt. Put X= Ezp(Y + Ut + u2 + ... + u,.) 
'.'?'here ( Ut, . .. , u,.) is as before with the earlier notation. Averaging over the 
cube we have 

I log C(-'o) lSI b. J ... J J log C(-'o + w) x,; dw dut ... du,. I c-r 
tc-r J ... J E, pir Ezp( -f )dut ... du,. + 10. 

The contribution (to the integral involving C( -'o t w)) from P3P4 has absolute 
valueS 10 if 

Ezp(Y 5) 8000 log to. 
To satisfy this we put Y = t (loglog t0 + 13). The average over other parts 
of the same integral has absolute value 

2 800(5 log to)( C5 )r Ezp((Y + Cr)(1 - uo)). 

We put C = and r = [loglog t0], so that this expression is 

E Ezp((}(loglog t0 + 13) + f loglog to)(1- uo)) 
= E Ezp(e6"'" )(10 loglog to+ 13)) 

The average of the sum over primes is 
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where Z = Ezp(f(lO loglog to+l3)), since Z ma:rimum value of X during 
the averaging. Now 

s $ L p-"o + E zp-l-.... = St + S2 say. 
p>Z 

Here 
s < zl-<Te s < £Z1-"0 
l_ .L.J 2_ ' 

where £ > 0 is an arbitrary constant. We have 

1 L- $ loglog Z + 1- L (m.P"')-1 + £ 
p$;Z p . 

where £ > 0 is an arbitrary constant (see [11], p.58, Equation (3.14.5)) and 
7 is the Euler's constant. Hence 

i log ((.so) I$ 0(1)+£Z1-"'+Z1-•(loglog Z+7-a+£) where a= L (m.P"')" 

Therefore 
I ((.so) I< Ezp(Z1-"'(loglog Z + 1)). 

This completes the proof of Theorem 5. 
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H lc > 0 is an integer then by the method of§ 5 the following improvement 
of equation (3) can be proved under the only assumptions 0 < 6 $ 1, 
I /(•t + 111) I$ M, (M 6) in 1111 I$ 106, and I u- tr1 I$ 6(log M)-1 . Then 
I(u)log M oo the RHS can be replaced by 6-1 I(u)log M. The implied 
constant in < would then be independent of 6. Professor A. Ivit pointed 
out that the method of§ 5 allows one to take H = 1 + 6 in Theorem 3. The 
authors then succeeded in proving the above improvement. 
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POST-SCRIPT. In all the equations marked with an asterisk there is no 
change if 1 ia an integer. But if 1 ia not an integer there will be a loss 
of a loglog factor. To see this we apply (3) and (3') with the last remark 
in Theorem 2. Thus if 1 is not an integer, we have for any constant rr in 
a < rr < b (and 26 in place of 6), 

R.. I /(rr + I< M-Ae+ I(rr)log M loglog M. 

(But if k is an integer loglog M on RHS can be dropped provided in place 
of 6 we choooe a large corutant). It will be nice if we can remove loglog M 
even if /c ia not an integer. 
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