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Godement—Jacquet L-function, some conjectures and
some consequences
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Abstract. In this paper, we investigate the mean square estimate for the logarithmic derivative of the Godement—Jacquet
L-function Lj(s) assuming the Riemann hypothesis for L;(s) and Rudnick-Sarnak conjecture.
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1. Introduction

Let n > 2, and let v = (v1,v9,...,v,_1) € C*"1. A Maass form [Gol06] for SL(n,Z) of type v is a
smooth function f € £L2(SL(n,Z)\H") which satisfies

1. f(yz) = f(»), for all vy € SL(n,Z),z € H",

2. Df(z) = Apf(2), for all D € ©™ where ©" is the center of the universal enveloping algebra of
gl(n,R) and g[(n R) is the Lie algebra of GL(n,R),

3. i f(uz) du =0,

(SL(n,Z)NU)\U

for all upper triangular groups U of the form

with r1 + 79 4+ - - - + 1, = n. Here, I, denotes the r x r identity matrix, and * denotes arbitrary
real entries.

A Hecke—Maass form is a Maass form which is an eigenvector for the Hecke operators algebra.
Let f(z) be a Hecke-Maass form of type v = (v1,v2,...,v,-1) € C"! for SL(n,Z). Then it has the
Fourier expansion

iz = Z Z Z Z ml,u":??:;__ji)

YEU—1 (DNSL(n—12) =1  mp—a=lmu 120 12} |m;]
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where
my...Mp—2 -\mn_l\

M - m1m2 9
m1
1
A(mla amn—l) € (C, A(l’ ’]_) = ]_’
I up—
1 Up—2 *
%,...,1,6 — e27ri(u1+"'+un72+€’un71)’

1 Ul
1

Un—1(Z) denotes the group of (n—1) x (n — 1) upper triangular matrices with 1s on the diagonal and
an integer entry above the diagonal and W is the Jacquet Whittaker function.

If f(z) is a Maass form of type (vi,...,v,—1) € C"L, then
f2)=flw- (zHT ),
(—1)[2]

is a Maass form of type (vp—1,...,v1) for SL(n,Z) called the dual Maass form. If A(my,...,mp_1)
is the (ma,...,my—1)-Fourier coefficient of f, then A(my—_1,...,m1) is the corresponding Fourier
coefficient of f.

We note that the Fourier coefficients A(my, ..., my,_1) satisfy the multiplicative relations
Almimly, ... ,mp_1ml,_) = A(my,...,mp_1)- A(m},...,m,_1),
if

(my...mp_1,my...m,_;) =1,

mic, MaCl Mp—1Cp—2
A(m,1,...,)A(m1,...,mp_1) = g A( , ey ),
n C1 C2 Cn—1
[T ¢g=m
=1
crlmy,eglma, . en_qlmp_1

and

A(mp—1,...,m1) = A(my,...,mp_1).
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Definition 1.1. [Gol06] The Godement-Jacquet L-function Ly (s) attached to f is defined for R(s) >

1 by
Lg(s) = Z% HH —apip”®) -1

m=1 p i=1

where {ay;},1 < i < n are the complex roots of the monic polynomial

7—1 terms
.—/h .
X”+Z oo Lp 1 D)X 4 (~1)" € CIX], and
7j—1
—
A1l ILp1,...,1) = Z Qpiy -+ - Wpliss for 1<j<n-—1.

1< <<ij<n

Ly(s) satisfies the functional equation:

X et (“f> s — Ai(vy)
=]~ (2f> Ly(s)
i=1
Ay(1—s),
where f is the Dual Maass form.

In the case of Godement—Jacquet L-function, Yujiao Jiang and Guangshi Lii [JiLul7] have studied

cancellation on the exponential sum " pu(m)A(m, 1)e? ™ related to SL(3,7) where 6 € R .
m<N

Throughout the paper, we assume that f is self dual i.e., f = f.
€, €1 and 1 always denote any small positive constants.

If Ny(T) denotes the number of zeros of Ls(s) in the rectangle mentioned below, then from the
functional equation and the argument principle of complex function theory we have,

Ny(T) ~ ¢(n)Tlog T,

where ¢(n) is a non zero constant depending only on the degree n of L(s).

—1+2iT 2+ 2T

—1+44T 244T

(i) The generalized Ramanujan conjecture:
It asserts that
[A(m, 1, 1)] < du(m)
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where d,,(m) is the number of representations of m as the product of n natural numbers. The current
best estimates are due to Kim and Sarnak [Kim03] for 2 < n < 4 and Luo, Rudnick and Sarnak for

n>>5

We note that the generalized Ramanujan conjecture is equivalent to
‘apﬂ-‘:l Vprimes pandi=1,2,...,n.

Other estimates are equivalent to

‘O‘p,i‘ < pfn V primes p and ¢ = 1,2,...,n where

7 5 9 1 1
0y = — O3 := — 0y = — 0, == — >5
2 =gy Bimqp fimgp o= g o ma(nzd)

(ii) Ramanujan’s generalized weak conjecture:
We formulate this conjecture as:
For n > 2, the inequality

|ap,i] < piiq
holds for some small €; > 0, for every prime p and for i = 1,2, ...,n. Of course, this weak conjecture
holds good for n = 2. For n > 3, this conjecture is still open.

Taking the logarithmic derivative of Ly (s), we have

/
by

where af(m) is multiplicative and

for any integer r > 1.
In particular,

(iii) Rudnick—Sarnak conjecture:
For any fixed integer r > 2,
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We know that this conjecture is true for n < 4. (See [Ki06, RuSa96].)
(iv) Riemann hypothesis for L(s):
It asserts that Lg(s) # 0 in R(s) > 1.

The aim of this paper is to establish:

Theorem 1.1. Ramanujan’s weak conjecture implies Rudnick—Sarnak conjecture.

Remark 1.2. Theorem 1.1 is indicated in [Ki06].

Theorem 1.3. Assume n > 5 be any arbitrary but fixed integer. Let € be any small positive constant
and T > Ty where Ty is sufficiently large. Assume the Rudnick—Sarnak conjecture and Riemann
hypothesis for L¢(s). Then the estimate:

/2T
T

holds for % + e < o9 <1— € withn being some constant satisfying 0 < n < %

r ?
L—f (o0 +it)| dt <fpen T(log T)277
!

Remark 1.4. Since Rudnick—Sarnak conjecture is true for 2 < n < 4, Theorem 1.3 holds just with
the assumption of Riemann hypothesis for L (s) whenever 2 <n < 4.

Remark 1.5. It is not difficult to see from our arguments that only assuming Riemann Hypothesis
for L¢(s), Theorem 1.3 can be upheld for any g satisfying 1 — n%ﬂ + e <0y <1— ¢ by using the
bound 6,, = % — n%ﬂ of Luo, Rudnick and Sarnak.

It is also not difficult to see from our arguments that the generalized Ramanujan conjecture and the
Riemann hypothesis for L¢(s) together imply the bound

2
dt <jpeT (1.1)

27| 1,
—(og + 1t
/T PG

to hold for any o satisfying % +e<ogg<1l—ce.
Though we expect the bound stated in Equation 1.1 to hold unconditionally for og in the said range,
this seems to be very hard.

2. Some Lemmas

Lemma 2.1. If f(s) is reqular and

f(s)
f(s0)

in |s—so| <711, then for any constant b with 0 < b < %,

<eM (M >1)

7! 1 M
R
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in |s—sp| < (% - b) r1, where p runs over all zeros of f(s) such that|p — so| < 5.
Proof. See Lemma « in Section 3.9 of [TiHe86] or see [RaSa9l].

Lemma 2.2. Let N;(T) denote the number of zeros of L¢(s) in the region 0 < o < 1,0 <t <T.
Then,
Ni (T +1) = N§(T) <y logT.

Proof. Let n(r1) denote the number of zeros of L¢(s) in the circle with centre 2 + 47" and radius 7.
By Jensen’s theorem,

3 2
1
/ n(rl)dﬁ = / log
0 ™ 27 0

From the functional equation, we observe that

Ly (24T +3¢") | d0 — 1og|L; (2 +iT)|

‘Lf(5)| <5 t4 for —1 <o <5 where A is some fixed positive constant,

and hence we have,

log|L (2 + 4T + 3ei9) < AlogT.
Note that
Qp,i }ap,i‘
p2tit| = P2
1
p2
>1—-—
1
pi

Thus we have,
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Therefore,
/ dr1<<AlogT+A<<logT
3 3
d
/ drl > / n(rl)drl n(vV'5 @ > c.n(V5)
Vv T Vs Tl
Hence,

N}(T +1) = N}(T) <, log T.

Lemma 2.3. Let a,,(m=1,2,...,N) be any set of complex numbers. Then

2

or| N N
/ Z amm ™| dt = Z |t |? (T +O(m)) .
T m=1 m=1

Lemma 2.4. Let b, be any set of complex numbers such that > m (|me2 1s convergent. Then

2

2T | o o
/ > bpm | dt =Y |bm|* (T + O(m)).
T |m=1 m=1

Proof. See [MoVa74] or [Ram79] for Montgomery and Vaughan theorem.

Hereafter, Y > 10 is an arbitrary parameter depending on T" which will be chosen suitably later. Also,
og satisfies the inequality % + e < o9 <1—e€ for any small positive constant e.

Lemma 2.5. For % +e<o0g<1—¢€, we have

» et o

m?ao
¥ (logY)?

Proof. We have,

2

3 m|Ag(m)[* e” ¥ < ¥ m|As(m)]" e ¥ 5

m20’0 mQUO
m>%(logY)2 m>%(logY)2
2 _m
< Y2 Z [Ap(m)[ ey
ml+2o’0 :

m> % (logY)2
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Since ¢ > %(logY)2 for m > %(log Y)?2, we have e¥ > YB for any large positive constant B.
Therefore,

m‘Af(m)}26_27m Y2 !Af(m)‘2
Z m20o < vB Z ml+200
m>%(log Y)2 m>%(logY)2

< 1.

Lemma 2.6. Assuming Rudnick—Sarnak conjecture and taking Y sufficiently large, we have

2
Z ‘Af(::(?‘ ¥ < (log V).
¥ (log Y)? "
Proof. Note that
]
log 2
[Ap(m)]* _am (log p)|ar(p)|” logp 2Jas ()|
Z m200 e v S E p200 + — Z 200 ’
m< % (log )2 p<%¥ (logY)? r=2. P
and
‘af ‘— Zaw —{Ap, s ‘
We have,

Z Cm /Y d Y m<u cm)

m<Y
ngu Cm Y Y Zmﬁu Cm
u 1 1 u
From Remark 12.1.8 of [Gol06], we have
> |A(my, ma, ..., mp_1)|* < Y

m?ilmg 2 mp_1<Y

Therefore,

Z‘A(m,l,...,l)ﬁ < Z |A(m1,mg,...,mn_1)‘2 <y Y.

m<Y mi” 1m2 2 M1 <Y
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Taking [ = 20¢ and ¢, = ‘A(m, 1,..., 1)‘2,

Hence,
2
Z (logp;}gif(pﬂ < (log Y)Q Z

p<¥ (logY)? m< ¥ (log V)2

|A(m,1,..., 1)

ono

< (logY)2.

1

By Rudnick—Sarnak conjecture and the bound ‘ap,i‘ < p¥ with 6,, = % — s

Sy (log p)i\;f "))

r>2 p

converges (as in proof of Theorem 1.1) and in particular,

|:log% +1
log 2 9 9
lo ar(p”
Z( gp) ’Tf(p )‘ < 1.
r=2 p p
Therefore,
Ag(m)|”
Z ‘ :n200| < (logY)Q.

m< Y (logY)?

3. Proof of Theorem 1.1

Assuming ‘am‘ < pan with 6,, < i — €1, we need to prove that for every integer n > 5 and for every
integer r > 2,

> (logp)?|ay(p7)|”

< Q.

It is enough to show that

Using
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we get,

r=2 P r=2 p P
_ i 3 (log p)*n?p*rn
r=2 p p?’
0 27’(1—61)
p\a
<o Yo 3
P r=2 p
S|
=n?) (logp)*) T ore
p r=2 2
) ) p7(1+461)
=n Z(logp) p—(%+261)
p
1
2 2
=n" ) (logp)
T ey
K, 1

This proves Theorem 1.1.

4. Proof of Theorem 1.3

/

L
First, we wish to approximate L—’;(s) uniformly for % <op<oc<o;<1lwhenT <t <2T. We
assume throughout below the Riemann hypothesis for Ls(s).

From the work of Godement—Jacquet [GoJa06], it is known that the function Ly(s) is of finite order
in any bounded vertical strip. Hence, we can very well assume that

Li(s) < TA = AlosT
for -1 <o <2, T <t<2T and A some fixed positive constant.

Taking sg = 2 + it with ¢t € R, we have

n ) —1
Lf(2+it)—HH(1—po2"j;t) .
p

i=1
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Observe that

Qp,i
'1 o p2it

<1+
p

p2*9”

<1+

vle|

because 0,, < % for n > 2.

Therefore,

which is a constant depending only on n. Therefore, L¢(2+it) #0 V t € R.

Hence from Lemma 2.1, with r =12, so = 24T, f(s) = L¢(s), M = AlogT, we obtain

_J(s): Z Sip—kO(logT).

For |s — sp| < 3 and so in particular for —1 < o < 2,¢t = T, replacing T by ¢ in the particular case,
we obtain
L/f ! O(logt
—ff(s)— Z E+ (logt).

lp—s0|<6

Any term occurring in > ﬁ but not in > S%p is bounded and the number of such terms

[t—~|<1 [s—s0|<6
does not exceed
N}(t+6) — Nf(t —6) < logt,

where N}‘(t) is the number of zeros of Lf(s) in the region 0 <o <1 and 0 <t <7T'. Thus, we get
r 1
f _
—Lf(s)— E _p—i—O(logt).

S
[t—yI<1
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Assume 1 5 <o <landT <t<2T, then
1 24100 L/f

o Ar(m) _m
= I'w)Y"dw.
€ Y = o - Lf(s—i—w) (w) w

m=1
Note also that from the above reasoning

/

1
—f(s) < logt on any line o # —.
L, >

Also,
L/ logt

———— +logt uniformly for —1 <o < 2.
Lf min(|t — ()

From Lemma 2.2, we observe that each interval (j,j+ 1) contains values of ¢ whose distance from the

ordinate of any zero exceeds 1 , there is a ¢; in any such interval for which
L/
Lj:( s) < (logt)? where —1 <o <2andt=t;.

Applying Cauchy’s residue theorem to the rectangle, we get

1 -0 +it; 2 + it}

%—O’—itj 2—Z'tj

2+it; *7O’+’Lt —70 it; 2—it; /f
+/ (s +w)'(w)Y " dw
27” /2 /2+zt /O‘+’Lt l70'7itj Lf

= (s)—l— z L(p—s)YP .

L
f —tj<y<t;

In the sum appearing on the right hand side above, zeros p are counted with its multiplicity if there
are any multiple zeros. The integrals along the horizontal lines tend to zero as j — oo since gamma
function decays exponentially and Y is going to be at most a power of T" only, so that

1 l,UJrZ-OO L L

A m
f(m)(f? = — —(s+w)['(w)Y"“dw — —f ZF —s)YP s,

ms 271 J1_ 5 oo Ly

m=1



54

4. Proof of Theorem 1.3

Note that I'(w) < e~ 4"l so that the integral on R(w) = 1018

o0
<</ e~ A og (|t + v| + 2)Y T 7dv
—00

2t
<</ —Allog(10]t] + 2)Y "dv—l—(/ /) ~Allog(|v] 4 10)Y 37 dv
0 2t

<YilogT +Y1°
<Yi" logT.

Note that for % <og<o<o; <1,

IT(p—s)| < Ape~ A2
uniformly for ¢ in the said range. Therefore

SIp—s) < 4 et — 4, S Y el
p p

m=1m—1<y<m

The number of terms in the inner sum is

< log(|t| +m) < log |t| + log(m + 1)

and hence
Z‘F -5)| < Z e~ 2™ (log |t| + log(m + 1)) < log T
m=1
S T(p— )Y | < Y32 7logT.
p
Thus for % < o9 <o<o; <1, we have
L/ o0 A (m)
f _ f - o
—ff(s) —mzz:l s €7 +0¢(Y27%1ogT)

Thusfor%—i—egaoSl—eandTStSQT,weobtain

9 2

L X Ar(m)e ¥ 2

L—;(ao—i-it) < Z J;?(%UOL” + (Yéﬂ’o logT> .
m=1

Thus,

21| 1 : 21| & agfme P

A Lf (U(] + ’Lt) dt <<f A Z W dt + Yl_QUOT(IOg T)2
m=1
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We note that

2 2 2
o0 _m _m _m
Ar(mle” Y Ar(m)e™Y Ap(m)e™Y
SSAme ¥l s ame P s Al ¥
mootit moo+it mootit
m=1 mﬁ%(logY)2 m>%(10gy)2
and hence
2 ? ’
27| 1/ 2T Ag( -¥ 2T A -y
b . 3 Ag(m)ey 3 Ag(m)e™v
/T Lf (0'0 + ’Lt) dt <y /T mootit + T mootit

m< % (log )2

+ Y1290 (log T)2.

By Montgomery—Vaughan theorem (Lemmas 2.3 and 2.4) and Lemma 2.5, we get

2

2 |A (m)‘Qe_QTm
f ; Z f
L Lf (O'[) + Zt) dt <<f T (T + O(m))

m<¥ (logY)?

2m

2 _
+ Z ‘Af(m” e Y (T+O(m))+Y172UOT(10gT)2

200

m>%(logY)2 m
_2m 2 _2m
‘Af(m)|2e Y ‘Af(m)‘ e” Y
< T Y et 2 M

m<Xlogy)r m< (log Y2 "
2 _2m _2m
[Ap(m)|"e™> [Ap(m)|" e
+T YZ m20‘0 + YZ m m20'0
m> 5 (logY)? m> 4 (logY)?

+ Y7200 (log T')?.

By Lemmas 2.5 and 2.6, we obtain
2
2T| 1/
/ ﬂ <1 +e+ it)
v |Lf\2
We choose Y = exp{(log T))"} with any 7 satisfying 0 < n < % so that we obtain

/2T
T

dt <jne T(logY)? +Y (logY)* + Y7207 (log T)?.

2
dt < neq T(logT)*".

/
L

L (00 +1it)

This proves Theorem 1.3.
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