ON ALGEBRAIC DIFFERENTIAL EQUATIONS SATISFIED BY SOME ELLIPTIC FUNCTIONS (II)

By
P. CHOWLA and S. CHOWLA

Summary :

In (I) we obtained the "implicit" algebraic differential equation for the function defined by

$$
Y=\sum_{1}^{\infty} \frac{n^{a} x^{n}}{1-x^{n}}
$$

where a is an odd positive integer, and conjectured that there are no algebraic differential equations for the case when a is an even integer. In this note we obtain a simple proof that (this has been known for almost 200 years)

$$
Y=\sum_{1}^{\infty} x^{n^{2}} \quad(|x|<1)
$$

satisfies an algebraic differential equation, and conjecture that

$$
Y=\sum_{1}^{\infty} x^{n^{k}}
$$

$$
\text { (k a positive integer }>2 \text {) }
$$

does not satisfy an algebraic differential equation.
§1 In the standard notation of elliptic functions we write

$$
\mathrm{K}=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \phi}{\sqrt{-\mathrm{k}^{2} \sin ^{2} \phi}}
$$

$$
\mathrm{E}=\int_{0}^{\pi / 2} \sqrt{1-\mathrm{k}^{2} \sin ^{2} \phi} \mathrm{~d} \phi
$$

Here $0<k<1$. We also define k^{\prime} by

$$
\mathrm{k}^{2}+\mathrm{k}^{\prime 2}=1
$$

and the corresponding integrals

$$
\begin{aligned}
& \mathrm{K}^{\prime}=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \phi}{\sqrt{1-\mathrm{k}^{\prime 2} \sin ^{2} \phi}} \\
& \mathrm{E}^{\prime}=\int_{0}^{\pi / 2} \sqrt{1-\mathrm{K}^{\prime 2} \sin ^{2} \phi} \mathrm{~d} \phi
\end{aligned}
$$

We know that

$$
\mathrm{KE}^{\prime}+\mathrm{K}^{\prime} \mathrm{E}-K \mathrm{~K}^{\prime}=\frac{\pi}{2}
$$

which is often called Legendre's relation.
Our proof rests on several identities for $K, K^{\prime}, E, E^{\prime}$ and their derivatives. Most important :

$$
\sqrt{\frac{2 \underline{k}}{\pi}}=\sum_{-\infty}^{\infty} q^{n^{2}}
$$

where

$$
q=e^{\frac{-\pi K^{\prime}}{k}}
$$

§ 2. Next we need:

$$
\begin{aligned}
& \frac{d K}{d k}=\frac{E-{k^{\prime}}^{2} K}{k k^{\prime 2}}, \\
& \frac{d E}{d k}=\frac{E-K}{k}
\end{aligned}
$$

Since

$$
\frac{d k^{\prime}}{d \underline{k}}=-\frac{k}{k^{\prime}}
$$

15

we easily express

$$
\frac{d E^{\prime}}{d k}, \frac{d K^{\prime}}{d k}
$$

as easy functions of $K, K^{\prime}, E, E^{\prime}$ and k. From these

$$
\frac{d}{d k}\left(E K^{\prime}+K E^{\prime}-K K^{\prime}\right)=0
$$

Hence

$$
E K^{\prime}+\mathrm{KE}^{\prime}-K K^{\prime}=\mathbf{c}
$$

where c is a constant independent of k .
We easily see that $\mathrm{c}=\frac{\pi}{2}$.
§ 3. Next

$$
\frac{\mathrm{dq}}{\mathrm{dk}}=\frac{\pi^{2} \mathrm{q}}{2 \mathrm{k} k^{\prime 2} \mathrm{~K}^{2}}
$$

(Ramanujan, Collected Papers, p. 32)
f 4. Next find

$$
\frac{d K}{d q}=\frac{d K}{d k} \frac{d k}{d q}
$$

which is, from our previous relations a simple rational function of K, E, k, q.

Form

$$
\frac{d^{2} K}{d^{2}} \text { and } \frac{d^{3} K}{d^{3} q^{3}}
$$

which again are simple rational functions of K, E, k, q. Eliminate E and k from the relations obtained in this section. We then get a "polynomial" relation between

$$
K, q, \frac{d K}{d q}, \frac{d^{2} K}{d q^{2}}, \frac{d^{3} K}{d q^{3}}
$$

which is a third order algebraic differential equation

$$
T\left(K, q, \frac{d K}{d q}, \frac{d^{2} K}{d q^{2}}, \frac{d^{3} K}{d q^{3}}\right)=0
$$

where T is a polynomial in the five quantities following T.
§ 5. It would be nice to obtain "explicitly" the polynomial \mathbf{T} of the last section, as well as those mentioned in the beginning of this paper i.e. algebraic differential equations satisfied by

$$
Y=\sum_{1}^{\infty} \frac{n^{a} x^{n}}{1-x^{n}}
$$

i. e. a relation with an explicit polynomial T with

$$
\mathrm{T}\left(\mathbf{Y}, \mathrm{X}, \mathrm{Y}^{\prime}, \mathrm{Y}^{\prime \prime}, \mathrm{Y}^{\prime \prime \prime}\right)=0
$$

As far we know this has never been done.

Conclusion.

Professor Dwork (Princeton University) pointed out to us that G. Valerion in a monograph (in French) on automorphic forms in analysis obtained the algebraic differential equation explicitly in the case of the function

