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LARGE VALUES OF SOME ZETA-FUNCTIONS 
NEAR THE LINE u = 1 

Aleksandar 

§ 1. Introduction. 

13 

To determine the order of ((1 +it) is one of the central problems in the 
theory of the Riemann zeta-function((.,). The best known upper bound at 
present is 

(1.1) ((1 + it) < loy213t. 

It is obtained by an application of the estimate 

L nit< N ezp( (C = 10-5 ,N < N' 2N,1 < N < t) 
N<n'!,N' og t 

which is a consequence of Vinogradov's method (see [4], Chapter 6) for the 
estimation 'Of exponential sums. Here and later f < g and f = O(g) both 
mean I /(z) Cg(z) for some C > 0 and z?:: z0 . On the other hand, it is 
known (see [14], Chapter 9) that on the Riemann hypothesis 

e"' < limsup I ((1 +it) I < 2e,. 
- t-+oo loglog t - ' 

where 1 = 0, 577 ... is Euler's constant. Thus it seems of interest to investi-
gate the occurrence of large values of ((1 +it), where "large" means roughly 
of the order not less than log log t. An interesting result in this direction waa 
obtained recently by K. Ramachandra [11]: Let X= ezp(loglog T/logloglog T), 
and cover [T, T + eX] with intervals of length 1/ X {the last interval may 
be shorter). H 0 < & < 1 is an arbitrary constant, then llog((l +it) 
dog log T for t in all of these intervals, except in at most K of them, where 
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K = K(e) is a COn!tant. Ramacllandra obtained his result by shrewdly 
applying an elementary inequality for complex numbers, and using complex 
integration to evalnate a certain sum over primes: His theorem il "local" 
in nature, in the sense that X = o,(logiT) as T --.. oo for any 6 > 0. 
It seems also i!l.teresting to consider the "global" problem of the estima-
tion of R, the number of points 4 in [T,2T] such that I t,.- t. 1 for 
r f:. 1, I log ((1 +it,.) loglog T (or I ((1 +it,.) (log T)c, where the 
method of [11] furnishes the same bound as in the former case). Breaking the 
interval [T, 2T] into subintervals of length ex and applying Ramachandra's 
estimate to each of these intervals one easily obtains 

(1.2) 

We could aha suppose that I 4 - t. 12:: x-1 for r f:. •, but this would only 
have the effect that the bound in (1.2) is multiplied by X. 

A non-trivial result on large values of (( u + it) when u is close to 1 
follows from Coro.llary 1 ofK. Bamachandra [9] : Let R denote the number 
of points 4 in [1,TJ anch that It,.- t. 12:: 1 for r f:. • and I ((u +it,.) V, 
where i u 1 and 

{1.3) ezp(C(log T loglog T)i) < V < T 100{I-v'fl
2 log*'T 

for a suitable conatam C > 0. Then uniformly 

(1.4) R < TV-A(l-v)-412 (A= 1/300./2 = 0,002357 ... ). 

The upper bound for V in (1.3) follows from the beat Jmown upper bound 
for (( u + it) (see Chapter 6 of [4]). From (1.3) it follows that 

u 1 - C(loglog Tflog T)113 

must hold with IOIDe suitable C > 0, hence (1.4) holds only if u is not too 
close to 1. From (1.4} one deduces easily 

(1.5} m(u} 2:: A(1- cr)-312 (A= 1/300-/2) 

for l < u u0 , where u0 < 1 is fixed, and m(u) i! the infimum of numbers 
m such that for a given u and any fixed £ > 0 

lT I(( tT + it) I"' dt < Tl+t:. 
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The bound (1.5) is mentioned in the Notes of Chapter 8 of [4], without 
any specific value of the corutant A. It is superseded by Theorem 8.4 of 
[4] for rr rr1o where tTt can be explicitly evaluated, but for rr close to 1 
{1.5) remains the best existing lower bound for m(rr). Some other relevant 
results on large values of ((rr +it) and related topics may be found inK. 
Ramachandra (10]. 

The aim of this paper is to provide estimates which improve (1.2) and 
(Vi) when rr is sufficiently close to 1, and V lies in a certain range. This will 
be expounded in the next section. The method of approach is fairly general, 
and can be used to furnish analogous results for a class of seta-functions 
that are similar to ((1). To this class belong the zeta-functions associated 
with the Fourier coefficients of cusp forma and the Dedekind zeta-funcbon 
of algebraic number fields. These zeta-functions will be dealt with in S 3 
and § 4, respectively. 
Acknowledgement. I wish to thank M. Jutila and K. Ra.machandra for 
valuable remarks and the Mathematical Institute of Belgrade for financing 
this research. 
§ 2. Large values of ((rr +it). 

The basic analytic principle of our approach is simple. In suitable hor-
izontal strips, free of zeros of ((.s), t(.s) can be estimated and found to be 
small. Integration shows that log ((.s) is then small, too. On the other hand, 
the number of well-spaced points 4 for which (( rr + itr) lies near a zero of 
((.s) may be estimated satisfactorily by zero-density estimates. 

We proceed now to give the details of this method . Henceforth suppose 
that t is given, w is a complex variable and 
(2.1) 

1 ((w) ::1 Ofor Re w > ao(2 ao < 1), I Imw-t log2T,T t 2T, T?. To. 

We shall bound I ({rr +it) I for a < tT 1, a > ao, where a and ao will be 
specified later . The starting point is the inversion formula (.s = rr +it) 

(2.2) oo 1 12+&oo (' :L;A{n)e-n/Y n-• = --. -(.s + w)f(w)Ywdw. 
n=l 271"1 2-&oo ( 

This follows from the Mellin integral (see (A.7) of [4]) 

1 h2+&oo e_., = -
2 

. r(w)z-wdw 
11'1 2-&oo 

(z > 0} 
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on setting z = nfY, multiplying by A{n)n-• and over n, since 

f:A(n)n-• = - ('(•) (u = Re • > 1). 
n;:J ((•) 

In {2.2) A(n) is the familiar von Mangolclt function (A(n) = log p if n = 
pm,p prime, and A(n) = 0 otherwise), andY ia a suitable parameter which 
satisfies 1 < Y < log2T. In (2.2} we replace the line of integration Re w = 2 
by the contour consisting of [a - u - j ilog2T, a - u + i ilog2T], [a -- u ± 
j ilog2T, 2 ± j ilog2T], [2 ± j 'ilog2T, 2 ± ioo]. In view of (2.1) it is seen that 
' + w will stay in a region free of zeros of the zeta-function, hence (a + w) 
will be regular as a function of w. The only pole of the integrand will be 
w = 0, which yields the residue -f(•). shall use the bound 

(2.3} 
.-lim tul . 

r(w) w I ' 
which is a weak form of Stirling's formula, to estimate the integrals in ques-
tion. In this way we obtain from (2.2} 
(2.4} 
co (' 1 { (' 

;A(n)e-n/Y n-• = -((•)+o{1}- 21ri JL ((s+w)r(w)Y"'dw (T-+ oo), 

where L denotes the segment [a-u-! ilog2T,a-u+i ilog2T] . To estimate 
the last integral we note that for z == .s + w, I I m w jlog2T, a = u + it 
we have (see (1.52) of (4}) 

(2 .5) ('(z) 1 log T fi,·-.z)- = L -- + O(log T) < - -, 
'> p:C(p)=O,IIm p-lm z - P a - ao 

since (2 .1) holds and there are< log T zeros pin every horizontal strip of 
unit width. Using again (2.3) it follows from (2.4) that 

(2.6) 
(' 

00 ya- "'lo T 
--;;(a)= 2:A(n)e-n/Y n-• + 0(1} + 0(( )( g )) 

.,. n-=l a - ll() tT - a 

holds uniformly for • = u +it, a < tT 1, if (2.1} is true. Set now in (2 .6) 
£T = 8 and integrate over 8 for u 8 2, a < £T 1. H we define 

A (n) = { 0, "= 1,n f. 'jl", 
t n =p"', 
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where p denotes primes, we obtain that uniformly 

if" = fT +it, a < fT 1, and (2.1} holds . 
We shall first examine some consequences of (2.7). Suppose ao in (2.1) 

is fixed, and take fT = l ,a = j{1 + ao) < 1. Then from (2.7) we infer that 

log ((1 +it)= ',EAt(n)e-n/Y n- t-it + 0(1) + Oao(yc•-1log T) , 
n$Y 

where the subscript in the last 0-term means that the constant in question 
depends on ao . With the choice Y = (log T)11(1-a) this gives 

log I ((1 +it) +it) :EAt(n)n- 1 + Oao(1) 
n$Y 

= }.:>-l + Oao(1) = loglog Y + Oao(1) = iogloglog T + Oao(1). 
p$Y 

Therefore 

(2.8) I ((1 +it) C(ao)loglog t (t to(ao)) 

for some constant C(ao) > 0 if (2.1) holds for a fixed a 0 . In case the 
Riemann hypothesis that all complex zeros of (( .s) satisfy Re ' = j is true, 
then (2 .1) holds with a 0 = j, and as mentioned in§ 1 one may take C{i) = 

+ £ in that case. 

Suppose now again that a 0 in (2.1) is fixed, and take a= ao+t:,ao+2£ 
fT fTo, where fTO < 1 is fixed. For N ,Y > 1 note that 

where p denotes primes. Also using the prime number theorem we have 

y1- <T yl - <T 2>-"- +0(-) - (1 - fT)log Y log2Y · p$Y 
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Integrating (2.6) we obtain then 

which gives 

y1-v 
log I ((a-+ it) ((a-+ it) :E A1(n)e-n/Y n-"' + 0( -1 y) 

og 

a_.,. log T Y 1- a_.,. log T (log T)(l-v)/(l-a) 
+O.,(Y -1 y)<.,-1 y +Y -1 y <e I I T og og og og og 

on choosing Y = (log T)1/(l-a). This means that 

(2.9} 
1-.. 

D(log t)I-O ! ((a-+ it} ezp( loglog t ) (t t0(t), D > 0) 

if a = ao + £, ao + 2£ a- ao, ao and ao are fixed, £ > 0 is a small, positive 
number, D = D(t) and {2.1) holds. If the Riemann hypothesis is true, then . 
one has (2.9) with a = i fort to by Theorem 14.5 of [14], and with more 
care the foregoing proof could be adapted to give this result also. 

Now we shall give an upper bound for I ((a-+ it) I in the whole range 
a0 <a< 1, choosing ao = 1- 1- ,oJ,! T,l- T 
a 1, where A > 0 is an absolute constant. In that case we obtain from 
(2.6} 

yt-a log T 
log ({.s) = :EA1 (n)e-n/Y n-•+0(-

1 
y)+O(y-A/10f110f1 T -

1 
y(loglog T)2), 

nSY og og 

y1-v 
log J {(a+ it) ((a+ it) LP_.,. + 0(1) + 0( lY) 

J>SY og 

+O(y-Afloglog T:: T)2 ) Y1-"(loglog Y + 0(1)) 

log T (loglog T)2). 
logY 
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Choose now 2 
Y = ezp( A(loglog T)2), 

so that the last 0-term above is bounded (but it depends on A). We obtain 

2- 2cr 2 2 log I ((cr +it) ezp(-A-(loglog T) )log(C(A)(loglog T) ), 

that is 
2- 2cr 2 2 (2.10) I ((cr +it) I$ ezp{ezp(-A-(loglog T) ) ·log(C(A)(loglog T) )}. 

This bound is valid for 1- a$ 1, C(A) > 0 a constant depending 
on A (whose value could be made explicit), if (2.1) holds with T T0(A). 

Consider now the region 

and divide it into subregions 

"D1c = {6 E "D: T + (k- 1)log2T Im 6 < T + le log2T}, 

where le = 1,2, ... ,{T/log2TJ. Using the zero-density estimate 

(2.11) N(a,T) = 
p:((p)=O,& 

(see Theorem 11.3 of [4]), it ia seen that there are 

p( 1600A 312log T )I 15T p( 1700A 312log T) < ez og < ez (loglog T)312 (loglog T)312 

zeros of ((.s) in 'D . Hence there are at most 

1800A312log T 
ezp( (loglog T)3/2 ) 

values of l: such that e1c = u 'D11 u 'Dic+1 contains a zero of C{.t). Thus 
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if we construct R arbitrary points t1 , ..• , tR belonging to [T, 2T) such that 
I 4 - t. 1 for r :f. 11 and (2.10) fails to hold for t = t1, ... ,tR and a 
suitable C(A), then each point tT + it1, ... ,IT+ itR must fall into soine £,. 
which contains a zero of ((11). This provides us with an upper bound for R, 
contained in 

THEOREM 1. Let 1- 1 for a constant A> 0, and let R 
be the number of poi11ts t,. E [T, 2TJ such that I t,. - t. 1 for r :/: 11 and 

2- 21T 2 2 I ((IT+ it,.) ezp{ezp(-A-(loglog T) ) ·log(C(A)(loglog T) )} 

for some suitable G(A) > 0. Then forT T0 (A) 

(2.12} 
2000A3/2 log T 

R $ e:r:p( (loglog T)3/2 ). 

Theorem 1 thus provides a large values estimate in the region 

A 
1 - l l T $ IT $ 1, og og 

which in a sense complements Ramarhandra's bound (1.4). Of course it is 
possible to obtain a similar type of result for a somewhat different region, 
but this one is of a particularly simple shape. Moreover in this region we 
have the bound (2.12), which is much stronger than just R T£. Note 
also that ezp( 2-"]!!.(loglog T)2) $ e for IT 1- T)', so that in the 
last region I ((IT+ it) I$ B(A)(loglog t)2" except for a relatively few points. 

For IT = 1 we have that (2.12) holds for the number of points t,. for 
which I ((1 +it,.) C(A)(loglog T)2 for some C(A) > 0. The same 
method of gives also that R TE holds for any fixed e > 0 if 
I ((I+it,.) D(e)loglog T for a suitable constant D(e) > 0. No information 
seems obtainable by our method in the ease when I ((1 +it,.) f(T) and 
f(T) > 0 is a function which satisfies /(T} == o(loglog T) as T oo. 

H ITO $ cr $ ITI < 1 is fixed, then it follows by the method of proof of 
Theorem 1 that 
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for the number of points tr E [T, 2T] such that I t,. - t. 1 for r 1= 1 and 
((u +it,.)> Te. Hence using the bound (see Chapter 6 of (4]) 

(( u + it) < ( u 1) 

it follows that 
1 

(2.13) m(u) 100 (1- u)-312 - 16 (uo u u1 < 1) 

for any fixed tr, j < uo < u < 1. Since, for 1- 32oo-213 u 1, we have 

_1_(1- u)-3/2 - 16 > _1_(1- tr)-3/2 
100 - 200 , 

it is seen that we obtain an alternative proof of (1.5), with a better value of 
A. 
§ 3. Large values of zeta-functions or cusp forms near u = 1. 

There are several classes of zeta-functions besides C(&) to which the result 
of Theorem 1 can be generalized, with appropriate modifications. A prop-
erty, essential that such a generalization may be made, is the existence of a 
simple Euler product representation for the zeta-function in question in the 
region tr = Re ' > 1. One such class is given by Dirichlet functions L(&, x), 
where the generalization is obvious and straightforward. More interesting 
examples appear to be the Dedekind zeta-functions, and the zeta-functions 
associated with Fourier coefficients of cusp forms, which will be treated in 
thls section. A classical representative is 

00 

T(&) = I;r(n)n-1112-• (Re & > 1), 
n=l 

where r(n) is Ramanujan's function, defined by 
00 

I>Cn)z";;: z{(1- z)(l- z2)(1- z3 ) ••• } 24 (I z I< 1). 
n=l 

More generally, let a(n) be the Fourier coefficients (see e.g. T.M. Apostol 
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[1)) of a normalized Heeke eigenform (cusp form) of weight " for the full 
modular group. Let ii(n) = and let 

"" (3.1) F(1) = :Ea(n)n-• = fi(1- app-•)-1(1- Cfpp-•)-1 (.&, > 1) . 
n==1 p 

be the zeta-function associated with a(n). The zeta-function F(1) seems 
more natural than the.zeta..fimction associated with a(n) directly (i.e. if we 
had in (3.1) a(n) and not il(n)), whose "critical strip" is j{N.- 1) < .& 1 < 
!(" + 1). On the other hand, the critical strip for F(&) is 0 < Re 1 < 1 as 
in the case of ((•), and the Riema.Dn hypothesis for F(1) is that all complex 
zeros p of F(•) satisfy Rep= l· The zeta-function F(1) is in many ways 
similar to ( 2(&), which is an analogy that is often exploited (seeM. Jutila 
[5!). It is !mown that the numbers ap in {3.1} are of the form ap = eill(p), and 
O(p) is real by a deep result ofP. Deligne [2}. It is precisely the Euler product 
representation which is important in our problem, namely the investigation 
of values of F(t1 +it) for t1 close to 1. Taking the logarithmic derivative in 
(3.1) we obtain 

- = EA,(n)n-• = :LE<a; +a;;') log; (Ru > 1). 
n=1 p m=l 11" 

Hence equating coefficients it follows that 

) {
0, n = 1,n # rf", 

Ay(n = (a;"+ n;.")log p, n =If", 

so that Ay(n) is the analogue of the von Mangoldt function A(n) for F(&). 
Proceeding as in the case of ((1) we have 

00 ya-alo T 1 
(3.2) log F(1) = :EAl,F(n)e-n/Y n-• + 0(1) + 0( ( g) log--) 

n=l tT-a 

uniformly for " = t1 + it,ao < a < t1 1, provided that (2.1) holds with 
F(1) in place of((&), where 

{
0, n = l,n -:f: If", 

At,F{n) = (a;"+ apm)ml, n = rf". 

In the course of the proof one needs the fact that the analogue of ( 2.5) holds 
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!or F(•), which follows e.g. from Lemma 3.4 o! C.J . Moreno [7). In the 
special case when CT = 1, ao is fixed a= }(1 + ao), we obtain !rom {3.2) 

. ) ( ) -n/Y -t-it+ 0(1) + O (Ya-tlog T) log F(1 + at = L...J t,F n e n ao lo y . 
g 

Hence !or Y = (log T)1/(l-a) 

log I F(1 +it) I log F(1 +it) E I Al,F(n) I n-1 + 0 00 (1) 
n$Y 

= L lli(p) I p-1 + Oae(1), 
p<Y 

since by (3.1) 
a(p) =a,+ a, = At.F(P) 

and clearly E I At,F(n) I n-1 < 1. 

Now we use the asymptotic formula 

L I a(n) 12 A(n) = z" + O(z"ezp( -cv'log z)) (c > 0), 

proved by A. Perelli [8) (we could also use e.g. Lemma 2 o! M. Ram Murty 
[12}; this would give (3.3) with loglog t replaced by (loglog t)l+t) . This is 
the analogue of the prime number theorem for modular forms, and gives by 
partial summation 

E I ii(p) 12 p-1 = L I a(p) 12 p-" = loglog Y + 0(1). 
p$Y p$Y 

Hence by the Cauchy-Schwarz inequality 

L I ii(p) I P- 1 (L I cl(p) 12 p-1)l(LP-1)! = loglog Y + 0(1), 

since 
LP-1 = loglog Y + 0(1). 
p<Y 
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Therefore 

log I F(1 +it) 1:5 logloglog T + Ooe(l) ('!' :5 t :5 2T), 

(3.3) F(1 + it) < ... loglog t, 

provided that (2.1) holds for F(.a). In particular, (3.3) .i1 then true if the 
Riemann hypothes.il for F(.t) holda. 

The arguments that yield Theorem 1 will work also in the case of F(a). 
The analogue of (2.11) can be obtained for F(•), but the sketch of proof of 
this result would lead us too much astray. Thus the only noteworthy change 
in the proof is that we shall use the zero-deusity estimate 

(3.4) 
p-.F(p)=O,.Ro 

which certainly holds :5 u :5 1 and some C > 0. One can easily obtain 
(3.4) by uaing the tedmiques developed for ((•) in Chapter 11 of [4] and the 
estimate 

i T 1 
l F(- + it) 12 dt < T log T. 

1 2 

This bound follows on representing F( l + it) as a sum of Dirichlet polyno-
mials of length < t, and then using the mean value theorem for Dirichlet 
polynomia.IJ (see Chapter 5 of (4]). A sharp asymptotic formula for the in-
tegral .in question is established by A. Good [3]. In this way we obtain 

THEOREM 2. Let 1 - :$ ,. :5 1 for a constant A > 0, and let R 
be the number of points t,. E [T, 2T] such that I t,. - t, 1 for r 'I " and 

2- 2u 2 2 (3.5) I F(u +it,.) up{ezp(-A-(loglog T) ) ·log(C(A)(loglog T) )} 

for a suitable constant C(A) > 0. Then To( A) 

(3.6) 3A log T 
R :5 ezp( loglog T ). 
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Actually (3.6) can be replaced by the same type of bound as (2.12). 
To obtain this, it is necessary to show how the analogue of (2.11) holds 
for the zero-counting function ofF(&). We hope to return to this question 
elsewhere. 
§ 4. Large values of the Dedekind zeta-function near t1 = 1. 

We shall sketch now how the analogue of Theorem 2 may be established 
for the Dedekind zeta-function 

00 

(x(-') = 2:H(n)n-• (t1 = Re "> 1) 
n=l 

of an algebraic number field K such that [K: Q] = N. Here H(n) denotes 
the number of non-zero integral ideals of K with norm equal to n . From 
the theory of algebraic number fields (see e.g. D.A. Marcus [6), Theorem 21 
and Theorem 24) it is known that 

(p) = Np; =ph, :Eed; = N, 
' i 

and e; = 1 for almost all primes p. Let Po be the finite set of primes 
which have some e; > 1. Factorising the polynomials X/;- 1 we obtain, for 
Re "> 1, 

·(x(s) = fi(1- (Np) - •)-1 =IT IT (1- (Np)-•)- 1 

p p pj(p) 

N N, 
= II II c1 --x;(p)p-•tl II II c1 - x;(p)p-•)- 1 

pEJ'oj=l 

where I X;(p) I= 1 and N, < N. lf p E Po, then fot; N, < j N we define 
X;(P) == 0. With this notation it follows that 

N 
(4-1) (x(s) = IIII(l- X;(p)p-•tl (I x;(P) 1,Re" > 1). 

i=l p 
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Hence if we define Ax(n}, the analogue of A(r.} for {K-(1}, by 

(4.2) - = EAx(n)n-• (Re'). 1), 

then ta.lring the 1ogazithmie derivative of (U) and eompaz.ing with (4.2} we 
obtain 

{
o, n=1,nf.rr, 

Ax(n) = tx'f'(p)log p, n = rf". 

Thus 0 Ax(n) NA(n), and in several waya (x(•} ia analogous to 
(N(•}. The analyaia made for F(1) in§ 3 can be ea.rried over to (x(a} with 
obvious modifications in the proof. For example, (3.3) will become 

(4.3} {K(l +it} <N,oo (loglog t)N 

provided that (2.1) holds with {K{'} in place r:1 ((1). However, using the 
prime ideal theorem for algebraic number field! in the form 

L 1 = 1• 1 dt t + O{z ezp(-e-./log z)) (c > 0}, 
NpSz 2 og 

one obtains by partial aummation 

E (Np)-1 = loglog :1! + 0(1}. 
NpS• 

This in tum gives a ahazpening oC (4.3), namely 

(x(1 + it) <ae loglog t. 

In this case instead ofThe<nm 2 we ahall obtain 

THEOREM 3. Let 1- (T 1 for a conatant A> 0, and let R 
be the number of points t.. E [T, 2T] such that I f.. - t. 1 for r I ' and 

2-26 2 2 I (x(cr +if..} ezp{ezp(-A-(loglog T) ) ·log(B(loglog T} )} 
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for some constant B = B(A,N,K) > 0. Then To(A,N,K) and a 
suitable constant D = D(A, N, K) > 0 we have 

(4.4) R < ezp( D log T ). 
- loglog T 

A similar type of result could be obtained if, instead of the analogue of 
(3.4) which yields (4.4), we use the zero-density estimate of W. Stu [13] for 
(K( 1 ). As remarked in the Introduction, the .whole approach iB fairly general 
and can be used to deal with many other zeta-functions. For example, 
analogous results may be readily obtained for L(1,x) and LK,F(I, x), where 
xis a character mod q, i! we do not insist on uniformity in q etc. 
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