ON THE ALGEBRAIC DIFFERERTIAL EQUATIONS SATISFIED BY SOAE ELLIPTIC FUNCTIONS (I)

By
P. CHOWLA AND S. CHOWLA

Summary

When a is an odd positive integer it is implicit in the work of Jacobl that the functions

$$
Y=\sum_{1}^{\infty} \sigma_{a}(n) X^{n}
$$

where

$$
\sigma_{\mathrm{a}}(\mathrm{n})=\underset{\mathrm{d} / \mathrm{n}}{\mathrm{z}} \mathrm{~d}^{\mathrm{a}}
$$

(the sum of the a th powers of the divisors of n) satisfy an algebraic differential equation i. e. there is a polynomial T, not identically 0 , such that $T\left(X, Y, Y_{1}, \ldots, Y_{m}\right)=0$. When $a=1$ we give a new argument based on Kamanujan that wo may take $m=3$ here.
§ 1. With Ramanujan (Coll. Papers, pp 138-142) we write

$$
\begin{aligned}
& P=1-24{\underset{1}{2}}_{\infty}^{\infty} \sigma_{1} \text { (n) } X^{n} \\
& \mathrm{Q}=1+240 \sum_{1}^{\infty}{ }_{\mathrm{L}} \sigma_{3}(\mathrm{n}) \mathrm{X}^{\mathrm{n}} \\
& \mathrm{R}=1-504 \sum_{1}^{\infty} \sigma_{5}(\mathrm{n}) \mathrm{X}^{\mathrm{n}}
\end{aligned}
$$

Then we have

$$
\text { (a) } \quad X \frac{d P}{d X}=\frac{P^{\overline{2}}-Q}{12}
$$

(β) $\quad \mathbf{X} \frac{\mathrm{dQ}}{\mathrm{dX}}=: \frac{\mathbf{P Q}-\mathbf{R}}{3}$
(y) $X \frac{d R}{d X}=\frac{P R-Q^{2}}{2}$

Now differentiate (a) twice w.r.t. " X '. The first step gives us

$$
\text { (8) } \frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dX}^{2}} \text { in terms of } \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{X}
$$

Another differentiation gives us
(E) $\frac{d^{3} P}{d X^{3}}$ in terms of P, Q, R, X.

Now elininate Q, R from the 3 equations (α), (8), (() .
This relation (which can be converted into a polynomial relation) gives us

$$
T\left(X, P, \frac{d P}{d X}, \frac{d^{2} P}{d X^{2}}, \frac{d^{3} P}{d X^{3}}\right)=0
$$

Here \mathbf{T} is a polynomial (not identically 0) in the 5 quantities $X, P, P_{m}(I \leqslant m \leqslant 3)$ where P_{m} stands for $\frac{d^{m} P}{d X^{m}}$.

Thus we have a third order alg. diff. eqn. satisfied by P, and therefore by $\sum_{1}^{\infty} \sigma_{1}(\mathrm{n}) \mathrm{X}^{\mathrm{n}}$. We also risk a conjecture.

The function

$$
Y=\sum_{1}^{\infty} \sigma_{a}(n) X^{n}
$$

does not satisfy an alg. diffcrential equation when a is an even positive integer.

We have been unable to prove anything in this direction.

