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LARGE VALUES OF SOME ZETA-FUNCTIONS
NEAR THE LINE ¢ =1

Aleksandar Ivié

§ 1. Introduction.

To determine the order of {(1 + it) is one of the central problems in the
theory of the Riemann zeta-function {{(s). The best known upper bound at
present is

(1.1) ¢(1 +it) < log*/3t.
It is obtained by an application of the estimate

C log3N

gt ) (C=W N <N <2N1<N <)

3T n* < N ezp(

N<n<N'

which is a consequence of Vinogradov’s method (see [4], Chapter 6) for the
estimation of exponential sums. Here and later f < ¢ and f = O(g) both
mean | f(z) |< Cg(z) for some C > 0 and z > zo. On the other hand, it is
known (see [14], Chapter 9) that on the Riemann hypothesis

¢(1+1it)|

e < limsup |

< 2¢"
t—+0o loglog t ¢

where v = 0,577... is Euler’s constant. Thus it seems of interest to investi-
gate the occurrence of large values of {(1 +it), where “large” means roughly
of the order not less than loglog ¢. An interesting result in this direction was
obtained recently by K. Ramachandra {11] : Let X = ezp(loglog T/logloglog T),
and cover [T, T + eX] with intervals of length 1/X (the last interval may
be shorter). If 0 < ¢ < 1 is an arbitrary constant, then | log{(1 + it) |>
eloglog T for t in all of these intervals, except in at most K of them, where
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K = K(¢) is a constant. Ramachandra obtained his result by shrewdly
applying an elementary inequality for complex numbers, and using complex
integration to evaluate a certain sum over primes: His theorem is “local”
in nature, in the sense that X = 0;(log®T) as T — oo for any § > 0.
It seems also interesting to consider the “global” problem of the estima-
tion of R, the number of points ¢, in {T,2T] such that | ¢, ~ ¢, [> 1 for
r # 8,| log C(2 +4t.) |> € loglog T (or | {(1 + it,) |> (log T)*, where the
method of [11] furnishes the same bound as in the former case). Breaking the
interval (T, 2T into subintervals of length ¢* and applying Ramachandra’s
estimate to each of these intervals one easily obtains

(1.2) | R &, Te 31X,

We could also suppose that | t, — ¢, |> X! for r # s, but this would only
have the effect that the bound in (1.2) is multiplied by X.

A non-trivial result on large values of ((o + it) when o is close to 1
follows from Corollary 1 of K. Ramachandra [9] : Let R denote the number
of points t, in [1,T] such that | ¢, — ¢, |[> 1 for r # s and | {(¢ + it,) |> V,
where § <o <1and

(1.3) ezp(C(log T loglog T)}) € V <« T~/ pg2/3p
for a suitable constant C' > 0. Then uniformly

(1.4) R < TV-A1-2"" (4 = 1/300v/2 = 0,002357...).

The upper bound for V in (1.3) follows from the best known upper bound
for {(o + it) (see Chapter 6 of [4]). From (1.3) it follows that

o <1 - C(loglog T/log T)/*

must hold with some suitable C' > 0, hence (1.4) holds only if o is not too
close to 1. From (1.4) one deduces easily

(1.5) m(o) > A(1 - 0)™¥? (A =1/300v2)

for 1 < ¢ < g, where og < 1 is fixed, and m(c) i3 the infimum of numbers
m such that for a given ¢ and any fixed £ > 0

T
/1 | ¢(o + i) ™ dt <« T
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The bound (1.5) is mentioned in the Notes of Chapter 8 of [4], without
any specific value of the constant A. It is superseded by Theorem 8.4 of
[4] for ¢ < 01, where oy can be explicitly evaluated, but for o close to 1
(1.5) remains the best existing lower bound for m(o). Some other relevant
results on large values of {(o + it) and related topics may be found in K.
Ramachandra [10].

The aim of this paper is to provide estimates which improve (1.2) and
(1.4) when o is sufficiently close to 1, and V lies in a certain range. This will
be expounded in the next section. The method of approach is fairly general,
and can be used to furnish analogous results for a class of zeta-functions
that are similar to {(s). To this class belong the zeta-functions associated
with the Fourier coefficients of cusp forms and the Dedekind zeta-function
of algebraic number fields. These zeta-functions will be dealt with in § 3
and § 4, respectively.

Acknowledgement. I wish to thank M. Jutila and K. Ramachandra for
valuable remarks and the Mathematical Instltute of Belgrade for financing
this research.

§ 2. Large values of ((o + it).

The basic analytic principle of our approach is simple. In suitable hor-
izontal strips, free of zeros of {(s), %(a) can be estimated and found to be
small. Integration shows that log {(s) is then small, too. On the other hand,
the number of well-spaced points ¢, for which ((o + it,) lies near a zero of
¢(s) may be estimated satisfactorily by zero-density estimates.

We proceed now to give the details of this method. Henceforth suppose
that ¢ is given, w is a complex variable and

(21)
Clw) & Do Rew's ao(% < ap < 1),| Imw—t |< log?T,T < t <2T,T > T.

We shall bound | {{(¢ + it) | for a < o < 1,a > ap, where a and ap will be
specified later. The starting point is the inversion formula (s = o + it)
1 2+ic0 Cl

(2.2) iA(n)e'“/Y'n“z—m . et wIT)Ydw.

This follows from the Mellin integral (see (A.7) of [4])

e 1 2+|'eor i i
e -‘2_;_1'/2_.-00 (w)z™¥dw (z > 0)
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on setting z = n/Y, multiplying by A(n)n~* and summing over n, since

S Al — _5(8) -
nglll(ﬂ)ﬂ = (c=Res>1).
In (2.2) A(n) is the familiar von Mangoldt function (A(n) = log pif n =
™, p prime, and A(n) = 0 otherwise), and Y is a suitable parameter which
satisfies 1 € Y < log?T. In (2.2) we replace the line of integration Re w = 2
by the contour consisting of [@ — o — § ilog?T,a — o + 3 ilog?T),[a — o +
5 ilog®T, 2+ 1 ilog?T],[2 1+ § ilog’T,2 + ico]. In view of (2.1) it is seen that
s+ w will stay in a region free of zeros of the zeta-function, hence % (s+w)
will be regular as a function of w. The only pole of the integrand will be
w = 0, which yields the residue —%1(.9). Wa shall use the bound

3“;1"‘ w}
lw] ’

which is a weak form of Stirling’s formula, to estimate the integrals in ques-
tion. In this way we obtain from (2.2)

(2:4)
;Mn)e—n/?n-c = ——%(s)+o(1)— -2-:__1/5 %(‘_*_w)r(w)ywdw (T - “3°)'

(2.3) I'(w) <

where L denotes the segment [a— o — § ilog?T,a~ 0o +1 ilogT]. To estimate
the last integral we note that for z = s + w,| Im w |< § l0g?T, s = o + it
we have (see (1.52) of [4])

log T
a-—-ap’

'
25 2. T 4+ 0(log T) <
p(p)=0\m p—Im s|<1° ~ P

gince (2.1) holds and there are € log T zeros p in every horizontal strip of
unit width. Using again (2.3) it follows from (2.4) that

Y*log T
- ag)(o — a)

7 00

26)  -S(s)= Y Ame ™0~ +0(1) + 0 )
¢ = (a

holds uniformly for s = o + it,a < o < 1, if (2.1) is true. Set now in (2.6)

o = 6 and integrate over § for 0 < 0 < 2,a < ¢ < 1. If we define

Al(n)z{oli ﬂ=1,n#pm»

o n=pT,
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where p denotes primes, we obtain that uniformly

90 th«-a’ 1
(2.7) log ¢(s) = Y Ax(n)e™ ¥ 0" 4 O(1) + O(;——=log T log——),

n=1 (a - ao)

if s=0+it,a <o <1,and (2.1) holds.

We shall first examine some consequences of (2.7). Suppose ag in (2.1)
is fixed, and take o = 1,a = 3(1 + ap) < 1. Then from (2.7) we infer that

log ¢(1+it) = Y Ay(n)e™™ Y n=2"* 4 O(1) + Oy (Y*"log T),
n<Y

where the subscript in the last O-term means that the constant in question
depends on ap. With the choice Y = (log T)*/(1-2) this gives

log | C(1 4 it) [<] log{(1 +it) [< 3 As(r)n™" + Ogy(1)
n<Y

= Zp"‘ + Oqag(1) = loglog Y + Oq,(1) = logloglog T + Og,(1).
p<Y

Therefore

(2.8) | {(1 + it) |[< C(ao)loglog t (¢ 2 to(w))

for some constant C(ap) > 0 if (2.1) holds for a fixed ap. In case the
Riemann hypothesis that all complex zeros of {(s) satisfy Re s = % is true,
then (2.1} holds with ag = J, and as mentioned in § 1 one may take C(3) =
2¢7 + ¢ in that case.

Suppose now again that ag in (2.1) is fixed, and take a@ = ap+¢,a0+2¢ <
o < o9, where o9 < 1 i8 fixed. For N,Y » 1 note that
il 2 YN-°
log N Jy log N’

(= o]
Y e g 'L t=7e Y (log t)tdt <
>N

where p denotes primes. Also using the prime number theorem we have
Yl-—cr Yl-a

z;p T - o)log Y * 0(1092}’)'
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Integrating (2.6) we obtain then

log T

tog ¢(s) = 3-Aa(me™/" " +0(1) + O(v*~ 12 L),
n=1

which gives

Yl—a'
O

log | {(o + it) |<| log {(o + it} |< ZAl(n)e""/Yn“" + O(l Y)
. n<Y 9

+0 (Ya—a- logT Skl T log T (log T)(l""’)/(l—ﬂ)
€

log Y) e logY +¥ logY ™° loglog T
on choosing Y = (log T)}/(~®), This means that

D(log t){i'!"

(2.9) L elo +it) I< ez =0

) (¢ >1t(e), D >0)

fa=ag+e,00+2 < o < gg,0p and oy are fixed, £ > 0i8 a small, positive
number, D = D(¢) and (2.1) holds. If the Riemann bypothesis is true, then -
one has (2.9) with a = { for t > {; by Theorem 14.5 of [14}, and with more
care the foregoing proof could be adapted to give this result also.

Now we shall give an upper bound for | {(¢ + it} | in the whole range
a0<a<asl,choosingagzl—rgg?wo%—r,azl-ﬁ%?,l—»r‘;-gﬁ—g—rg
o < 1, where A > 0 is an absclute constant. In that case we obtain from

(2.6)

Yl-e log T
= e = -4/ T_g_ 2
log ((s) ,,§<YA1 (n)e n*+0( log ¥ H+OoY loglog Tog ¥ (loglag T)*),

Ylua'
log Y)

log | {(o + it) |<) log (o +it) I< Y p™" + O(1) + O(
p<Y

+O(Y ~Aloslog T%%(:ogzag T)?) < Y~ (loglog Y + O(1))

FO(Y ST

logT 2
log T)?).
,ogy(loa og T)")
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Choose now 3
Y = ezp(-z(loylog- T,

s0 that the last O-term above is bounded (but it depends on A). We obtain

tog | ((o + i) |< exp( > (loglog T)*)log(C(A)(loglog TY?)
that is

(2.10) | ¢(o +it) [< explern( 2= 22 (loglog T)?) -log(C(A)(loglog T))}.

This bound is valid for 1 - lo_al—T <o <1,C(A) > 0 a constant depending
on A (whose value could be made explicit), if (2.1) holds with T > Tg(A).

Consider now the region

D={sc€C:Res>1- T<Ims<2T}

loglog T’

and divide it into subregions
Dy={s€D:T+(k—-1)og’T < Im s < T + k log’T},
where k = 1,2,...,[T/log?T). Using the zero-density estimate
(2.11) N(o,T) = 3 1.« T00001-0)* /% 15 16
p:((p)=0,Re p>a,|Im p|<T
(see Theorem 11.3 of [4]), it is seen that there are

1600A43/2log T
(loglog T')3/?

1700432109 T

log'®T
Jlog T & eanf (loglog T)3/2

< ezp(

zeros of {(s) in D. Hence there are at most

- 18004%3log T
3 (loglog T)3/?

values of k such that €, = Dj_; U Dy U Dyyy contains a zero of {(s). Thus
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if we construct R arbitrary points i1, ...,¢5 belonging to [T, 27] such that
| t- ~ ¢, {2 1 for # # s and (2.10) fails to hold for ¢t = ¢;,...,r and a
suitable C(A4), then each point & + §#;,...,0 + it must fall into some &
which contains a zero of {(s). This provides us with an upper bound for R,
contained in

THEOREM 1. Let 1 — =2 < ¢ < 1 for a constant 4 > 0, and let B
be the number of points £, € [T,2T] such that | £, — ¢, (> 1 for r # s and

| ¢(o + it,) |> ezb{ezp(2 gza(laglog T)?} - tog(C{A){loglog T)*)}

for some suitable C(A) > 0. Then for T > Ty( 4)

2000A4%/2 Jog T

(2.12) R < ezp( (Toglog )78

Theorem 1 thus provides a large values estimate in the region

1—-—— <01
IoglogT“’a_ d

which in a sense complements Ramachandra’s bound (1.4). Of course it is
possible to obtain a similar type of result for a somewhat different region,
but this one is of a particularly simple shape. Moreover in this region we
have the bound (2.12), which is much stronger than just B €, T*. Note
also that ezp(3522 (loglog T)*) < e for & > 1 — gzfoys, 80 that in the
last region | {(o + it) (< B(4)(loglog t)* except for a relatively few points.

For ¢ = 1 we have that (2.12) holds for the number of points ¢, for
which | ¢(1 +it,) |> C(A)(loglog T)? for some C(A) > 0. The same
method of proof gives also that R <€, T holds for any fixed ¢ > 0 if
| ¢(1+1t,) [> D(e)loglog T for a suitable constant D{e) > 0. No information
seems obtainable by our method in the case when | {(1 +it,) |> f(T') and
f(T) > 0 is s function which satisfies f(T') = o(loglog T) as T — 0.

If op < ¢ < 03 < 1 is fixed, then it follows by the method of proof of
Theorem 1 that
R, T1600(1-) /4 2¢
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for the number of points t, € (T,2T] such that | ¢, ~ £, |> 1 for r # s and
¢(o + it,) > T*. Hence using the bound (see Chapter 6 of [4])

(lo + it) <« 10001 1og2/3% (% <o<1)
it follows that

. |
(2.13) m(o) > o=(1- o) _16 (pp<o<o<1)

for any fixed 0,3} < g9 < o < 1. Since, for 1 - 3200~%/% < & < 1, we have

)32 _16> ——(1 — o),

100(1 ~ 200

it is seen that we obtain an alternative proof of (1.5), with a better value of
A

§ 3. Large values of zeta-functions of cusp forms near o = 1.

There are several classes of zeta-functions besides {(s) to which the result
of Theorem 1 can be generalized, with appropriate modifications. A prop-
erty, essential that such a generalization may be made, is the existence of a
simple Euler product representation for the zeta-function in question in the
region ¢ = Re s > 1. One such class is given by Dirichlet functions L(s, x),
where the generalization is obvious and straightforward. More interesting
examples appear to be the Dedekind zeta-functions, and the zeta-functions
associated with Fourier coefficients of cusp forms, which will be treated in
this section. A classical representative is

T(s) = i'r(n)n‘"/"' (Re s > 1),

n=1
where 7(n) is Ramanujan’s function, defined by

if(n)z" =z{(1-2)(1-2*)(1 -2%).}* (Jz|<1).
n=1

More generally, let a(n) be the Fourier coefficients (see e.g. T.M. Apostol
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[1]) of a normalized Hecke eigenform (cusp form) of weight x for the full
modular group. Let d(n) = al n)n‘i("‘l), and let

(3.1) F(s)= i&(n)n"' =Tl(1-epp™) A —Tp™*) (Res>1)
n=] 4 ’

be the zeta-function associated with a(n). The zeta-function F(s) seems
more natural than the zeta-function associated with a{n) directly (i.e. if we
had in (3.1) a(n) and not &(n)), whose “critical strip” is $(k — 1) < Re s <

3(s+1). On the other hand, the critical strip for F(s)is 0 < Re s <1 as
in the case of {(s), and the Riemann hypothesis for F(s) is that all complex
zeros p of F(s) satisfy Re p = §. The zeta-function F(s) is in many ways
similar to ¢(?(s), which is an analogy that is often exploited (see M. Jutila
5]). It is known that the numbers e, in (3.1) are of the form a, = ¢}, and
&(p) is real by a deep result of P. Deligne [2]. It is precisely the Euler product
representation which is important in our problem, namely the investigation
of values of F(o + it) for o close to 1. Taking the logarithmic derivative in
(3.1) we obtain

= S = DY (o + 37V R (Re s> )

P m=1

Hence equating coefficients it follows that

—lﬂ#pm:
AF(ﬂ)={(a;=+u;;‘)log p, n=p",

so that Ap(n) is the analogue of the von Mangoldt function A(n) for F(s).
Proceeding as in the case of {(s) we have

o —nfY, s Ya-®log T 1
(3.2) log F(s) = > My r(n)e ™ n=" +0(1) + O( log )
n=1 ( )
uniformly for s = ¢ 4 it,0p < a < ¢ < 1, provided that (2.1) holds with
F(s) in place of {(s), where

n=1,n#p",

hur) = {{(om oy, e g

In the course of the proof one needs the fact that the analogue of (2.5) holds
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for F(s), which follows e.g. from Lemma 3.4 of C.J. Moreno [7]. In the
special case when 0 = 1,9 is fixed a = 3(1 + ao), we obtain from (3.2)

. = -nfY —1-it 0 fo) Ya—l Iog T
log F(1 +it) = nz::lAl.F(")e 17"+ 0(1) + Oag m)-

Hence for Y = (log T)}/{1-)

log | F(1+it) |<[log F(1+it)|< 3 | Ayp(n) | n™" + 0g (1)
n<Y

=3 1a(p) | P! + 0ay(1),

psY

since by (3.1)
(p) = ap + T = A1 r(p)

and clearly

> IAr(n) [t <1
n<Y n#p

Now we use the asymptotic formula

> La(n) {* A(n) = 2" + O(z"ezp(—cVIog z)) (c > 0),

n<z

proved by A. Perelli (8] {we could also use e.g. Lemma 2 of M. Ram Murty
(12]; this would give (3.3) with leglog t replaced by (loglog £)'*¢). This is
the analogue of the prime number theorem for modular forms, and gives by
partial summation

Z la(p) 2 p! = Z | a(p) |* p~* = loglog Y + O(1).
p<Y p<Y

Hence by the Cauchy-Schwarz inequality
> lam) | p7 < (X 1) P p)} = loglog Y + 0(1),

p<Y p<Y <Y

since

S p7! = loglog Y + O(1).
p<Y
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Therefore

log | F(1 +it) |< logloglog T + Oae(1) (T <t <2T),

(3.3) F(1 + t) € loglog t,

provided that (2.1) holds for F(s). In particular, (3.3) is then true if the
Riemann hypothesis for F(s) holds.

The arguments that yield Theorem 1 will work also in the case of F(s).
The analogue of (2.11) can be obtained for F(s), but the sketch of proof of
this result would lead us too much astray. Thus the only noteworthy change
in the proof is that we shall use the zero-density estimate

(3.4) Np(o,T) = b 1 & T3 %10gCT
p:F(p)=0Re p2e|Im p|<T

which certainly holds for 32 < o < 1 and some C > 0. One can easily obtain
(3.4) by using the technigues developed for {(s) in Chapter 11 of [4] and the
egtimate

T
j |F(%+it)|’dt(TIogT.
1

This bound follows on representing F(} + it) as a sum of Dirichlet polyno-
mials of length < ¢, and then using the mean value theorem for Dirichlet
polynomials (see Chapter 5 of [4]). A sharp asymptotic formula for the in-
tegral in question is established by A. Good [3]. In this way we obtain

THEOREM 2. Letl—,;%-,.gaglforaconstanm>o,andletR
bethennmberofpointst,e[T,ﬂ’] such that | ¢, — ¢, |> 1 for r # s and

(3.5) | F(o +it,) ]> czp{ezp(

29 (loglog T)?) - log(C(4)(loglog T)?)}

for a suitable constant C(A) > 0. Then for T > Tp(4)

34 on T

(3.6) R < erp T
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Actually (3.6) can be replaced by the same type of bound as (2.12).
To obtain this, it is necessary to show how the analogue of (2.11) holds
for the zero-counting function of F(s). We hope to return to this question

elsewhere.
§ 4. Large values of the Dedekind zeta-function near o = 1.

We shall sketch now how the analogue of Theorem 2 may be estabhshed
for the Dedekind zeta-function

Cx(s) = iH(n)n“‘ (e =Res>1)

of an algebraic number field K such that [K : Q] = N. Here H(n) denotes
the number of non-zero integral ideals of K with norm equal to n. From
the theory of algebraic number fields (see e.g. D.A. Marcus [6], Theorem 21
and Theorem 24) it is known that

(p) = pr‘,Npi =P",Zeife = N,

and e; = 1 for almost all primes p. Let Py be the finite set of primes
which have some e; > 1. Factorising the polynomials X% — 1 we obtain, for
Res>1,

k() =[[a-(wp) )" =I[II (0 - (Np) ™)
P

? p|(p)

= 1] H(l ~xi@p~*) I H(l—xJ(p)p .

p¢Pyi=1 pEfpi=1

where | x;(p) |= 1 and Ny < N. If p € R, then for N, < j < N we define
x;(p) = 0. With this notation it follows that

N )
(41)  Cx(s) = TITT(1 - xi(0)p™*)™" (I xi(p) I< 1, Re s > 1).

i=1p
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Hence if we define Ax(n), the analogue of A(%) for {x(s), by

(4.2) ——%(a) = i!\x(n)n“‘ (Re s > 1),

then taking the bganthzmc derivative of (4.1) and comparing with (4.2) we

obtain
| 0, =1,n # p",
N
=1

Thus 0 <| Ax(nr) |< NA(n), and in several ways (x(s) is analogous to
¢V(s). The analysis made for F(s) in § 3 can be carried over to {x(s) with
obvious modifications in the proof. For example, (3.3} will become

(4.3) Cx(1 + it) <N 20 (loglog t)¥

provided that (2.1) holds with {x(s) in place of {(s). However, using the
prime ideal theorem for algebraic number fields in the form

Y i= / o3 + O(z ezp(—c\Tog 2)) (e >0),
Np<z

one obtains by partial summation
Z (Np)~* = loglog z + O(1).
Np<=
This in turn gives a sharpening of (4.3), namely
(x (1 + it) €ap loglog t.

In this case instead of Theorem 2 we shall obtain

THEOREM 3. Let 1 — < o <1foraconstant A > 0, and let R
be the number of points £, g:‘ﬂ']suchthatlt,—t.lzlforr#sand

| Cx(o +it.) > ezpleap( 2=

(loglog T)?) - log(B(loglog T)?)}



Values of Some Zeta-Functions 27

for some constant B = B(A,N,K) > 0. Then for T > To(A,N,K) and a
suitable constant D = D(A, N, K) > 0 we have

D log T)

< —
(4.4) R < ezp( Toglog T

A similar type of result could be obtained if, instead of the analogue of
(3.4) which yields (4.4), we use the zero-density estimate of W. Stad [13] for
Cx(8). As remarked in the Introduction, the whole approach is fairly general
and can be used to deal with many other zeta-functions. For example,
analogous results may be readily obtained for L(s,x) and Lx x(s, x), where
x is a character mod ¢, if we do not insist on uniformity in g etc.
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