Hardy-Ramanujan Journal
Vol. 11 (1988) 13-29

LARGE VALUES OF SOME ZETA-FUNCTIONS
 NEAR THE LINE $\sigma=1$

Aleksandar Ivié

§ 1. Introduction.

To determine the order of $\zeta(1+i t)$ is one of the central problems in the theory of the Riemann zeta-function $\zeta(s)$. The best known upper bound at present is

$$
\begin{equation*}
\zeta(1+i t) \ll \log ^{2 / 3} t . \tag{1.1}
\end{equation*}
$$

It is obtained by an application of the estimate

$$
\sum_{N<n \leq N^{\prime}} n^{i t} \ll N \exp \left(-\frac{C \log ^{3} N}{\log ^{2} t}\right)\left(C=10^{-5}, N<N^{\prime} \leq 2 N, 1 \ll N \ll t\right)
$$

which is a consequence of Vinogradov's method (see [4], Chapter 6) for the estimation of exponential sums. Here and later $f \ll g$ and $f=O(g)$ both mean $|f(x)| \leq C g(x)$ for some $C>0$ and $x \geq x_{0}$. On the other hand, it is known (see [14], Chapter 9) that on the Riemann hypothesis

$$
e^{\gamma} \leq \limsup _{t \rightarrow \infty} \frac{|\zeta(1+i t)|}{\log \log t} \leq 2 e^{\gamma},
$$

where $\gamma=0,577 \ldots$ is Euler's constant. Thus it seems of interest to investigate the occurrence of large values of $\zeta(1+i t)$, where "large" means roughly of the order not less than loglog t. An interesting result in this direction was obtained recently by K. Ramachandra $[11]:$ Let $X=\exp (\log \log T / \log \log \log T)$, and cover $\left[T, T+e^{X}\right]$ with intervals of length $1 / X$ (the last interval may be shorter). If $0<\varepsilon<1$ is an arbitrary constant, then $|\log \zeta(1+i t)| \geq$ $\varepsilon \log \log T$ for t in all of these intervals, except in at most K of them, where
$K=K(\varepsilon)$ is a constant. Ramachandra obtained his result by shrewdly applying an elementary inequality for complex numbers, and using complex integration to evaluate a certain sum over primes: His theorem is "local" in nature, in the sense that $X=o_{\delta}\left(\log ^{\delta} T\right)$ as $T \rightarrow \infty$ for any $\delta>0$. It seems also interesting to consider the "global" problem of the estimation of R, the number of points t_{r} in $[T, 2 T]$ such that $\left|t_{r}-t_{s}\right| \geq 1$ for $r \neq s,\left|\log \zeta\left(1+i t_{r}\right)\right| \geq \varepsilon \log \log T$ (or $\left|\zeta\left(1+i t_{r}\right)\right| \geq(\log T)^{e}$, where the method of [11] furnishes the same bound as in the former case). Breaking the interval [$T, 2 T$] into subintervals of length e^{X} and applying Ramachandra's estimate to each of these intervals one easily obtains

$$
\begin{equation*}
R<_{z} T e^{-\frac{1}{2} x} \tag{1.2}
\end{equation*}
$$

We could also suppose that $\left|t_{r}-t_{s}\right| \geq X^{-1}$ for $r \neq s$, but this would only have the effect that the bound in (1.2) is multiplied by X.

A non-trivial result on large values of $\zeta(\sigma+i t)$ when σ is close to 1 follows from Corollary 1 of K . Ramachandra [9] : Let R denote the number of points t_{r} in $[1, T]$ such that $\left|t_{r}-t_{s}\right| \geq 1$ for $r \neq s$ and $\left|\zeta\left(\sigma+i t_{r}\right)\right| \geq V$, where $\frac{1}{2} \leq \sigma \leq 1$ and

$$
\begin{equation*}
\exp \left(C(\log T \log \log T)^{\frac{1}{2}}\right) \ll V \ll T^{100(1-\sigma)^{3 / 2}} \log ^{2 / 3} T \tag{1.3}
\end{equation*}
$$

for a suitable constant $C>0$. Then uniformly

$$
\begin{equation*}
R \ll T V^{-A(1-\sigma)^{-3 / 2}} \quad(A=1 / 300 \sqrt{2}=0,002357 \ldots) \tag{1.4}
\end{equation*}
$$

The upper bound for V in (1.3) follows from the best known upper bound for $\zeta(\sigma+i t)$ (see Chapter 6 of [4]). From (1.3) it follows that

$$
\sigma \leq 1-C(\log \log T / \log T)^{1 / 3}
$$

must hold with some suitable $C>0$, hence (1.4) holds only if σ is not too close to 1. From (1.4) one deduces easily

$$
\begin{equation*}
m(\sigma) \geq A(1-\sigma)^{-3 / 2} \quad(A=1 / 300 \sqrt{2}) \tag{1.5}
\end{equation*}
$$

for $\frac{1}{2}<\sigma \leq \sigma_{0}$, where $\sigma_{0}<1$ is fixed, and $m(\sigma)$ is the infimum of numbers m such that for a given σ and any fixed $\varepsilon>0$

$$
\int_{1}^{T}|\zeta(\sigma+i t)|^{m} d t<T^{1+\varepsilon}
$$

The bound (1.5) is mentioned in the Notes of Chapter 8 of [4], without any specific value of the constant A. It is superseded by Theorem 8.4 of [4] for $\sigma \leq \sigma_{1}$, where σ_{1} can be explicitly evaluated, but for σ close to 1 (1.5) remains the best existing lower bound for $m(\sigma)$. Some other relevant results on large values of $\zeta(\sigma+i t)$ and related topics may be found in K . Ramachandra [10].

The aim of this paper is to provide estimates which improve (1.2) and (1.4) when σ is sufficiently close to 1 , and V lies in a certain range. This will be expounded in the next section. The method of approach is fairly general, and can be used to furnish analogous results for a class of zeta-functions that are similar to $\zeta(s)$. To this class belong the zeta-functions associated with the Fourier coefficients of cusp forms and the Dedekind zeta-function of algebraic number fields. These zeta-functions will be dealt with in § 3 and § 4, respectively.

Acknowledgement. I wish to thank M. Jutila and K. Ramachandra for valuable remarks and the Mathematical Institute of Belgrade for financing this research.

§ 2. Large values of $\zeta(\sigma+i t)$.

The basic analytic principle of our approach is simple. In suitable horizontal strips, free of zeros of $\zeta(s), \frac{\zeta^{\prime}}{\zeta}(s)$ can be estimated and found to be small. Integration shows that $\log \zeta(s)$ is then small, too. On the other hand, the number of well-spaced points t_{r} for which $\zeta\left(\sigma+i t_{r}\right)$ lies near a zero of $\zeta(s)$ may be estimated satisfactorily by zero-density estimates.

We proceed now to give the details of this method. Henceforth suppose that t is given, w is a complex variable and
$\zeta(w) \neq 0$ for $R e w>\alpha_{0}\left(\frac{1}{2} \leq \alpha_{0}<1\right),|\operatorname{Im} w-t| \leq \log ^{2} T, T \leq t \leq 2 T, T \geq T_{0}$.
We shall bound $|\zeta(\sigma+i t)|$ for $\alpha<\sigma \leq 1, \alpha>\alpha_{0}$, where α and α_{0} will be specified later. The starting point is the inversion formula $(s=\sigma+i t)$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \Lambda(n) e^{-n / Y} n^{-s}=-\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{\zeta^{\prime}}{\zeta}(s+w) \Gamma(w) Y^{w} d w . \tag{2.2}
\end{equation*}
$$

This follows from the Mellin integral (see (A.7) of [4])

$$
e^{-x}=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \Gamma(w) x^{-w} d w \quad(x>0)
$$

on setting $x=\pi / Y$, multiplying by $\Lambda(n) n^{-s}$ and summing over n, since

$$
\sum_{n=1}^{\infty} \Lambda(n) n^{-s}=-\frac{\zeta^{\prime}(s)}{\zeta(s)} \quad(\sigma=R e s>1) .
$$

In (2.2) $\Lambda(n)$ is the familiar von Mangoldt function $(\Lambda(n)=\log p$ if $n=$ p^{m}, p prime, and $\Lambda(n)=0$ otherwise), and Y is a suitable parameter which satisfies $1 \ll Y \ll \log ^{2} T$. In (2.2) we replace the line of integration Re $w=2$ by the contour consisting of $\left[\alpha-\sigma-\frac{1}{2} \operatorname{ilog}^{2} T, \alpha-\sigma+\frac{1}{2} i \log ^{2} T\right],[\alpha-\sigma \pm$ $\left.\frac{1}{2} i \log ^{2} T, 2 \pm \frac{1}{2} i \log ^{2} T\right],\left[2 \pm \frac{1}{2} i \log ^{2} T, 2 \pm i \infty\right]$. In view of (2.1) it is seen that $s+w$ will stay in a region free of zeros of the zeta-function, hence $\zeta_{\zeta}^{\prime}(s+w)$ will be regular as a function of w. The only pole of the integrand will be $w=0$, which yields the residue $-\frac{f^{\prime}}{\zeta}(s)$. We shall use the bound

$$
\begin{equation*}
\Gamma(w) \ll \frac{e^{-|I m w|}}{|w|}, \tag{2.3}
\end{equation*}
$$

which is a weak form of Stirling's formula, to estimate the integrals in question. In this way we obtain from (2.2)
(2.4)
$\sum_{n=1}^{\infty} \Lambda(n) e^{-n / Y} n^{-\varepsilon}=-\frac{\zeta^{\prime}}{\zeta}(s)+o(1)-\frac{1}{2 \pi i} \int_{L} \frac{\zeta^{\prime}}{\zeta}(s+w) \Gamma(w) Y^{w} d w(T \rightarrow \infty)$,
where L denotes the segment $\left[\alpha-\sigma-\frac{1}{2} \operatorname{ilog}^{2} T, \alpha-\sigma+\frac{1}{2} i \log ^{2} T\right]$. To estimate the last integral we note that for $z=s+w,|\operatorname{Im} w| \leq \frac{1}{2} \log ^{2} T, s=\sigma+i t$ we have (see (1.52) of [4])

$$
\begin{equation*}
\frac{\zeta^{\prime}(z)}{\zeta(z)}=\sum_{\rho: \zeta(\rho)=0,|I m \rho-I m z| \leq 1} \frac{1}{z-\rho}+O(\log T) \ll \frac{\log T}{\alpha-\alpha_{0}} \tag{2.5}
\end{equation*}
$$

since (2.1) holds and there are $\ll \log T$ zeros ρ in every horizontal strip of unit width. Using again (2.3) it follows from (2.4) that

$$
\begin{equation*}
-\frac{\zeta^{\prime}}{\zeta}(s)=\sum_{n=1}^{\infty} \Lambda(n) e^{-n / Y} n^{-s}+O(1)+O\left(\frac{Y^{\alpha-\sigma} \log T}{\left(\alpha-\alpha_{0}\right)(\sigma-\alpha)}\right) \tag{2.6}
\end{equation*}
$$

holds uniformly for $s=\sigma+i t, \alpha<\sigma \leq 1$, if (2.1) is true. Set now in (2.6) $\sigma=\theta$ and integrate over θ for $\sigma \leq \theta \leq 2, \alpha<\sigma \leq 1$. If we define

$$
\Lambda_{1}(n)= \begin{cases}0, & n=1, n \neq p^{m} \\ \frac{1}{m}, & n=p^{m}\end{cases}
$$

where p denotes primes, we obtain that uniformly
(2.7) $\log \zeta(s)=\sum_{n=1}^{\infty} \Lambda_{1}(n) e^{-n / Y_{n}} n^{z}+O(1)+O\left(\frac{Y^{\alpha-\sigma}}{\left(\alpha-\alpha_{0}\right)} \log T \log \frac{1}{\sigma-\alpha}\right)$,
if $s=\sigma+i t, \alpha<\sigma \leq 1$, and (2.1) holds.
We shall first examine some consequences of (2.7). Suppose α_{0} in (2.1) is fixed, and take $\sigma=1, \alpha=\frac{1}{2}\left(1+\alpha_{0}\right)<1$. Then from (2.7) we infer that

$$
\log \zeta(1+i t)=\sum_{n \leq Y} \Lambda_{1}(n) e^{-n / Y} n^{-1-i t}+O(1)+O_{\alpha_{0}}\left(Y^{\alpha-1} \log T\right)
$$

where the subscript in the last O-term means that the constant in question depends on α_{0}. With the choice $Y=(\log T)^{1 /(1-\alpha)}$ this gives

$$
\begin{aligned}
& \log |\zeta(1+i t)| \leq|\log \zeta(1+i t)| \leq \sum_{n \leq Y} \Lambda_{1}(n) n^{-1}+O_{\alpha_{0}}(1) \\
&=\sum_{p \leq Y} p^{-1}+O_{\alpha_{0}}(1)=\log \log Y+O_{\alpha_{0}}(1)=\log \log \log T+O_{\alpha_{0}}(1) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
|\zeta(1+i t)| \leq C\left(\alpha_{0}\right) \log \log t\left(t \geq t_{0}\left(\alpha_{0}\right)\right) \tag{2.8}
\end{equation*}
$$

for some constant $C\left(\alpha_{0}\right)>0$ if (2.1) holds for a fixed α_{0}. In case the Riemann hypothesis that all complex zeros of $\zeta(s)$ satisfy Re $s=\frac{1}{2}$ is true, then (2.1) holds with $\alpha_{0}=\frac{1}{2}$, and as mentioned in § 1 one may take $C\left(\frac{1}{2}\right)=$ $2 e^{\gamma}+\varepsilon$ in that case.

Suppose now again that α_{0} in (2.1) is fixed, and take $\alpha=\alpha_{0}+\varepsilon, \alpha_{0}+2 \varepsilon \leq$ $\sigma \leq \sigma_{0}$, where $\sigma_{0}<1$ is fixed. For $N, Y \gg 1$ note that

$$
\sum_{p>N} p^{-\sigma} e^{-p / Y} \ll \int_{N}^{\infty} t^{-\sigma} e^{-t / Y}(\log t)^{-1} d t \ll \frac{N^{-\sigma}}{\log N} \int_{N}^{\infty} e^{-t / Y} d t \ll \frac{Y N^{-\sigma}}{\log N}
$$

where p denotes primes. Also using the prime number theorem we have

$$
\sum_{p \leq Y} p^{-\sigma}=\frac{Y^{1-\sigma}}{(1-\sigma) \log Y}+O\left(\frac{Y^{1-\sigma}}{\log ^{2} Y}\right)
$$

Integrating (2.6) we obtain then

$$
\log \zeta(s)=\sum_{n=1}^{\infty} \Lambda_{1}(n) e^{-n / Y} n^{-\alpha}+O(1)+O_{e}\left(Y^{\alpha-\sigma} \frac{\log T}{\log Y}\right)
$$

which gives

$$
\begin{aligned}
& \log |\zeta(\sigma+i t)| \leq|\log \zeta(\sigma+i t)| \leq \sum_{n \leq Y} \Lambda_{1}(n) e^{-n / Y} n^{-\sigma}+O\left(\frac{Y^{1-\sigma}}{\log Y}\right) \\
& +O_{\varepsilon}\left(Y^{\alpha-\sigma} \frac{\log T}{\log Y}\right) \ll \varepsilon \frac{Y^{1-\sigma}}{\log Y}+Y^{\alpha-\sigma} \frac{\log T}{\log Y}<_{\varepsilon} \frac{(\log T)^{(1-\sigma) /(1-\alpha)}}{\log \log T}
\end{aligned}
$$

on choosing $Y=(\log T)^{1 /(1-\alpha)}$. This means that

$$
\begin{equation*}
|\zeta(\sigma+i t)| \leq \exp \left(\frac{D(\log t)^{\frac{1-\sigma}{1-\alpha}}}{\log \log t}\right) \quad\left(t \geq t_{0}(\varepsilon), D>0\right) \tag{2.9}
\end{equation*}
$$

if $\alpha=\alpha_{0}+\varepsilon, \alpha_{0}+2 \varepsilon \leq \sigma \leq \sigma_{0}, \alpha_{0}$ and σ_{0} are fixed, $\varepsilon>0$ is a small, positive number, $D=D(\varepsilon)$ and (2.1) holds. If the Riemann hypothesis is true, then one has (2.9) with $\alpha=\frac{1}{2}$ for $t \geq t_{0}$ by Theorem 14.5 of [14], and with more care the foregoing proof could be adapted to give this result also.

Now we shall give an upper bound for $|\zeta(\sigma+i t)|$ in the whole range $\alpha_{0}<\alpha<\sigma \leq 1$, choosing $\alpha_{0}=1-\frac{3 A}{\log \log T}, \alpha=1-\frac{2 A}{\log \log T}, 1-\frac{1}{\log A} \log T \leq$ $\sigma \leq 1$, where $A>0$ is an absolute constant. In that case we obtain from (2.6)

$$
\begin{gathered}
\log \zeta(s)=\sum_{n \leq Y} A_{1}(n) e^{-n / Y} n^{-2}+O\left(\frac{Y^{1-\sigma}}{\log Y}\right)+O\left(Y^{-A / \log \log T} \frac{\log T}{\log Y}(\log \log T)^{2}\right) \\
\log |\zeta(\sigma+i t)| \leq|\log \zeta(\sigma+i t)| \leq \sum_{p \leq Y} p^{-\sigma}+O(1)+O\left(\frac{Y^{1-\sigma}}{\log Y}\right) \\
+O\left(Y^{-A / \log \log } r \frac{\log T}{\log Y}(\log \log T)^{2}\right) \leq Y^{1-\sigma}(\log \log Y+O(1)) \\
+O\left(Y^{\left.\frac{-A}{\log \log T} \frac{\log T}{\log Y}(\log \log T)^{2}\right)}\right.
\end{gathered}
$$

Choose now

$$
Y=\exp \left(\frac{2}{A}(\log \log T)^{2}\right)
$$

so that the last O-term above is bounded (but it depends on A). We obtain

$$
\log |\zeta(\sigma+i t)| \leq \exp \left(\frac{2-2 \sigma}{A}(\log \log T)^{2}\right) \log \left(C(A)(\log \log T)^{2}\right)
$$

that is
(2.10) $|\zeta(\sigma+i t)| \leq \exp \left\{\exp \left(\frac{2-2 \sigma}{A}(\log \log T)^{2}\right) \cdot \log \left(C(A)(\log \log T)^{2}\right)\right\}$.

This bound is valid for $1-\frac{A}{\operatorname{loglog} T} \leq \sigma \leq 1, C(A)>0$ a constant depending on A (whose value could be made explicit), if (2.1) holds with $T \geq T_{0}(A)$.

Consider now the region

$$
\mathcal{D}=\left\{s \in C: R e s \geq 1-\frac{A}{\log \log T}, T \leq I m s \leq 2 T\right\}
$$

and divide it into subregions

$$
\mathcal{D}_{k}=\left\{s \in \mathcal{D}: T+(k-1) \log ^{2} T \leq I m s<T+k \log ^{2} T\right\}
$$

where $k=1,2, \ldots,\left[T / \log ^{2} T\right]$. Using the zero-density estimate

$$
\begin{equation*}
N(\sigma, T)=\sum_{\rho: \zeta(\rho)=0, R e} \sum_{\rho \geq \sigma,|I m \rho| \leq T} 1 \ll T^{1600(1-\sigma)^{3 / 2} \log ^{15} T} \tag{2.11}
\end{equation*}
$$

(see Theorem 11.3 of [4]), it is seen that there are

$$
\ll \exp \left(\frac{1600 A^{3 / 2} \log T}{(\log \log T)^{3 / 2}}\right) \log { }^{15} T \ll \exp \left(\frac{1700 A^{3 / 2} \log T}{(\log \log T)^{3 / 2}}\right)
$$

zeros of $\zeta(s)$ in D. Hence there are at most

$$
\exp \left(\frac{1800 A^{3 / 2} \log T}{(\log \log T)^{3 / 2}}\right)
$$

values of k such that $\mathcal{E}_{k}=\mathcal{D}_{k-1} \cup \mathcal{D}_{\boldsymbol{k}} \cup \mathcal{D}_{k+1}$ contains a zero of $\zeta(s)$. Thus
if we construct R arbitrary points t_{1}, \ldots, t_{R} belonging to $[T, 2 T]$ such that $\left|t_{r}-t_{0}\right| \geq 1$ for $r \neq s$ and (2.10) fails to hold for $t=t_{1}, \ldots, t_{R}$ and a suitable $C(A)$, then each point $\sigma+i t_{1}, \ldots, \sigma+i t_{R}$ must fall into some \mathcal{E}_{k} which contains a zero of $\zeta(s)$. This provides us with an upper bound for R, contained in

THEOREM 1. Let $1-\frac{A}{\text { oogtog } T} \leq \sigma \leq 1$ for a constant $A>0$, and let R be the number of points $t_{r} \in[T, 2 T]$ such that $\left|t_{r}-t_{s}\right| \geq 1$ for $r \neq s$ and

$$
\left|\zeta\left(\sigma+i t_{r}\right)\right| \geq \exp \left\{\exp \left(\frac{2-2 \sigma}{A}(\log \log T)^{2}\right) \cdot \log \left(C(A)(\log \log T)^{2}\right)\right\}
$$

for some suitable $C(A)>0$. Then for $T \geq T_{0}(A)$

$$
\begin{equation*}
R \leq \exp \left(\frac{2000 A^{3 / 2} \log T}{(\log \log T)^{3 / 2}}\right) \tag{2.12}
\end{equation*}
$$

Theorem 1 thus provides a large values estimate in the region

$$
1-\frac{A}{\log \log T} \leq \sigma \leq 1,
$$

which in a sense complements Ramachandra's bound (1.4). Of course it is possible to obtain a similar type of result for a somewhat different region, but this one is of a particularly simple shape. Moreover in this region we have the bound (2.12), which is much stronger than just $R<_{\varepsilon} T^{\varepsilon}$. Note also that $\exp \left(\frac{2-2 \sigma}{A}(\log \log T)^{2}\right) \leq e$ for $\sigma \geq 1-\frac{A}{2(\log \log T)^{2}}$, so that in the last region $|\zeta(\sigma+i t)| \leq B(A)(\log \log t)^{2 c}$ except for a relatively few points.

For $\sigma=1$ we have that (2.12) holds for the number of points $t_{\boldsymbol{r}}$ for which $\left|\zeta\left(1+i t_{r}\right)\right| \geq C(A)(\log \log T)^{2}$ for some $C(A)>0$. The same method of prosf gives also that $R \ll_{\varepsilon} T^{\varepsilon}$ holds for any fixed $\varepsilon>0$ if $\left|\zeta\left(1+i t_{r}\right)\right| \geq D(\varepsilon) \log \log T$ for a suitable constant $D(\varepsilon)>0$. No information seems obtainable by our method in the case when $\left|\zeta\left(1+i t_{r}\right)\right| \geq f(T)$ and $f(T)>0$ is a function which satisfies $f(T)=o(\log \log T)$ as $T \rightarrow \infty$.

If $\sigma_{0} \leq a \leq \sigma_{1}<1$ is fixed, then it follows by the method of proof of Theorem 1 that

$$
R \ll \varepsilon T^{1600(1-\sigma)^{3 / 2}+2 \varepsilon}
$$

for the number of points $t_{r} \in[T, 2 T]$ such that $\left|t_{r}-t_{s}\right| \geq 1$ for $r \neq s$ and $\zeta\left(\sigma+i t_{r}\right)>T^{e}$. Hence using the bound (see Chapter 6 of [4])

$$
\zeta(\sigma+i t)<t^{\left.100(1-\sigma)^{3 / 2} \log ^{2 / 3} t \quad\left(\frac{1}{2} \leq \sigma \leq 1\right)\right) ~}
$$

it follows that

$$
\begin{equation*}
m(\sigma) \geq \frac{1}{100}(1-\sigma)^{-3 / 2}-16 \quad\left(\sigma_{0} \leq \sigma \leq \sigma_{1}<1\right) \tag{2.13}
\end{equation*}
$$

for any fixed $\sigma, \frac{1}{2}<\sigma_{0}<\sigma<1$. Since, for $1-3200^{-2 / 3} \leq \sigma \leq 1$, we have

$$
\frac{1}{100}(1-\sigma)^{-3 / 2}-16 \geq \frac{1}{200}(1-\sigma)^{-3 / 2},
$$

it is seen that we obtain an alternative proof of (1.5), with a better value of A.

§ 3. Large values of zeta-functions of cusp forms near $\sigma=1$.

There are several classes of zeta-functions besides $\zeta(s)$ to which the result of Theorem 1 can be generalized, with appropriate modifications. A property, essential that such a generalization may be made, is the existence of a simple Euler product representation for the zeta-function in question in the region $\sigma=R e s>1$. One such class is given by Dirichlet functions $L(s, \chi)$, where the generalization is obvious and straightforward. More interesting exampies appear to be the Dedekind zeta-functions, and the zeta-functions associated with Fourier coefficients of cusp forms, which will be treated in this section. A classical representative is

$$
T(s)=\sum_{n=1}^{\infty} \tau(n) n^{-11 / 2-} \quad(\operatorname{Re} s>1)
$$

where $\tau(n)$ is Ramanujan's function, defined by

$$
\sum_{n=1}^{\infty} \tau(n) x^{n}=x\left\{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \ldots\right\}^{24} \quad(|x|<1) .
$$

More generally, let $a(n)$ be the Fourier coefficients (see e.g. T.M. Apostol
[1]) of a normalized Hecke eigenform (cusp form) of weight κ for the full modular group. Let $\tilde{a}(n)=a(n) n^{-\frac{1}{2}(n-1)}$, and let

$$
\begin{equation*}
F(s)=\sum_{n=1}^{\infty} \tilde{a}(n) n^{-s}=\prod_{p}\left(1-\alpha_{p} p^{-s}\right)^{-1}\left(1-\alpha_{p} p^{-s}\right)^{-1} \quad(\text { Re } s>1) \tag{3.1}
\end{equation*}
$$

be the zeta-function associated with $a(n)$. The zeta-function $F(s)$ seems more natural than the zeta-function associated with $a(n)$ directly (i.e. if we had in (3.1) $a(n)$ and not $\tilde{a}(n)$), whose "critical strip" is $\frac{1}{2}(\kappa-1)<R e s<$ $\frac{1}{2}(\kappa+1)$. On the other hand, the critical strip for $F(s)$ is $0<R e s<1$ as in the case of $\zeta(s)$, and the Riemann hypothesis for $F(s)$ is that all complex zeros ρ of $F(s)$ satisfy $\operatorname{Re} \rho=\frac{1}{2}$. The zeta-function $F(s)$ is in many ways similar to $\zeta^{2}(s)$, which is an analogy that is often exploited (see M. Jutila [5]). It is known that the numbers α_{p} in (3.1) are of the form $\alpha_{p}=e^{i \theta(p)}$, and $\theta(p)$ is real by a deep result of P. Deligne [2]. It is precisely the Euler product representation which is important in our problem, namely the investigation of values of $F(\sigma+i t)$ for σ close to 1 . Taking the logarithmic derivative in (3.1) we obtain

$$
-\frac{F^{\prime}(s)}{F(s)}=\sum_{n=1}^{\infty} \Lambda_{F}(n) n^{-s}=\sum_{p} \sum_{m=1}^{\infty}\left(\alpha_{p}^{m}+\bar{\alpha}_{p}^{m}\right) \frac{\log p}{p^{m p}}(R e s>1) .
$$

Hence equating coefficients it follows that

$$
\Lambda_{F}(n)= \begin{cases}0, & n=1, n \neq p^{m} \\ \left(\alpha_{p}^{m}+\bar{a}_{p}^{m}\right) \log p, & n=p^{m},\end{cases}
$$

so that $\Lambda_{F}(n)$ is the analogue of the von Mangoldt function $\Lambda(n)$ for $F(s)$. Proceeding as in the case of $\zeta(s)$ we have

$$
\begin{equation*}
\log F(s)=\sum_{n=1}^{\infty} \Lambda_{1, F}(n) e^{-n / Y} n^{-s}+O(1)+O\left(\frac{Y^{\alpha-\sigma} \log T}{\left(\alpha-\alpha_{0}\right)} \log \frac{1}{\sigma-\alpha}\right) \tag{3.2}
\end{equation*}
$$

uniformly for $s=\sigma+i t, \alpha_{0}<\alpha<\sigma \leq 1$, provided that (2.1) holds with $F(s)$ in place of $\zeta(s)$, where

$$
\Lambda_{1, F}(n)= \begin{cases}0, & n=1, n \neq p^{m} \\ \left(\alpha_{p}^{m}+\bar{\alpha}_{p}^{-m}\right) m^{1}, & n=p^{m}\end{cases}
$$

In the course of the proof one needs the fact that the analogue of (2.5) holds
for $F(s)$, which follows e.g. from Lemma 3.4 of C.J. Moreno [7]. In the special case when $\sigma=1, \alpha_{0}$ is fixed $\alpha=\frac{1}{2}\left(1+\alpha_{0}\right)$, we obtain from (3.2)

$$
\log F(1+i t)=\sum_{n=1}^{\infty} \Lambda_{1, F}(n) e^{-n / Y} n^{-1-i t}+O(1)+O_{\alpha_{0}}\left(Y^{\alpha-1} \frac{\log T}{\log Y}\right)
$$

Hence for $Y=(\log T)^{1 /(1-\alpha)}$

$$
\begin{gathered}
\log |F(1+i t)| \leq|\log F(1+i t)| \leq \sum_{n \leq Y}\left|\Lambda_{1, F}(n)\right| n^{-1}+O_{\alpha_{0}}(1) \\
=\sum_{p \leq Y}|\tilde{a}(p)| p^{-1}+O_{\alpha_{0}}(1)
\end{gathered}
$$

since by (3.1)

$$
\bar{a}(p)=\alpha_{p}+\bar{\alpha}_{p}=\Lambda_{1, F}(p)
$$

and clearly

$$
\sum_{n \leq Y, n \neq p}\left|\Lambda_{1, F}(n)\right| n^{-1} \ll 1
$$

Now we use the asymptotic formula

$$
\sum_{n \leq x}|a(n)|^{2} \Lambda(n)=x^{\kappa}+O\left(x^{\kappa} \exp (-c \sqrt{\log x})\right) \quad(c>0)
$$

proved by A. Perelli [8] (we could also use e.g. Lemma 2 of M. Ram Murty [12]; this would give (3.3) with $\log \log t$ replaced by $\left.(\log \log t)^{1+\varepsilon}\right)$. This is the analogue of the prime number theorem for modular forms, and gives by partial summation

$$
\sum_{p \leq Y}|\tilde{a}(p)|^{2} p^{-1}=\sum_{p \leq Y}|a(p)|^{2} p^{-\kappa}=\log \log Y+O(1)
$$

Hence by the Cauchy-Schwarz inequality

$$
\sum_{p \leq Y}|\tilde{a}(p)| p^{-1} \leq\left(\sum_{p \leq Y}|\tilde{a}(p)|^{2} p^{-1}\right)^{\frac{1}{2}}\left(\sum_{p \leq Y} p^{-1}\right)^{\frac{1}{2}}=\log \log Y+O(1)
$$

since

$$
\sum_{p \leq Y} p^{-1}=\log \log Y+O(1)
$$

Therefore

$$
\log |F(1+i t)| \leq \log \log \log T+O_{a_{0}}(1) \quad(T \leq t \leq 2 T)
$$

$$
\begin{equation*}
F(1+i t) \ll_{\alpha_{\mathrm{a}}} \log \log t \tag{3.3}
\end{equation*}
$$

provided that (2.1) holds for $F(s)$. In particular, (3.3) is then true if the Riemann hypothesis for $F(s)$ holds.

The arguments that yield Theorem 1 will work also in the case of $F(s)$. The analogue of (2.11) can be obtained for $F(s)$, but the sketch of proof of this result would lead us too much astray. Thus the only noteworthy change in the proof is that we shall use the zero-density estimate

$$
\begin{equation*}
N_{F}(\sigma, T)=\sum_{\rho: F(\rho)=0, R e c} \sum_{\rho \geq \sigma, \mid I m} 1 \ll T<T^{3-3 \sigma} \log ^{C} T \tag{3.4}
\end{equation*}
$$

which certainly holds for $\frac{19}{20} \leq \sigma \leq 1$ and some $C>0$. One can easily obtain (3.4) by using the techniques developed for $\zeta(s)$ in Chapter 11 of [4] and the estimate

$$
\int_{1}^{T}\left|F\left(\frac{1}{2}+i t\right)\right|^{2} d t<T \log T
$$

This bound follows on representing $F\left(\frac{1}{2}+i t\right)$ as a sum of Dirichlet polynomials of length $<t$, and then using the mean value theorem for Dirichlet polynomials (see Chapter 5 of [4]). A sharp asymptotic formula for the integral in question is established by A. Good [3]. In this way we obtain
THEOREM 2. Let $1-\frac{A}{\log \log T} \leq \boldsymbol{\sigma} \leq 1$ for a constant $A>0$, and let R be the number of points $t_{r} \in[T, 2 T]$ such that $\left|t_{r}-t_{s}\right| \geq 1$ for $r \neq s$ and

$$
\begin{equation*}
\left|F\left(\sigma+i t_{r}\right)\right| \geq \exp \left\{\exp \left(\frac{2-2 \sigma}{A}(\log \log T)^{2}\right) \cdot \log \left(C(A)(\log \log T)^{2}\right)\right\} \tag{3.5}
\end{equation*}
$$

for a suitable constant $C(A)>0$. Then for $T \geq T_{0}(A)$

$$
\begin{equation*}
R \leq \exp \left(\frac{3 A \log T}{\log \log T}\right) \tag{3.6}
\end{equation*}
$$

Actually (3.6) can be replaced by the same type of bound as (2.12). To obtain this, it is necessary to show how the analogue of (2.11) holds for the zero-counting function of $F(s)$. We hope to return to this question elsewhere.
§ 4. Large values of the Dedekind zeta-function near $\sigma=1$.
We shall sketch now how the analogue of Theorem 2 may be established for the Dedekind zeta-function

$$
\zeta_{K}(s)=\sum_{n=1}^{\infty} H(n) n^{-s} \quad(\sigma=R e s>1)
$$

of an algebraic number field K such that $[K: Q]=N$. Here $H(n)$ denotes the number of non-zero integral ideals of K with norm equal to n. From the theory of algebraic number fields (see e.g. D.A. Marcus [6], Theorem 21 and Theorem 24) it is known that

$$
(p)=\prod_{i} \mathbf{p}_{i}^{e_{i}}, N \mathbf{p}_{i}=p^{f_{i}}, \sum_{i} e_{i} \tilde{f}_{i}=N
$$

and $e_{i}=1$ for almost all primes p. Let P_{0} be the finite set of primes which have some $e_{i}>1$. Factorising the polynomials $X^{f_{i}}-1$ we obtain, for Res>1,

$$
\begin{aligned}
& \zeta_{K}(s)=\prod_{\mathbf{p}}\left(1-(N \mathbf{p})^{-q}\right)^{-1}=\prod_{p} \prod_{\mathbf{p} \mid(p)}\left(1-(N \mathbf{p})^{-s}\right)^{-1} \\
& =\prod_{p \notin P_{0}} \prod_{j=1}^{N}\left(1-\chi_{j}(p) p^{-s}\right)^{-1} \prod_{p \in P_{0}} \prod_{j=1}^{N_{p}}\left(1-\chi_{j}(p) p^{-s}\right)^{-1}
\end{aligned}
$$

where $\left|\chi_{j}(p)\right|=1$ and $N_{p}<N$. If $p \in P_{0}$, then for $N_{p}<j \leq N$ we define $\chi_{j}(p)=0$. With this notation it follows that

$$
\begin{equation*}
\zeta_{K}(s)=\prod_{j=1}^{N} \prod_{p}\left(1-\chi_{j}(p) p^{-c}\right)^{-1} \quad\left(\left|\chi_{j}(p)\right| \leq 1, \text { Re } s>1\right) . \tag{4.1}
\end{equation*}
$$

Hence if we define $\Lambda_{K}(n)$, the analogue of $\Lambda(n)$ for $\zeta_{K}(s)$, by

$$
\begin{equation*}
-\frac{\zeta_{K}^{\prime}}{\zeta_{K}}(s)=\sum_{n=1}^{\infty} \Lambda_{K}(n) n^{-s} \quad\left(\operatorname{Re} s^{\prime}>1\right) \tag{4.2}
\end{equation*}
$$

then taking the logarithmic derivative of (4.1) and comparing with (4.2) we obtain

$$
\Lambda_{K}(n)= \begin{cases}0, & n=1, n \neq p^{m} \\ \sum_{j=1}^{N} \chi_{j}^{m}(p) \log p, & n=p^{m}\end{cases}
$$

Thus $0 \leq\left|\Lambda_{K}(n)\right| \leq N \Lambda(n)$, and in several ways $\zeta_{K}(s)$ is analogous to $\zeta^{N}(s)$. The analysis made for $F(s)$ in § 3 can be carried over to $\zeta_{K}(s)$ with obvious modifications in the proof. For example, (3.3) will become

$$
\begin{equation*}
\zeta_{K}(1+i t) \ll_{N, a_{0}}(\log \log t)^{N} \tag{4.3}
\end{equation*}
$$

provided that (2.1) holds with $\zeta_{K}(s)$ in place of $\zeta(s)$. However, using the prime ideal theorem for algebraic number fields in the form

$$
\sum_{N \mathrm{p} \leq x} 1=\int_{2}^{x} \frac{d t}{\log t}+O(x \exp (-c \sqrt{\log x})) \quad(c>0)
$$

one obtains by partial summation

$$
\sum_{N \mathrm{p} \leq x}\left(N_{\mathrm{p}}\right)^{-1}=\log \log x+O(1)
$$

This in turn gives a sharpening of (4.3), namely

$$
\zeta_{K}(1+i t)<\alpha_{\alpha_{\theta}} \log \log t
$$

In this case instead of Theorem 2 we shall obtain THEOREM 3. Let $1-\frac{A}{\log \hat{l o g} T} \leq \sigma \leq 1$ for a constant $A>0$, and let R be the number of points $t_{r} \in[T, 2 T]$ such that $\left|t_{r}-t_{s}\right| \geq 1$ for $r \neq s$ and

$$
\left|\zeta_{K}\left(\sigma+i t_{T}\right)\right| \geq \exp \left\{\exp \left(\frac{2-2 \sigma}{A}(\log \log T)^{2}\right) \cdot \log \left(B(\log \log T)^{2}\right)\right\}
$$

for some constant $B=B(A, N, K)>0$. Then for $T \geq T_{0}(A, N, K)$ and a suitable constant $D=D(A, N, K)>0$ we have

$$
\begin{equation*}
R \leq \exp \left(\frac{D \log T}{\log \log T}\right) \tag{4.4}
\end{equation*}
$$

A similar type of result could be obtained if, instead of the analogue of (3.4) which yields (4.4), we use the zero-density estimate of W. Stas [13] for $\zeta_{K}(s)$. As remarked in the Introduction, the whole approach is fairly general and can be used to deal with many other zeta-functions. For example, analogous results may be readily obtained for $L(s, \chi)$ and $L_{K, \mathcal{F}}(s, \chi)$, where χ is a character $\bmod q$, if we do not insist on uniformity in q etc.

REFERENCES

[1] T.M. Apostol, Modular functions and Dirichlet series in number theory, GTM 41, Springer Verlag, Berlin-Heidelberg-New York, 1976.
[2] P. Deligne, La conjecture de Weil, I.H.E.S. Publs. Math. 43 (1974), 273-307.
[3] A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), 278-295.
[4] A. Ivic, The Riemann zeta-function, John Wiley and Sons, New York, 1985.
[5] M. Jutila, A Method in the theory of exponential sums, Tata Institute of Fundamental Research, LN 80, Bombay, 1987 (publ. by Springer Verlag).
[6] D.A. Marcus, Number fields, Springer Verlag, Berlin-Heidelberg.New York, 1977.
[7] C.J. Moreno, Explicit formulas in the theory of automorphic forms, in "Number Theory Day" (ed. by M.B. Nathanson), LNM 626, Springer Verlag, Berlin-Heidelberg-New York, 1977, pp.73-216.
[8]A. Perelli, On the prime number theorem for the coefficients of certain modular forms, in "Elementary and analytic theory of numbers", Banach Center Publications, Vol. 17, PWN-Polish Scientific Publishers, Warsaw, 1985, 405-410.
[9] K. Ramachandra, On a discrete mean value theorem for $\zeta(s)$, J. Indian Math. Soc. 36 (1972), 307-316.
[10] K. Ramachandra, Mean value of the Riemann zeta-function and other remarks I, in "Proc. Coll. Soc. János Bolyai" Vol. 34 (Budapest, 1981), North-Holland, Amsterdam, 1984, pp.1317-1347.
[11] K. Ramachandra, A note on $\boldsymbol{\zeta}(1+i t)$, Hardy-Ramanujan J. 10 (1987), 2-8.
[12] M. Ram Murty, Oscillations of Fourier coefficientry of modular forms, Math. Annale: 262 (1983), 431-446.
[13] W. Stas, An explicit estimate for zeros of Dedekind zeta-functions, Acta Astith. 37 (1980), 43-54.
[14 E.C. Titicumarsin, ine theory of the Ripmann zeta-function (2nd ed. fev. by D.R. Heath-Bromp), Clarendon Press, Oxford, 1986.

A. Ivie
Katedra Matematike RGF-a
Universiteta u Beogradu
Djusina 7, 11000 Beograd
Jugoslavija

(RECEIVED BY EDITORS ON 29TH MARCH 1989).

