On fixed divisors of the values of the minimal polynomials over \mathbb{Z} of algebraic numbers

M. Ayad, A. Bayad and O. Kihel

Abstract. Let K be a number field of degree n, A be its ring of integers, and A_n (resp. K_n) be the set of elements of A (resp. K) which are primitive over \mathbb{Q} . For any $\gamma \in K_n$, let $F_{\gamma}(x)$ be the unique irreducible polynomial in $\mathbb{Z}[x]$, such that its leading coefficient is positive and $F_{\gamma}(\gamma) = 0$. Let $i(\gamma) = \gcd_{x \in \mathbb{Z}} F_{\gamma}(x)$, $i(K) = \operatorname{lcm}_{\theta \in A_n} i(\theta)$ and $\hat{i}(K) = \operatorname{lcm}_{\gamma \in K_n} i(\gamma)$. For any $\gamma \in K_n$, there exists a unique pair (θ, d) , where $\theta \in A_n$ and d is a positive integer such that $\gamma = \theta/d$ and $\theta \not\equiv 0 \pmod{p}$ for any prime divisor p of d. In this paper, we study the possible values of $\nu_p(d)$ when $p|i(\gamma)$. We introduce and study a new invariant of K defined using $\nu_p(d)$, when γ describes K_n . In the last theorem of this paper, we establish a generalisation of a theorem of MacCluer.

Keywords. Values of polynomials, Denominators of algebraic numbers, Splitting of prime numbers. 2010 Mathematics Subject Classification. 11R04, 12Y05.

1. Introduction

Let K be a number field of degree $n \ge 2$ and A be its ring of integers. Denote by A_n (resp. K_n) be the set of elements of A (resp. K) which are primitive over \mathbb{Q} , that is those elements which generate K over \mathbb{Q} . For any primitive polynomial $g(x) \in \mathbb{Z}[x]$, we define the integer i(g) by

$$i(g) = \gcd_{x \in \mathbb{Z}} g(x).$$

Let γ be an algebraic number. When we refer to the minimal polynomial of γ over \mathbb{Z} , we mean the unique polynomial $F_{\gamma}(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, irreducible such that $a_n > 0$ and $F_{\gamma}(\gamma) = 0$. The leading coefficient a_n will be denoted by $c(\gamma)$. We set $i(\gamma) = i(F_{\gamma})$. In [GuMc70], Gunji and McQuillan defined the integer i(K) by

$$i(K) = \operatorname{lcm}_{\theta \in A_n} i(\theta).$$

MacCluer [Mac71] proved that a given prime p divides i(K) if and only if the number of prime ideals of A lying over p is at least equal to p. In [GuMc70] or [AyKi11], it is proved that there exists $\theta \in A_n$ such that

$$i(K) = i(\theta).$$

The smallest positive integer d such that $d\gamma$ is an algebraic integer is called the denominator of γ and will be denoted by $d(\gamma)$.

Arno et al proved in [ARW96] that the density of the set of the algebraic numbers γ such that $c(\gamma) = d(\gamma)$ is equal to $1/\zeta(3) = 0.8319\cdots$. In [ABK15], for a fixed number field K, the set

$$T_p(k) = \{t \ge 1, \text{ there exists } \gamma \in K_n, \nu_p(d(\gamma)) = k \text{ and } \nu_p(c(\gamma)) = t\}$$

We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal

is connected to the splitting of the prime p in K.

In this paper, among other results, we study the possible values of $\nu_p(d)$ when $p \mid i(\gamma)$. After recalling some lemmas in section 2, it is proved in Theorem 3.1 that if $\theta \not\equiv 0 \pmod{pA}$ and $p \mid i(\theta/p^k)$, for some positive integer k, then the p-adic valuation of the leading coefficient of the minimal polynomial of θ/p^k belongs to the set $\{k, k+1, \ldots, (n-p)k\}$. Furthermore any element of this set may occur. Section 4 shows that given $\theta \in A_n$ such that $\theta \not\equiv 0 \pmod{pA}$, it is possible to find explicitly the values of $k \in \mathbb{N}$, if any, such that $p \mid i(\theta/p^k)$. Fix $\theta \in A_n$ such that $\theta \not\equiv 0 \pmod{pA}$ and define the set $V_p(\theta) = \{k \in \mathbb{N} ; p \mid i(\theta/p^k)\}$. On the one hand it is shown that $|V_p(\theta)|$ for $\theta \in A_n$ is bounded by some constant depending on n and p. On the other hand the values of k are bounded by a constant depending on p and $\nu_p(N_{K/\mathbb{Q}}(\theta))$, where $\nu_p(a)$ denotes the p-adic valuation of a. Section 5 deals with this last bound. It is shown that, even if we fix the field K, the values of k may be greater than any given positive constant. In this section, we give examples of Galois number fields K of degree 4 (resp. 3) for which the set of the values of k, when θ runs in A_n is $\{0\}$ (resp. \mathbb{N}). Throughout this paper we denote by \mathbb{N} the set of nonnegative integers. The paper ends with remarks and open questions.

2. Indices and denominators of algebraic numbers

Let K be a number field of degree n, A its ring of integers, $\gamma \in K_n$ and let $g(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ be the unique primitive polynomial of degree n such that $a_n > 0$ and $g(\gamma) = 0$. We denote this polynomial $F_r(x)$. This polynomial will be called the minimal polynomial of γ over \mathbb{Z} . The leading coefficient a_n will be denoted $c(\gamma)$.

Let

$$\mathfrak{I}(\gamma) = \{ m \in \mathbb{Z}, m\gamma \in A \},\$$

then $\Im(\gamma)$ is a nonzero ideal of \mathbb{Z} , hence a principal ideal generated by some positive integer denoted by $d(\gamma)$. The integer $d(\gamma)$ is called the denominator of γ . Since $c(\gamma) \in \Im(\gamma)$, then $d(\gamma) | c(\gamma)$. Write $\gamma = \frac{\theta}{d(\gamma)}$, where $\theta \in A_n$, then θ is unique and we call it the numerator of γ . Let f(x) be the minimal polynomial of θ over \mathbb{Q} , then $g(x) = f(d(\gamma)x)/cont(f(d(\gamma)x))$, where the abbreviation cont(h(x))denotes the content of the polynomial h(x). From [ARW96] we have the following result:

Lemma 2.1. For any prime p, we have

$$\nu_p(d(\gamma)) = \max\left(0, \max_{j=0}^{n-1} \left\lceil \frac{\nu_p(a_n) - \nu_p(a_j)}{n-j} \right\rceil\right).$$
(2.1)

From Lemma 2.1 we see that any prime factor p of $c(\gamma)$ divides $d(\gamma)$. Summarizing the relations between $c(\gamma)$ and $d(\gamma)$, we have:

Remark 2.1. Let K be a number field of degree n and $\gamma \in K_n$, then $d(\gamma)$ and $c(\gamma)$ have the same prime factors and for any prime p, we have $\nu_p(d(\gamma)) \leq \nu_p(c(\gamma)) \leq n\nu_p(d(\gamma))$.

For any $\theta \in A_n$, let $F_{\theta}(x)$ its minimal polynomial over \mathbb{Q} . Following [GuMc70], we define the integers

$$i(\theta) = \gcd_{x \in \mathbb{Z}} F_{\theta}(x) \text{ and } i(K) = \operatorname{lcm}_{\theta \in A_n} i(\theta).$$
 (2.2)

For the integers $i(\theta)$ and i(K) we have the following results:

- i) C. R. MacCluer proved in [Mac71] that for a given prime number p, p divides i(K) if and only if the number of prime ideals of A lying over p is at least equal to p.
- ii) In [GuMc70] and [AyKi11], it is proved that there exists $\theta \in A_n$ such that $i(K) = i(\theta)$, and that $i(K) = \lim_{\theta \in A} i(\theta)$.

We extend the definition of $i(\theta)$ and i(K) to algebraic numbers as follows. Given any $\gamma \in K_n$, we define

$$i(\gamma) := \operatorname{gcd}_{x \in \mathbb{Z}} F_{\gamma}(x) \text{ and } \hat{i}(K) = \operatorname{lcm}_{\gamma \in K_n} i(\gamma).$$

We quote from [AyKi11] the following result.

Lemma 2.2. Let $g(x) \in \mathbb{Z}[x]$. Write g(x) in the form

$$g(x) = b_n(x)_n + \dots + b_1(x)_1 + b_0,$$

where $b_0, \ldots, b_n \in \mathbb{Z}$,

$$(x)_0 = 1$$
 and $(x)_j := x(x-1)\cdots(x-(j-1))$, for $j \ge 1$.

Then, we have the identity

$$i(g) = \gcd_{j=0}^n \left(j! b_j \right).$$

Corollary 2.1. The integers $i(\gamma)$, i(K) and $\hat{i}(K)$ divide n!.

Remark 2.2. Clearly, from the definitions of i(K) and $\hat{i}(K)$, we see that i(K) divides $\hat{i}(K)$.

3. Study of the denominators of some algebraic numbers

We prove the following lemma, which is useful for the rest of this paper:

Lemma 3.1. Let p be a prime number, γ be an algebraic number and $d(\gamma)$ be its denominator. Write $d(\gamma)$ in the form $d(\gamma) = p^k \cdot q$, where gcd(p,q) = 1 and let $\mu = q\gamma$. Then we have

$$d(\mu) = p^k, \ \nu_p(c(\mu)) = \nu_p(c(\gamma)) \ and \ \nu_p(i(\gamma)) = \nu_p(i(\mu)).$$

Proof: Let $\gamma = \theta/pk_q$ where θ is an algebraic integer such that $\theta \not\equiv 0 \pmod{p}$ and $\theta \not\equiv 0 \pmod{l}$ for any prime factor 1 of q. Then $\mu = q\gamma = \theta/pk$, hence $d(\mu) = p_k$. Let n be the degree of γ over \mathbb{Q} and let $g(x) = a_n x_n + \cdots + a_1 x + a_0$ be its minimal polynomial over \mathbb{Z} . Since $a_n = c(\gamma)$ and $d(\gamma)|c(\gamma)$, then $q|a_n$. This implies that the polynomial $h(x) = q^{n-1}g(x/q) = (a_n/q)x^n + a_{n-1}x^{n-1} + \cdots + a_1q^{n-2}x + a_0q^{n-1}$ has integral coefficients and vanishes for μ . Therefore, the minimal polynomial of μ over \mathbb{Z} is given by f(x) = h(x)/cont(h). Write cont(h) in the form $cont(h) = gcd(q, cont(h)) \cdot \lambda$, where λ is a positive integer. We show that $\lambda = 1$. Suppose that there exists a prime number $l|\lambda$, then l|cont(h) and $l \nmid q$. Since $l|a_0q^{n-1}, a_1q^{n-2}, \ldots, a_{n-1}, a_n|q$, then $l|a_0, \ldots, a_n$ which is a contradiction, hence $\lambda = 1$. Therefore cont(h)|q. Since

$$c(\mu) = (a_n/q)/cont(h) = a_n/qcont(h) = c(\gamma)/qcont(h),$$

then $V_p(c(\mu)) = V_p(c(\gamma))$. We now prove the last statement. Suppose that $p^u|i(\gamma)$ for some positive integer u and $x_0 \in \mathbb{Z}$. Since gcd(p,q) = 1, there exists $y_0 \in \mathbb{Z}$ such that the congruence $qy_0 \equiv x_0 \pmod{p^u}$ holds. In particular $g(y_0) \equiv 0 \pmod{p^u}$, so that we have, $f(x_0) = h(x_0)/cont(h) = q^{n-1}g(y_0)/cont(h) \equiv 0 \pmod{p^u}$. Since x_0 was arbitrary, then $p^u|i(\mu)$. Conversely, suppose that $p^u|i(\mu)$ and let x_0 and y_0 as above. Then $f(x_0) = 0 \pmod{p^u}$, hence $q^{n-1}g(y_0)/cont(h) \equiv 0 \pmod{p^u}$, thus $g(y_0) \equiv 0 \pmod{p^u}$. Therefore $p^u|i(\gamma)$. We state the main result of this section.

Theorem 3.1. Let K be a number field of degree n over \mathbb{Q} and p be a prime number, Let $\gamma \in K_n$ such that $p|i(\gamma)$, $c = c(\gamma)$, $d = d(\gamma)$ and $k = v_p(d) \ge 1$. Then p < n and $k \le \nu_p(c) \le (n - p)k$.

Proof: Set $d = p^k q$ with gcd(p,q) = 1. Let $\mu = q\gamma$, then $d(\mu) = p^k$ and by Lemma 3.1, we have $v_p(c(\mu)) = v_p(c(\gamma))$ and $v_pi(\mu) = v_pi(\gamma) \ge 1$. Therefore, $p|i(\mu)$. The minimal polynomial of μ over \mathbb{Z} has the form:

$$g(x) = p^{t}(x)_{n} + b_{n-1}(x)_{n-1} + \dots + b_{1}(x)_{1} + b_{0}$$
, with $k \le t \le nk$.

By corollary 2.1, p|n!, hence $p \le n$. If p = n, since $p|j!b_j$ for all $j = 0, \ldots, n-1$, then we conclude that $p|b_0, b_1, \ldots, b_{n-1}$. Therefore g(x) is reducible in $\mathbb{Z}[x]$, which is a contradiction, hence p < n. In this case, since $p|b_0, b_1, \ldots, b_{p-1}$, then we may write g(x) in the form

$$g(x) = x(x-1)\cdots(x-(p-1))\left(p^{t}x^{n-p} + \tilde{a}_{n-p-1}x^{n-p-1} + \dots + \tilde{a}_{1}x + \tilde{a}_{0}\right)$$
$$+p\left(c_{p-1}x^{p-1} + \dots + c_{1}x + c_{0}\right)$$

where all the coefficients \tilde{a}_i, c_j are integral. Since g(x) is irreducible in $\mathbb{Z}[x]$, there exists $j \in \{0, \ldots, n-p-1\}$ such that $p \not| \tilde{a}_j$. Denote by j_o the greatest of these integers. Let $\theta \in A_n$ be the unique element such that $\gamma = \frac{\theta}{p^k}$. Then we have

$$\theta(\theta - p^{k}) \cdots (\theta - (p-1)p^{k}) \Big(p^{t} \theta^{n-p} + p^{k} \tilde{a}_{n-p-1} \theta^{n-p-1} \\ + \cdots + p^{k(n-p-j_{o})} \tilde{a}_{j_{0}} \theta^{j_{0}} + \cdots + p^{k(n-p-1)} \tilde{a}_{1} \theta + p^{k(n-p)} \tilde{a}_{0} \Big) \\ + p \cdot p^{k(n-(p-1))} \Big(c_{p-1} \theta^{p-1} + c_{p-2} p^{k} \theta^{p-2} + \cdots + c_{0} p^{k(p-1)} \Big) = 0.$$

Write this equation in the form:

$$p^t\theta^n + u_{n-1}\theta^{n-1} + \dots + u_p\theta^p + \dots + u_1\theta + u_0 = 0.$$

Since θ is integral, it follows in particular that $p^t|u_j$ for $j = p, \ldots, n-1$. We can set

$$\theta(\theta - p^k) \cdots (\theta - (p-1)p^k) = \theta^p + \sigma_1 \theta^{p-1} + \cdots + \sigma_{p-1} \theta^{p-1}$$

Then

$$\begin{cases} \sigma_1 &= -(p^k + \dots + p^k(p-1)) = p^k \frac{p(p-1)}{2} \\ \sigma_2 &= p^{2k} \sum_{\substack{i \neq j \\ i, j \in \{1, \dots, p-1\}}} ij \\ & \dots \\ \sigma_{p-1} &= (-1)^{p-1} p^{k(p-1)}(p-1)!. \end{cases}$$

We have

$$(x^{p} + \sigma_{1}x^{p-1} + \dots + \sigma_{p-1}x)\left(p^{t}x^{n-p} + \dots + p^{k(n-p-j_{0})}\tilde{a}_{j_{0}}x^{j_{0}} + \dots + \tilde{a}_{0}p^{k(n-p)}\right) + pp^{k(n-(p-1))}\left(c_{p-1}x^{p-1} + \dots + c_{1}x\right) = p^{t}x^{n} + u_{n-1}x^{n-1} + \dots + u_{p}x^{p} + \dots + u_{1}x + u_{0},$$

hence

$$\begin{cases} u_{n-1} = p^{k}\tilde{a}_{n-p-1} + p^{t}\sigma_{1} \\ u_{n-2} = p^{2k}\tilde{a}_{n-p-2} + p^{k}\tilde{a}_{n-p-1}\sigma_{1} + p^{t}\sigma_{2} \\ \dots \\ u_{j_{0}+p} = \tilde{a}_{j_{0}}p^{k(n-p-j_{0})} + \tilde{a}_{j_{0}+1}p^{k(n-p-(j_{0}+1))}\sigma_{1} + \dots + \tilde{a}_{j_{0}+m}p^{k(n-p-(j_{0}+m))}\sigma_{m} \\ + \dots + p^{t}\sigma_{n-(j_{0}+p)} \end{cases}$$

The first equation implies that $p^t | p^k \tilde{a}_{n-p-1}$. Then the second implies that $p^t | p^{2k} \tilde{a}_{n-p-2}$. Iterating the process, the last equation gives $p^t | \tilde{a}_{j_0} p^{k(n-p-j_0)}$. Since $p \not| \tilde{a}_{j_0}$, then

$$t \le k(n-p-j_0) \le k(n-p).$$

Theorem 3.2. Let p be a prime number, n and k be positive integers, p < n. Then for any integer t, such that $k \leq t \leq (n-p)k$, there exist infinitely many algebraic numbers $\gamma \in \mathbb{C}$ of degree n such that $p|i(\gamma), \nu_p(c(\gamma)) = t$ and $\nu_p(d(\gamma)) = k$.

Proof: Dividing t by k, we have two possibilities:

$$t = (n-i)k + \alpha \text{ with } 0 < \alpha < k \text{ and } p < i \le n-1$$
(3.3)

$$t = (n-i)k \text{ with } p \le i \le n-1$$

$$(3.4)$$

• First case: $t = (n - i)k + \alpha$ with $0 < \alpha < k$ and $p < i \le n - 1$. Then, we have

$$t > (n-i)\alpha + \alpha = \alpha(n-i+1)$$
, hence $\alpha < \frac{t}{n-(i+1)}$.

On the other hand, choose integers a_0, \ldots, a_n such that

$$\begin{aligned}
gcd(a_0, \dots, a_n) &= 1, \\
\nu_p(a_j) &= t, \text{ for } j > i \\
\nu_p(a_i) &= \alpha, (\text{ note that } \alpha \neq 0) \\
\nu_p(a_{i-1}) &= 0 \\
\nu_p(a_j) &= 1, \text{ for } j < i - 1.
\end{aligned}$$
(3.5)

Consider the polynomials

$$f(x) = \sum_{j=0}^{n} a_j(x)_j = \sum_{j=0}^{n} \tilde{a}_j x^j$$

and

$$g(x) = \tilde{a}_n x^n + q^{e_{n-1}} \tilde{a}_{n-1} x^{n-1} + \dots + q^{e_1} \tilde{a}_1 x + q \tilde{a}_0 := \sum_{j=0}^n b_j x^j,$$

where q is a prime number such that $q \equiv 1 \pmod{p}$, $q \not| \tilde{a}_0$ and the exponents e_j are arbitrary fixed positive integers. Clearly g(x) is irreducible in $\mathbb{Z}[x]$ by Eisenstein's Theorem. Let γ be a root of g(x). Since $p \leq i-1$, then by Lemma 2.2, we conclude that p|i(f) and since $g(x) \equiv f(x)$ (mod p) for any $x \in \mathbb{Z}$, then $p|i(\gamma)$. We look at the p-adic valuations of the \tilde{a}_j . Recall that $\tilde{a}_n = c(\gamma)$ and $\tilde{a}_0 = a_0$, hence $\nu_p(\tilde{a}_n) = t$ and $\nu_p(\tilde{a}_0) = 1$. We claim that

$$\begin{cases}
\nu_p(\tilde{a}_j) \ge t, \text{ for } j > i \\
\nu_p(\tilde{a}_i) = \alpha, \\
\nu_p(\tilde{a}_{i-1}) = 0.
\end{cases}$$
(3.6)

For any $j \ge 1$ we have $\tilde{a}_j = a_j + \sum_{l=j+1}^n a_l c_l$, where $c_l \in \mathbb{Z}$ for any l. If j > i then $\nu_p(a_j) = \nu_p(a_{j+1}) = \cdots = \nu_p(a_l) = t$, hence $\nu_p(\tilde{a}_j) \ge t$. For j = i we have $\nu_p(a_j) = \alpha < t$ and $\nu_p(a_l) = t$ for $l = i+1, \ldots, n$, hence $\nu_p(\tilde{a}_i) = \alpha$. For j = i - 1 we have $\nu_p(a_{i-1}) = 0$ and $\nu_p(a_l) \ge \alpha$ for $l = i, \ldots, n$, hence $\nu_p(\tilde{a}_{i-1}) = 0$. Thus we

To compute the *p*-adic valuation of the denominator of γ , we use Lemma 2.1. For j > i, we have

$$\frac{\nu_p(b_n) - \nu_p(b_j)}{n-j} = \frac{\nu_p(\tilde{a}_n) - \nu_p(\tilde{a}_j)}{n-j} = \frac{t-t_j}{n-j} \le 0, \text{ because } t_j \ge t.$$

For j = i, we have

obtain the desired claim.

$$\frac{\nu_p(b_n) - \nu_p(b_i)}{n-i} = \frac{\nu_p(\tilde{a}_n) - \nu_p(\tilde{a}_i)}{n-i} = \frac{t-\alpha}{n-i} = k.$$

For j < i we have

$$\frac{\nu_p(b_n) - \nu_p(b_j)}{n - j} = \frac{\nu_p(\tilde{a}_n) - \nu_p(\tilde{a}_j)}{n - j} = \frac{t - t_j}{n - j} \le \frac{t}{n - (i - 1)} \le \frac{(n - i)k + \alpha}{n - (i - 1)} < \frac{(n - i)k + k}{n - (i - 1)} = k,$$

hence $\nu_p(d(\gamma)) = k.$

• Second case: t = (n - i)k with $p \le i \le n - 1$. Choose integers a_0, \ldots, a_n such that $gcd(a_0, \ldots, a_n) = 1$ and

$$\begin{cases}
\nu_{p}(a_{j}) \geq t, \text{ for } j > i, \\
\nu_{p}(a_{i}) = 0, \\
\nu_{p}(a_{j}) = 1, \text{ for } j < i, \\
\nu_{p}(a_{n}) = t.
\end{cases}$$
(3.7)

Consider the polynomials

$$f(x) = \sum_{j=0}^{n} a_j(x)_j = \sum_{j=0}^{n} \tilde{a}_j x^j$$

and

$$g(x) = \tilde{a}_n x^n + q^{e_{n-1}} \tilde{a}_{n-1} x^{n-1} + \dots + q^{e_1} \tilde{a}_1 x + q \tilde{a}_0 := \sum_{j=0}^n b_j x^j,$$

where q and the e_j have the same meaning as in the preceding case. Clearly g(x) is irreducible in $\mathbb{Z}[x]$ by Eisenstein's Theorem. Let γ be a root of g(x). Since $p \leq i$, then by Lemma 2.2, we conclude that p|i(f) and since $g(x) \equiv f(x) \pmod{p}$ for any $x \in \mathbb{Z}$, then $p|i(\gamma)$. We look at the p-adic valuations of the \tilde{a}_j . We have $\tilde{a}_n = a_n$ hence $\nu_p(\tilde{a}_n) = t$. For j > i, we have $\tilde{a}_j = a_j + \sum_{l=i+1}^n a_l c_l$ where $c_l \in \mathbb{Z}$ and we have $\nu_p(a_j) \geq t$ and $\nu_p(a_l) \geq t$ for $l \geq j+1$, hence

$$\nu_n(\tilde{a}_i) > t.$$

For j = i, we have $\nu_p(a_i) = 0$ and $\nu_p(a_l) = t$, $l \ge j + 1$, hence $\nu_p(\tilde{a}_i) = 0$.

For
$$j < i$$
, we have $\nu_p(\tilde{a}_j) \ge 0$.

For j < i, we have $\nu_p(\tilde{a}_j) \ge 0$.

We compute the *p*-adic valuation of the denominator of γ by using Lemma 2.1. For j > i, we have

$$\frac{\nu_p(b_n) - \nu_p(b_j)}{n-j} = \frac{\nu_p(\tilde{a}_n) - \nu_p(\tilde{a}_j)}{n-j} = \frac{t-t_j}{n-j} \le 0, \text{ because } t_j \ge t.$$

For j = i, we have

$$\frac{\nu_p(b_n) - \nu_p(b_i)}{n - i} = \frac{\nu_p(\tilde{a}_n) - \nu_p(\tilde{a}_i)}{n - i} = \frac{t}{n - i} = k.$$

For j < i we have

$$\frac{\nu_p(b_n) - \nu_p(b_j)}{n - j} = \frac{\nu_p(\tilde{a}_n) - \nu_p(\tilde{a}_j)}{n - j} < \frac{t - t_j}{n - i} \le \frac{t}{n - i} = k_j$$

hence $\nu_p(d(\gamma)) = k$.

Since we can choose q and the e_j in an infinite number of ways, then the number of γ 's is infinite. \Box

4. Upper bounds for the enumeration of the denominators of some algebraic numbers

Proposition 4.1. Let $\theta \in A_n$, and $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ its minimal polynomial over \mathbb{Q} . Suppose that $\theta \not\equiv 0 \pmod{pA}$. Construct the Newton polygon of f(x) by plotting in the (x, y) plan the points A_i whose coordinates are $(i, \nu_p(a_i))$ for all $i \in \{0, \ldots, n\}$ such that $a_i \neq 0$. Suppose that there exists $k \geq 1$ such that $p|i(\theta/p^k)$. Then there exists two integers m, M such that $1 \leq m < M \leq n-1$ and the line joining the points A_m and A_M has the following equation

$$y + kx - u = 0$$
, where $kM \leq u < \nu_p(a_0)$ and $u = \nu_p(cont(f(p^k x)))$

Moreover all the points A_i such that i < m or i > M belong to the domain of all points (x, y) such that y + kx - u > 0. If m < i < M, then we have $\nu_p(a_i) + ki - u \ge 0$.

Proof: The minimal polynomial over \mathbb{Z} of θ/p^k is given by

$$f(p^{k}x)/p^{u} = p^{nk-u}x^{n} + p^{(n-1)k-u}a_{n-1}x^{n-1} + \dots + p^{k-u}a_{1}x + p^{-u}a_{0} := g(x),$$

where $u = \nu_p(cont(f(p^k x))))$. Let

$$I = \{i : 1 \le i \le n - 1, a_i \ne 0 \text{ and } ik + \nu_p(a_i) - u = 0\}.$$

Since θ/p^k is not integral then nk-u > 0. Since $g(0) \equiv 0 \pmod{p}$, then $\nu_p(a_0)-u > 0$. Adding these two facts to the property that g(x) is primitive implies that $I \neq \emptyset$. Furthermore $g(1) \equiv 0 \pmod{p}$, hence $|I| \geq 2$.

Let $m = \inf(I)$ and $M = \max(I)$. Clearly the equation of the line joining the points A_m and A_M is given by: y + kx - u = 0. Moreover a point $(i, \nu_p(a_i))$ of the Newton polygon belongs to this line if and only if $i \in I$. The definition of m and M implies the properties of the points A_i and of u. \Box

Remark 4.1. Proposition 4.1 shows that -k is the slope of some line joining two points A_m and A_M . Moreover all the others points belong to the same side of the line (or on the line). Therefore, if we fix a prime p and an algebraic integer θ such that $\theta \neq 0 \pmod{pA}$, it is possible to find explicitly all the values of k such that $p|i(\theta/p^k)$. This proposition shows also that the set of such nonnegative integers k is finite (may be empty).

Example 4.1. Let $t \ge 2$ be an integer, $f(x) = x^3 + x^2 + 2^t x + 2^{t+1}$ and θ_t be a root of f(x). It is seen that f(x) is irreducible over \mathbb{Q} : if not, it has a root a/b in \mathbb{Q} with $a, b \in \mathbb{Z}$ and gcd(a, b) = 1. Substitution then yields

$$a^3 + a^2b + 2^tab^2 + 2^{t+1}b^3 = 0,$$

implying $b \mid a^3$. Thus, $b = \pm 1$, and we then obtain $a \mid 2^{t+1}$. Letting $a = 2^i$, we obtain $2^{3i} + 2^{t+i} = 2^{2i} + 2^{t+1}$, implying that $t + i \leq t + 1$ so i = 1 which is impossible.

For any nonnegative integer, let $\gamma_{t,k} = \theta_t/2^k$. We show that $V_2(\theta_t) = \{0,t\}$. Clearly, $2 \mid i(\theta_t)$, hence $0 \in V_2(\theta_t)$. The Newton diagram for p = 2 has the following shape:

The possible edges of the convex hull which may give rise to values of $k \in V_2(\theta_t)$, $k \ge 1$, are $[A_0A_1]$ and $[A_1A_2]$. Their slopes are equal to -t - 1 and t respectively. Thus, k = t + 1 or k = t.

If k = t + 1, the minimal polynomial of $\gamma_{t,k}$ over \mathbb{Z} is given by $g(x) = 2^{t+2}x^3 + 2x^2 + x + 1$. This shows that $2 \not| i(g(x))$, hence $t + 1 \notin V_2(\theta_t)$.

If k = t, the minimal polynomial of $\gamma_{t,k}$ over \mathbb{Z} is given by $h(x) = 2x^3 + x^2 + x + 2$. This shows that $2 \mid i(h(x))$, hence $t \in V_2(\theta_t)$. Thus, $V_2(\theta_t) = \{0, t\}$.

We state now our main result on the upper bounds for the enumeration of the denominators of algebraic numbers γ such that $p|i(\gamma)$.

Theorem 4.1. Let θ be a root of $f(x) \in \mathbb{Z}[x]$, monic irreducible, p a prime number such that $\theta \neq 0 \pmod{pA}$ and let $a_0 = f(0)$. We set

$$V_p(\theta) = \left\{ k \ge 0; \ p | i(\theta/p^k) \right\}.$$

Suppose that $V_p(\theta) \neq \emptyset$ then we have

$$|V_p(\theta)| \le \frac{n-1}{p-1},\tag{4.8}$$

$$\sum_{k \in V_p(\theta)} k < \frac{\nu_p(a_0)}{p}.$$
(4.9)

For the proof of this theorem, we need the following lemma.

Lemma 4.1. Let p be a prime number and $g(x) = a_M x^M + \cdots + a_m x^m$, M > m > 0 such that $p \not| a_M$. If $p \mid i(g)$, then $M - m \ge p - 1$.

Proof: Suppose that $p \mid i(g)$, then clearly $p \mid i(xg_1)$, where $g_1(x) = a_M x^{M-m} + \cdots + a_m$. Write xg_1 in the form

$$xg_1(x) = a_M(x)_{M-m+1} + \sum_{j < M-m+1} b_j(x)_j,$$

then by Lemma 2.2 $p|(M-m+1)!a_M$, hence p|(M-m+1)!. Therefore $p \leq M-m+1$. \Box *Proof of Theorem 4.1.* Suppose that the complete list of elements of $V_p(\theta)$ is given by $k_1 < k_2 < \cdots < k_z$. We have $k_1 = 0$ if and only if $p|i(\theta)$. Set $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$. For each $j = 1, \ldots, z$, let $g_j(x)$ be the minimal polynomial of θ/p^{k_j} over \mathbb{Z} . Set $g_j(x) = p^{t_j}x^n + b_{n-1}^{(j)}x^{n-1} + \cdots + b_1^{(j)}x + b_0^{(j)}$, we have

$$g_1(x) = \begin{cases} f(x) & \text{if } k_1 = 0\\ f(p^{k_1}x)p^{-u_1} & \text{if } k_1 \ge 1 \end{cases}$$
(4.10)

and $g_{j+1}(x) = g_j(p^{k_{j+1}-k_j}x)p^{-u_{j+1}}$ for j = 1, ..., z - 1 and $u_1, ..., u_z$ are positive integers. For any j = 1, ..., z, let $I_j = \{i \in \{1, ..., n-1\}, \nu_p(b_i^{(j)}) = 0\}$. Since $t_j > 0, \nu_p(b_0^{(j)}) > 0$ and $g_j(x)$ is irreducible in $\mathbb{Z}[x]$, then it follows that $I_j \neq \emptyset$. Let $m_j = \inf(I_j)$ and $M_j = \sup(I_j)$. Since $g_j(1) \equiv 0 \pmod{p}$ then $|I_j| \ge 2$ and $m_j < M_j$. Clearly $m_j \ge 1$ and $M_j \le n-1$. We claim that:

• $M_j - m_j \ge p - 1$ for j = 1, ..., z.

- $u_1 \ge k_1 M_1$ and $u_j \ge (k_j k_{j-1}) M_j$ for j = 2, ..., z.
- $n \ge M_1 > m_1 \ge M_2 > m_2 \ge \dots \ge M_z > m_z \ge 1$.

The first claim follows from Lemma 4.1. If $k_1 = 0$, then from (4.10) we have $u_1 = 0 = k_1 M_1$. From the definition of M_1 and the definition of the interval I_1 , it follows that

$$\nu_p(b_{M_1}^{(1)}) = 0.$$

Therefore, if $k_1 \ge 1$, equation (10) and the above equality imply that

$$0 = \nu_p(b_{M_1}^{(1)}) = \nu_p(a_{M_1}) + k_1 M_1 - u_1$$

hence $u_1 \ge k_1 M_1$. Similarly for $j = 2, \ldots, z$, we have

$$0 = \nu_p(b_M^{(j)}) = \nu_p(b_{M_j}^{(j-1)}) + (k_j - k_{j-1})M_j - u_j,$$

hence $u_j \ge (k_j - k_{j-1})M_j$, which proves the second part of the claim. For the last part of the claim it is sufficient to prove that $m_j \ge M_{j+1}$ for j = 1, ..., z - 1. For, suppose that $m_j < M_{j+1}$ for some $j \in \{1, ..., z - 1\}$. We have $0 = \nu_p(b_{m_j}^{(j)})$, hence

$$\nu_p(b_{m_j}^{(j+1)}) = \nu_p(b_{m_j}^{(j)}, p^{(k_{j+1}-k_j)m_j}, p^{-u_{j+1}}) = (k_{j+1}-k_j)m_j - u_{j+1}.$$

We deduce that $(k_{j+1} - k_j)m_j \ge u_{j+1}$ and then $(k_{j+1} - k_j)M_{j+1} > u_{j+1}$. It follows that

$$\nu_p(b_{M_{j+1}}^{(j+1)}) = \nu_p(b_{M_{j+1}}^{(j)}) + (k_{j+1} - k_j)M_{j+1} - u_{j+1} > 0,$$

which contradicts the definition of M_{j+1} and completes the proof of the claim.

We now come back to the proof of Theorem 4.1.

Completion of proof of Theorem 4.1: We use the first and the third points of the claim. We have

$$n \ge M_1 > M_2 > \dots > M_{z-1} > M_z \ge p > 1.$$

Using the claim, we obtain

$$n-p \ge M_1 - M_z = (M_1 - M_2) + \dots + (M_{z-1} - M_z) \ge (p-1)(z-1)$$

hence

$$z \le \frac{n-p}{p-1} + 1 = \frac{n-1}{p-1}.$$

Therefore (4.8) is proved.

We prove the inequality (4.9) of Theorem 4.1. We have $b_0^{(1)} = a_0 p^{-u_1}$, $b_0^{(j+1)} = b_0^{(j)} p^{-u_{j+1}}$ for $j = 1, \ldots, z - 1$ and since $g_z(0) \equiv 0 \pmod{p}$, then $\nu_p(b_0^{(z)}) > 0$. Hence $u_1 + u_2 + \cdots + u_z < \nu_p(a_0)$. On the other hand, using the first and the second parts of the claim, we obtain

$$u_1 + u_2 + \dots + u_z \ge k_1 M_1 + (k_2 - k_1) M_2 + \dots + (k_z - k_{z-1}) M_z$$

$$\ge k_1 z p + (k_2 - k_1) (z - 1) p + \dots + (k_z - k_{z-1}) p$$

$$= p (k_1 z + k_2 z - k_1 z - k_2 + k_1 + k_3 z - k_2 z - 2k_3 + 2k_2 + \dots + k_z - k_{z-1})$$

$$= p ((k_1 + k_2 + \dots + k_z).$$

Therefore, we have

$$\nu_p(a_0) > \sum_{j=1}^z u_j \ge p \sum_{j=1}^z k_j,$$

hence

$$\sum_{j=1}^{z} k_j < \nu_p(a_0)/p.$$

Remark 4.2. Theorem 4.1, shows that if $\nu_p(a_0) \leq p$, then $V_p(\theta) = \{0\}$ or $V_p(\theta) = \emptyset$.

The following result shows that the bound (4.8) in Theorem 4.1 is the best possible. More precisely, we have

Proposition 4.2. Let p and q be distinct prime numbers such that $q \equiv 1 \pmod{p}$, θ be a root of

$$f(x) = x^n + \sum_{i=1}^N a_i x^{n-i(p-1)} + q p^{\lambda},$$

where $N = \lfloor (n-1)/(p-1) \rfloor$, $a_i = (-1)^i q p^{(p-1)i(i-1)/2}$, for i = 1, ..., N and

$$\lambda > \frac{2n(N-1) - (p-1)((N-1)^2 + N - 1)}{2}.$$

Then

$$|V_p(\theta)| = \left\lfloor \frac{n-1}{p-1} \right\rfloor.$$

Proof: Clearly, by Eisenstein's criterion, f(x) is irreducible over \mathbb{Q} . The coefficient of $x^{n-(p-1)}$ is coprime to p, hence $\theta \not\equiv 0 \pmod{pA}$. By Theorem 4.1, we have

$$|V_p(\theta)| \le \left\lfloor \frac{n-1}{p-1} \right\rfloor.$$

We show that the integers $0, 1, \ldots, \left\lfloor \frac{n-1}{p-1} \right\rfloor - 1$ belong to $V_p(\theta)$ and this will complete the proof of Proposition 4.2. Since $f(x) \equiv x^n - qx^{n-(p-1)} \pmod{p\mathbb{Z}[x]}$ and $q \equiv 1 \pmod{p}$, then $f(x) \equiv x^{n-(p-1)}(x^p - 1) \pmod{p\mathbb{Z}[x]}$. Thus, $p \mid i(f)$ and $0 \in V_p(\theta)$. Set $a_0 = 1$ and fix $k \in \left\{1, \ldots, \left\lfloor \frac{n-1}{p-1} \right\rfloor - 1\right\}$. We have

$$f(p^{k}x) = p^{nk}x^{n} + \sum_{i=1}^{N} a_{i}p^{nk-i(p-1)k}x^{n-i(p-1)} + qp^{\lambda}.$$

We claim, omitting the proofs that

$$\nu_p(a_k p^{nk-k(p-1)k}) = \nu_p(a_{k+1} p^{nk-k(p-1)(k+1)}) = \frac{2nk - (p-1)(k^2 + k)}{2}$$

and

$$\nu_p(a_i p^{nk-i(p-1)k}) > \frac{2nk - (p-1)(k^2 + k)}{2} \text{ if } i \neq k, k+1.$$

Moreover, since the function $x \mapsto \psi(x) = 2nx - (p-1)(x^2 + x)$ is increasing in [0, N-1] and since $\lambda > \frac{2n(N-1)-(p-1)(N-1)^2+N-1}{2}$, then $\lambda > \frac{2nk-(p-1)(k^2+k)}{2}$. It follows that $cont(f(p^k x)) = \frac{2nk-(p-1)(k^2+k)}{2}$ and the minimal polynomial over \mathbb{Z} of $\gamma_k = \frac{\theta}{p^k}$ is given by

$$q_k(x) = f(p^k x) p^{-(2nk - (p-1)k^2 + k)/2}.$$

From the above it is seen that

$$g_k(x) \equiv (-1)^k x^{n-k(p-1)} + (-1)^{k+1} x^{n-(k+1)(p-1)} (\operatorname{mod} p) \equiv (-1)^k x^{n-(k+1)(p-1)} (x^{p-1} - 1) (\operatorname{mod} p),$$

hence $p|i(\gamma_k)$, thus $k \in V_p(\theta)$. \Box

Corollary 4.1. Let p be a prime number, and θ be a root of

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \in \mathbb{Z}[x],$$

irreducible over \mathbb{Q} . Suppose that there exists $i \in \{0, \ldots, \min(p, n) - 1\}$ such that $\nu_p(a_i) = 0$. Then

$$\theta \not\equiv 0 \pmod{pA}$$
 and $V_p(\theta) = \emptyset$ or $V_p(\theta) = \{0\}$.

Moreover if p > n, then $V_p(\theta) = \emptyset$.

Proof: Let α be an algebraic integer and $g(x) = x^n + b_{n-1}x^{n-1} + \cdots + b_0$ be its minimal polynomial over \mathbb{Q} . It is easy to prove that $\alpha \equiv 0 \pmod{p}$ if and only if $\nu_p(b_i) \geq n-i$ for $i = 0, \ldots, n-1$. Our assumption then implies that $\theta \not\equiv 0 \pmod{pA}$. Suppose that $V_p(\theta) \neq \emptyset$ and let $k \in V_p(\theta)$. Assume that $k \geq 1$ and let $\gamma = \theta/p^k$ and $u = cont(f(p^k x))$. Then the minimal polynomial of γ over \mathbb{Z} is given by

$$g(x) = f(p^{k}x)p^{-u} = p^{nk-u}x^{n} + p^{(n-1)k-u}a_{n-1}x^{n-1} + \dots + p^{-u}a_{0}.$$

As in Theorem 4.1, let

$$I = \{j \in \{1, \dots, n-1\}; \nu_p(a_j) + kj - u = 0\}, m = \inf(I), M = \sup(I)$$

Suppose first that $m \leq i$. We have $ik - u = \nu_p(a_i) + ik - u \geq 0$. Since $M - m \geq p - 1$, then M > i which implies $\nu_p(a_M) + Mk - u \geq Mk - u > ik - u \geq 0$, a contradiction. We deduce that m > i and then $\nu_p(a_m)) + km - u \geq km - u > ki - u = \nu_p(a_i) + ki - u \geq 0$, a contradiction again. Therefore $V_p(\theta) = \{0\}$. \Box

5. A new invariant of number fields and a generalisation of MacCluer's Theorem

Let p be a fixed prime integer. We have shown that for any algebraic integer θ such that $\theta \not\equiv 0 \pmod{pA}$, $p|i(\theta/p^k)$ for some $k \geq 1$, then $k < \nu_p(N_{\mathbb{Q}(\theta)/\mathbb{Q}}(\theta))/p$. Does there exist some constant c > 0 such that if $\theta \in \overline{\mathbb{Q}}, \theta \not\equiv 0 \pmod{pA}$ and $p|i(\theta/p^k)$ then k < c?

Even if we fix the degree n of θ and suppose that the constant c depends on n, the answer is negative as it is shown by the following result.

Proposition 5.1. Let n, N be positive integers and p be a prime number such that p < n. Then there exists an integer k > N and an algebraic integer θ of degree n such that

$$\theta \not\equiv 0 \pmod{pA}$$
 and $p \mid i(\theta/p^k)$.

Proof: Let F be a number field of degree n-1 such that p|i(F). In particular, we can take F such that p completely splits in F, so that $p \mid i(F)$ by MacCluer's Theorem. Such a field F exists by Tchebotarev's theorem [Neu99]. Let α be a primitive element of F/\mathbb{Q} . Suppose that α is integral and $p|i(\alpha)$. Let $F_{\alpha}(x)$ be the minimal polynomial of α over \mathbb{Q} . Let q be a prime number such that

$$q \neq p$$
 and $q \not \mid N_{F/\mathbb{O}}(\alpha)$.

Let t be an integer such that t > nN and let $g(x) = p^t x^n + qF_{\alpha}(x)$. Then Eisenstein's criterion shows that g(x) is irreducible over \mathbb{Q} . Obviously g(x) is primitive, hence it is irreducible in $\mathbb{Z}[x]$. Let γ be a root of g(x), then clearly $p|i(\gamma)$ and $d(\gamma) = p^k$ for some positive integer k such that $k \le t \le nk$, hence $k \ge t/n > N$. The algebraic integer $\theta = p^k \gamma$ satisfies all the conditions of the proposition and the proof is complete. \Box

Let K be a number field of degree n over \mathbb{Q} and A be its ring of integers. We define the integer $\nu_p(K)$ as follows.

Definition 5.1. Let

$$V_p(K) = \left\{ k \ge 0, \text{ there exists } \theta \in A_n, \theta \not\equiv 0 \pmod{pA}, \text{ and } p | i(\theta/p^k) \right\},$$

and we define

$$v_p(K) = \begin{cases} -\infty & \text{if } V_p(K) = \emptyset, \\ \infty & \text{if } V_p(K) \text{ is infinite,} \\ \max(V_p(K)) & \text{if } V_p(K) \text{ is finite.} \end{cases}$$

Remark 5.1. By Theorem 3.1, we have $v_p(K) = -\infty$ if and only if $p \not|i(K)$. So there is no need to give examples illustrating this fact. Theorem 3.1 again shows that if the degree of the number field K is a prime p then $v_p(K) = 0$ if p|i(K) and $v_p(K) = -\infty$ if $p \not|i(K)$.

In the following we compute explicitly $v_2(K)$ for some number fields of degree 3 or 4 over \mathbb{Q} .

Proposition 5.2. (Galois field of degree 4) Let K/\mathbb{Q} be a Galois number field of degree 4 in which the prime 2 splits into a product of two prime ideals having their residual degree equal to 2. Then we have $v_2(K) = 0$.

Proof: By MacCluer's theorem, 2|i(K), hence $0 \in V_p(K)$. Let \mathfrak{p} and \mathfrak{p}' be the conjugate prime ideals of A lying over 2 and having their residual degree equal to 2. Suppose that $2|i(\theta/2^k)$ for some $k \geq 1$ and $\theta \in A_n$ such that $\theta \not\equiv 0 \pmod{2A}$. Since $N_{K/\mathbb{Q}}(\theta) \equiv 0 \pmod{2}$, then we may suppose that $\mathfrak{p}^e || \theta$ and $\mathfrak{p}' /\!\!/ \theta$ for some $e \geq 1$. We suppose that the conjugates $\theta_1 = \theta, \theta_2, \theta_3, \theta_4$ of θ satisfy the following conditions:

$$\mathfrak{p}^{e}||\theta_{1},\mathfrak{p}^{e}||\theta_{3},\mathfrak{p}' \not| \theta_{1}\theta_{3},\mathfrak{p}'^{e}||\theta_{2},\mathfrak{p}'^{e}||\theta_{4},\mathfrak{p} \not| \theta_{2}\theta_{4}.$$

Let $f(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 \in \mathbb{Z}[x]$ be the minimal polynomial of θ over \mathbb{Q} . Let $g(x) \in \mathbb{Z}[x]$ be the minimal polynomial of $\gamma = \theta/2^k$ over \mathbb{Z} , then

$$g(x) = f(2^{k}x) \cdot 2^{-u} = 2^{4k-u}x^{4} + 2^{3k-u}a_{3}x^{3} + 2^{2k-u}a_{2}x^{2} + 2^{k-u}a_{1}x + 2^{-u}a_{0},$$

where u is the content of $f(2^k x)$. Using the elementary symmetric functions of the θ_j and our assumption on their p-adic and p'-adic valuations, we get

$$\nu_2(a_0) = 2e, \nu_2(a_1) \ge e \text{ and } \nu_2(a_2) = 0.$$

If $k \geq e$, then $\nu_2(2^{4k-u}) \geq 4e - u$, $\nu_2(2^{3k-u}a_3) \geq 3e - u$, $\nu_2(2^{2k-u}a_2) = 2k - u \geq 2e - u$, $\nu_2(2^{k-u}a_1) \geq 2e - u$, $\nu_2(2^{-u}a_0) = 2e - u$. Since these five 2-adic valuations must be nonnegative, then $u \leq 2e$. Furthermore one (at least) of these valuations must be 0, hence u = 2e. In this case, $g(0) \neq 0 \pmod{2}$ which is a contradiction to $2|i(\gamma)$. If k < e, then $\nu_2(2^{4k-u}) = 4k - u$, $\nu_2(2^{3k-u}a_3) \geq 3k - u$, $\nu_2(2^{2k-u}a_2) = 2k - u$, $\nu_2(2^{k-u}a_1) > 2k - u$, $\nu_2(2^{-u}a_0) > 2k - u$. Using similar arguments as in the preceding case, we obtain u = 2k. We conclude that all the coefficients of g(x)have their 2-adic valuations positive except the coefficient of x^2 which has a 2-adic valuation equal to 0. In this case also we reach a contradiction since $g(1) \neq 0((\mod)2)$. It follows that $V_2(K) = \{0\}$ and $v_2(K) = 0$. \Box

For the proof of the next proposition, we will need the following lemma.

Lemma 5.1. (Engstrom) Let K be a number field, A be its ring of integers and p be a prime integer. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ be distinct prime ideals of A lying over p and let $\Phi_1(x), \ldots, \Phi_s(x)$ be monic irreducible polynomials over \mathbb{F}_p not necessarily distincts of degree d_1, \ldots, d_s respectively, where d_i divides the residual degree of \mathfrak{p}_i . Let h_1, \ldots, h_s be positive integers. Then there exists a primitive element $\theta \in A$ such that $\mathfrak{p}_i^{h_i} || \Phi_i(\theta)$ for $i = 1, \ldots, s$

Proof: see [Eng30]. \Box

Proposition 5.3. (Cubic Galois) Let K/\mathbb{Q} be a Galois number field of degree 3 in which the prime 2 splits completely. Then $V_2(K) = \mathbb{N}$.

Proof: Let k and e be positive integers such that e > k. Let $\mathfrak{p}_1, \mathfrak{p}_2$ and \mathfrak{p}_3 be the prime ideals of A lying over 2. By Lemma 5.1 there exists $\theta \in A_n$ such that

$$\mathfrak{p}_1^e || \theta, \mathfrak{p}_2^k || \theta$$
 and $\mathfrak{p}_3 \not | \theta$.

Assume that the conjugates of θ , $\theta_1 = \theta$, θ_2 , θ_3 are labelled in order to satisfy the following conditions:

$$\mathbf{\mathfrak{p}}_{2}^{e} || \boldsymbol{\theta}_{2}, \mathbf{\mathfrak{p}}_{3}^{k} || \boldsymbol{\theta}_{2}, \mathbf{\mathfrak{p}}_{1} \not| \boldsymbol{\theta}_{2}, \\ \mathbf{\mathfrak{p}}_{3}^{e} || \boldsymbol{\theta}_{3}, \mathbf{\mathfrak{p}}_{1}^{k} || |\boldsymbol{\theta}_{3}, \mathbf{\mathfrak{p}}_{2} \not| \boldsymbol{\theta}_{3}.$$

Let $f(x) = x^3 + a_2 x^2 + a_1 x + a_0 \in \mathbb{Z}[x]$ be the minimal polynomial of θ over \mathbb{Q} . Expressing a_0, a_1 and a_2 in terms of $\theta_1, \theta_2, \theta_3$, we get

$$\nu_2(a_0) = e + k, \nu_2(a_1) = k \text{ and } \nu_2(a_2) = 0.$$

We have

$$f(2^{k}x) = 2^{3k}x^{3} + 2^{2k}a_{2}x^{2} + 2^{k}a_{1}x + a_{0}$$

Set

$$b_3 = 2^{3k}, b_2 = 2^{2k}a_2, b_1 = 2^ka_1, b_0 = a_0$$

Using the 2-adic valuation of a_0, a_1, a_2 we obtain

$$\nu_2(b_1) = \nu_2(b_2) = 2k, \nu_2(b_0) = e + k > 2k, \nu_2(b_3) = 3k > 2k.$$

Therefore $cont(f(2^{2k}x)) = 2^{2k}$ and the minimal polynomial of $\theta/2^k$ is given by

$$g(x) = f(2^k x) \cdot 2^{-2k}.$$

Clearly we have $g(0) \equiv g(1) \equiv 0 \pmod{2}$ hence $2|i(\theta/p^k)$. Since the prime 2 splits completely in K, then $0 \in V_2(K)$. Therefore $V_2(K) = \mathbb{N}$ and $v_2(K) = \infty$. \Box

Remark 5.2. Our result in the sequel can be viewed as a generalization of MacCluer's theorem which establishes a relation between the number of prime ideals of A lying over p and the property of p to be a divisor of i(K).

Fix a prime number p and define, for any primitive element $\theta \in A$ of K, the integer $j_p(\theta)$ as follows.

Definition 5.2. Let $F_{\theta}(x)$ be the minimal polynomial of θ over \mathbb{Q} . Let $j_p(\theta)$ be the largest integer y, if it exists, $1 \leq y \leq p$ such that $F_{\theta}(1) \equiv F_{\theta}(2) \equiv \cdots \equiv F_{\theta}(y) \equiv 0 \pmod{p}$. If not set $j_p(\theta) = 0$. We define also $j_p(K) = \max_{\theta \in A_n} j_p(\theta)$.

Theorem 5.1. Let r be the number of prime ideals of A lying over p. Then

$$j_p(K) = \inf(r, p)$$

Moreover

$$p|i(K) \iff j_p(K) = p.$$

Proof: Suppose first that $r \leq p$ and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ be the distinct prime ideals of A lying over p. By Lemma 5.1 there exists $\theta \in A_n$ such that $\theta \equiv i \pmod{p}$ for $i = 1, \ldots, r$. It follows that the minimal polynomial $F_{\theta}(x)$ of θ satisfies the condition

$$F_{\theta}(x) \equiv (x-1)(x-2)\cdots(x-r)g(x) \pmod{p}$$

hence $j_p(\theta) \ge r$ which implies that $j_p(K) \ge r$. On the other hand, let $\theta \in A_n$ such that

$$j_p(K) = j_p(\theta) := t ,$$

then

$$F_{\theta}(x) \equiv (x-1)(x-2)\cdots(x-t)g(x) \pmod{p}$$

hence, by Hensel's Lemma, we deduce that $F_{\theta}(x)$ has at least t irreducible factors over \mathbb{Z}_p , the ring of p-adic integers. Again by Theorem 5.1 of chap. 2 of [Jan96], we have $t \leq r$. We conclude that

 $j_p(K) = r = \inf(p, r).$

Suppose now that r > p. By Lemma 5.1, let $\theta \in A_n$ such that $\theta \equiv i \pmod{p}$ for $i = 1, \ldots, p$. Then

 $F_{\theta}(x) \equiv (x-1)(x-2)\cdots(x-p)g(x) \pmod{p}.$

therefore we have $j_p(\theta) \ge p$ which implies $j_p(K) \ge p$. From the definition we have $j_p(K) \le p$, hence $j_p(K) = p = \inf(r, p)$.

We now prove the last statement of the proposition. We have

 $p|i(K) \iff r \ge p \ \text{(by MacCluer's theorem)} \iff \inf(r,p) = p \iff j_p(K) = p. \quad \Box$

6. Concluding remarks

Questions Let K be a number field of degree n. If $[K : \mathbb{Q}] = 2$, then by Corollary 2.1, i(K) and $\hat{i}(K)$ are equal to 1 or 2. Theorem 3.1 shows that $2 \not| i(\gamma)$ if $\gamma \notin A_n$, hence $i(K) = \hat{i}(K) \in \{1, 2\}$.

If $[K : \mathbb{Q}] = 3$, then i(K) and $\hat{i}(K) \in \{1, 2, 3, 6\}$. Moreover, Theorem 3.1 shows that $3 \mid \hat{i}(K)$ if and only if $3 \mid i(K)$.

Suppose that there exists $\gamma = \theta/2^k$ with $k \ge 1$, $k \le t \le 3k$ and $\theta \ne 0 \pmod{p}$ such that $2 \mid i(\gamma)$. Let $g(x) = 2^t x^3 + b_2 x^2 + b_1 x + b_0$ be the minimal polynomial of γ over \mathbb{Z} . Since $g(0) \equiv 0 \pmod{2}$, then $b_0 \equiv 0 \pmod{2}$. Since $g(1) \equiv 0 \pmod{2}$, then $b_1 + b_2 \equiv 0 \pmod{2}$, thus $b_1 \equiv b_2 \pmod{2}$. Moreover, since g(x) is primitive, then $b_1 \equiv b_2 \equiv 1 \pmod{2}$. By Theorem 3.1, $t \le k$. Since $k \le t$, then k = t. The minimal polynomial of θ is then given by

$$f(x) = x^3 + b_2 x^2 + b_1 2^t x + b_0 2^{2t}.$$

This shows that $2 \mid i(f)$ and then $2 \mid i(\theta)$, thus $2 \mid i(K)$. We conclude that $i(K) = \hat{i}(K)$.

Let K be a number field of degree n and let $\gamma \in K_n \setminus A_n$. Set $\gamma = \theta/d$, where d is an integer at least equal to 2 such that $\theta \not\equiv 0 \pmod{p}$ for any prime divisor p of d. It is proved in Lemma 3.1 that if $d = p^k q$ with gcd(p,q) = 1 and $k \ge 1$, then $p \mid i(\gamma)$ if and only if $p \mid i(\theta/p^k)$. We ask that following: Is it true that if $p \mid i(\theta/p^k)$ with $k \ge 1$ and $\theta \not\equiv 0 \pmod{p}$, then $p \mid i(K)$? Do we have $\hat{i}(K) = i(K)$?

Recall that $\nu_p(K)$ is the greatest element of the set $V_p(K)$, when this set is finite. Do we have $\{0, 1, \ldots, \nu_p(K)\} = V_p(K)$? The example given in section 4 shows that $V_p(\theta_t) = \{0, t\} \neq \{0, 1, \ldots, t\}$. We may ask a similar question when $V_p(K)$ is infinite. Do we have $V_p(K) = \mathbb{N}$?

Acknowledgements. The authors express their gratitude to the anonymous referee for constructive suggestions which improved the quality of the paper. The third author was supported in part by NSERC.

References

- [ARW96] S. Arno, M. L. Robinson, and F. S. Wheeler, On denominators of algebraic numbers and integer Polynomials, J. Number theory 57 (1996), 292–302.
- [AyKi11] M. Ayad, O. Kihel, Common Divisors of Values of Polynomials and Common Factors of Indices in a Number Field, Inter. J. Number Theory 7 (2011), 1173–1194.
- [ABK15] M. Ayad, A. Bayad, and O. Kihel, Denominators of Algebraic Numbers in a Number Field, J. Number Theory 149 (2015), 1–14.

[Eng30] H. T. Engstrom, On the common index divisors of an algebraic field, Trans. A.M.S **32** (1930), 223–237.
[GuMc70] H. Gunji, D. L. McQuillan, On a class of ideals in an algebraic number field, J. Number Theory **2** (1970), 207–222.
[Jan96] G. J. Janusz, Algebraic Number Fields, Graduate Studies in Math, A.M.S. (1996).
[Mac71] C. R. MacCluer, Common divisors of values of polynomials, J. Number Theory **3** (1971), 33–34.
[Neu99] O. Neukirch, Algebraic Number Theory, Springer (1999).

Mohamed Ayad

Laboratoire de Mathématiques Pures et Appliquées Université du Littoral, F-62228 Calais, France *e-mail*: ayad@lmpa.univ-littoral.fr

Abdelmejid Bayad

Laboratoire de Mathématiques et Modélisation d'Évry (LAMME) Université Paris-Saclay, CNRS (UMR 8071) Bâtiment I.B.G.B.I., 23 Boulevard de France, CEDEX, 91037 Evry, France *e-mail*: abdelmejid.bayad@univ-evry.fr and *e-mail*: abayad@maths.univ-evry.fr

Omar Kihel

Department of Mathematics Brock University, Ontario, Canada L2S 3A1 *e-mail*: okihel@brocku.ca