On fixed divisors of the values of the minimal polynomials over \mathbb{Z} of algebraic numbers

M. Ayad, A. Bayad and O. Kihel

Abstract

Let K be a number field of degree n, A be its ring of integers, and A_{n} (resp. K_{n}) be the set of elements of A (resp. K) which are primitive over \mathbb{Q}. For any $\gamma \in K_{n}$, let $F_{\gamma}(x)$ be the unique irreducible polynomial in $\mathbb{Z}[x]$, such that its leading coefficient is positive and $F_{\gamma}(\gamma)=0$. Let $i(\gamma)=\operatorname{gcd}_{x \in \mathbb{Z}} F_{\gamma}(x), i(K)=\operatorname{lcm}_{\theta \in A_{n}} i(\theta)$ and $\hat{\imath}(K)=\operatorname{lcm}_{\gamma \in K_{n}} i(\gamma)$. For any $\gamma \in K_{n}$, there exists a unique pair (θ, d), where $\theta \in A_{n}$ and d is a positive integer such that $\gamma=\theta / d$ and $\theta \not \equiv 0(\bmod p)$ for any prime divisor p of d. In this paper, we study the possible values of $\nu_{p}(d)$ when $p \mid i(\gamma)$. We introduce and study a new invariant of K defined using $\nu_{p}(d)$, when γ describes K_{n}. In the last theorem of this paper, we establish a generalisation of a theorem of MacCluer.

Keywords. Values of polynomials, Denominators of algebraic numbers, Splitting of prime numbers.
2010 Mathematics Subject Classification. 11R04, 12 Y 05.

1. Introduction

Let K be a number field of degree $n \geq 2$ and A be its ring of integers. Denote by A_{n} (resp. K_{n}) be the set of elements of A (resp. K) which are primitive over \mathbb{Q}, that is those elements which generate K over \mathbb{Q}. For any primitive polynomial $g(x) \in \mathbb{Z}[x]$, we define the integer $i(g)$ by

$$
i(g)=\operatorname{gcd}_{x \in \mathbb{Z}} g(x) .
$$

Let γ be an algebraic number. When we refer to the minimal polynomial of γ over \mathbb{Z}, we mean the unique polynomial $F_{\gamma}(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$, irreducible such that $a_{n}>0$ and $F_{\gamma}(\gamma)=0$. The leading coefficient a_{n} will be denoted by $c(\gamma)$. We set $i(\gamma)=i\left(F_{\gamma}\right)$. In [GuMc70], Gunji and McQuillan defined the integer $i(K)$ by

$$
i(K)=\operatorname{lcm}_{\theta \in A_{n}} i(\theta) .
$$

MacCluer [Mac71] proved that a given prime p divides $i(K)$ if and only if the number of prime ideals of A lying over p is at least equal to p. In [GuMc70] or [AyKi11], it is proved that there exists $\theta \in A_{n}$ such that

$$
i(K)=i(\theta)
$$

The smallest positive integer d such that $d \gamma$ is an algebraic integer is called the denominator of γ and will be denoted by $d(\gamma)$.

Arno et al proved in [ARW96] that the density of the set of the algebraic numbers γ such that $c(\gamma)=d(\gamma)$ is equal to $1 / \zeta(3)=0.8319 \cdots$. In [ABK15], for a fixed number field K, the set

$$
T_{p}(k)=\left\{t \geq 1, \text { there exists } \gamma \in K_{n}, \nu_{p}(d(\gamma))=k \text { and } \nu_{p}(c(\gamma))=t\right\}
$$

[^0]is connected to the splitting of the prime p in K.
In this paper, among other results, we study the possible values of $\nu_{p}(d)$ when $p \mid i(\gamma)$. After recalling some lemmas in section 2 , it is proved in Theorem 3.1 that if $\theta \not \equiv 0(\bmod p A)$ and $p \mid i\left(\theta / p^{k}\right)$, for some positive integer k, then the p-adic valuation of the leading coefficient of the minimal polynomial of θ / p^{k} belongs to the set $\{k, k+1, \ldots,(n-p) k\}$. Furthermore any element of this set may occur. Section 4 shows that given $\theta \in A_{n}$ such that $\theta \not \equiv 0(\bmod p A)$, it is possible to find explicitly the values of $k \in \mathbb{N}$, if any, such that $p \mid i\left(\theta / p^{k}\right)$. Fix $\theta \in A_{n}$ such that $\theta \not \equiv 0(\bmod p A)$ and define the set $V_{p}(\theta)=\left\{k \in \mathbb{N} ; p \mid i\left(\theta / p^{k}\right)\right\}$. On the one hand it is shown that $\left|V_{p}(\theta)\right|$ for $\theta \in A_{n}$ is bounded by some constant depending on n and p. On the other hand the values of k are bounded by a constant depending on p and $\nu_{p}\left(N_{K / \mathbb{Q}}(\theta)\right)$, where $\nu_{p}(a)$ denotes the p-adic valuation of a. Section 5 deals with this last bound. It is shown that, even if we fix the field K, the values of k may be greater than any given positive constant. In this section, we give examples of Galois number fields K of degree 4 (resp. 3) for which the set of the values of k, when θ runs in A_{n} is $\{0\}$ (resp. \mathbb{N}). Throughout this paper we denote by \mathbb{N} the set of nonnegative integers. The paper ends with remarks and open questions.

2. Indices and denominators of algebraic numbers

Let K be a number field of degree n, A its ring of integers, $\gamma \in K_{n}$ and let $g(x)=a_{n} x^{n}+\cdots+$ $a_{1} x+a_{0} \in \mathbb{Z}[x]$ be the unique primitive polynomial of degree n such that $a_{n}>0$ and $g(\gamma)=0$. We denote this polynomial $F_{r}(x)$. This polynomial will be called the minimal polynomial of γ over \mathbb{Z}. The leading coefficient a_{n} will be denoted $c(\gamma)$.

Let

$$
\mathfrak{I}(\gamma)=\{m \in \mathbb{Z}, m \gamma \in A\}
$$

then $\mathfrak{I}(\gamma)$ is a nonzero ideal of \mathbb{Z}, hence a principal ideal generated by some positive integer denoted by $d(\gamma)$. The integer $d(\gamma)$ is called the denominator of γ. Since $c(\gamma) \in \mathfrak{I}(\gamma)$, then $d(\gamma) \mid c(\gamma)$. Write $\gamma=\frac{\theta}{d(\gamma)}$, where $\theta \in A_{n}$, then θ is unique and we call it the numerator of γ. Let $f(x)$ be the minimal polynomial of θ over \mathbb{Q}, then $g(x)=f(d(\gamma) x) / \operatorname{cont}(f(d(\gamma) x)$, where the abbreviation $\operatorname{cont}(h(x))$ denotes the content of the polynomial $h(x)$. From [ARW96] we have the following result:

Lemma 2.1. For any prime p, we have

$$
\begin{equation*}
\nu_{p}(d(\gamma))=\max \left(0, \max _{j=0}^{n-1}\left\lceil\frac{\nu_{p}\left(a_{n}\right)-\nu_{p}\left(a_{j}\right)}{n-j}\right\rceil\right) \tag{2.1}
\end{equation*}
$$

From Lemma 2.1 we see that any prime factor p of $c(\gamma)$ divides $d(\gamma)$. Summarizing the relations between $c(\gamma)$ and $d(\gamma)$, we have:

Remark 2.1. Let K be a number field of degree n and $\gamma \in K_{n}$, then $d(\gamma)$ and $c(\gamma)$ have the same prime factors and for any prime p, we have $\nu_{p}(d(\gamma)) \leq \nu_{p}(c(\gamma)) \leq n \nu_{p}(d(\gamma))$.

For any $\theta \in A_{n}$, let $F_{\theta}(x)$ its minimal polynomial over \mathbb{Q}. Following [GuMc70], we define the integers

$$
\begin{equation*}
i(\theta)=\operatorname{gcd}_{x \in \mathbb{Z}} F_{\theta}(x) \text { and } i(K)=\operatorname{lcm}_{\theta \in A_{n}} i(\theta) \tag{2.2}
\end{equation*}
$$

For the integers $i(\theta)$ and $i(K)$ we have the following results:
i) C. R. MacCluer proved in [Mac71] that for a given prime number p, p divides $i(K)$ if and only if the number of prime ideals of A lying over p is at least equal to p.
ii) In [GuMc70] and [AyKi11], it is proved that there exists $\theta \in A_{n}$ such that $i(K)=i(\theta)$, and that $i(K)=\operatorname{lcm}_{\theta \in A} i(\theta)$.

We extend the definition of $i(\theta)$ and $i(K)$ to algebraic numbers as follows. Given any $\gamma \in K_{n}$, we define

$$
i(\gamma):=\operatorname{gcd}_{x \in \mathbb{Z}} F_{\gamma}(x) \text { and } \hat{\imath}(K)=\operatorname{lcm}_{\gamma \in K_{n}} i(\gamma) .
$$

We quote from [AyKi11] the following result.
Lemma 2.2. Let $g(x) \in \mathbb{Z}[x]$. Write $g(x)$ in the form

$$
g(x)=b_{n}(x)_{n}+\cdots+b_{1}(x)_{1}+b_{0},
$$

where $b_{0}, \ldots, b_{n} \in \mathbb{Z}$,

$$
(x)_{0}=1 \text { and }(x)_{j}:=x(x-1) \cdots(x-(j-1)), \text { for } j \geq 1 .
$$

Then, we have the identity

$$
i(g)=\operatorname{gcd}_{j=0}^{n}\left(j!b_{j}\right) .
$$

Corollary 2.1. The integers $i(\gamma), i(K)$ and $\hat{\imath}(K)$ divide $n!$.
Remark 2.2. Clearly, from the definitions of $i(K)$ and $\hat{\imath}(K)$, we see that $i(K)$ divides $\hat{\imath}(K)$.

3. Study of the denominators of some algebraic numbers

We prove the following lemma, which is useful for the rest of this paper:
Lemma 3.1. Let p be a prime number, γ be an algebraic number and $d(\gamma)$ be its denominator. Write $d(\gamma)$ in the form $d(\gamma)=p^{k} \cdot q$, where $\operatorname{gcd}(p, q)=1$ and let $\mu=q \gamma$. Then we have

$$
d(\mu)=p^{k}, \nu_{p}(c(\mu))=\nu_{p}(c(\gamma)) \quad \text { and } \quad \nu_{p}(i(\gamma))=\nu_{p}(i(\mu)) .
$$

Proof: Let $\gamma=\theta /{ }_{p} k_{q}$ where θ is an algebraic integer such that $\theta \not \equiv 0(\bmod p)$ and $\theta \not \equiv 0(\bmod l)$ for any prime factor 1 of q . Then $\mu=q \gamma=\theta / p k$, hence $d(\mu)=p_{k}$. Let n be the degree of γ over \mathbb{Q} and let $g(x)=a_{n} x_{n}+\cdots+a_{1} x+a_{0}$ be its minimal polynomial over \mathbb{Z}. Since $a_{n}=c(\gamma)$ and $d(\gamma) \mid c(\gamma)$, then $q \mid a_{n}$. This implies that the polynomial $h(x)=q^{n-1} g(x / q)=$ $\left(a_{n} / q\right) x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} q^{n-2} x+a_{0} q^{n-1}$ has integral coefficients and vanishes for μ. Therefore, the minimal polynomial of μ over \mathbb{Z} is given by $f(x)=h(x) / \operatorname{cont}(h)$. Write cont (h) in the form $\operatorname{cont}(h)=g c d(q, \operatorname{cont}(h)) \cdot \lambda$, where λ is a positive integer. We show that $\lambda=1$. Suppose that there exists a prime number $l \mid \lambda$, then $l \mid \operatorname{cont}(h)$ and $l \nmid q$. Since $l\left|a_{0} q^{n-1}, a_{1} q^{n-2}, \ldots, a_{n-1}, a_{n}\right| q$, then $l \mid a_{0}, \ldots, a_{n}$ which is a contradiction, hence $\lambda=1$. Therefore $\operatorname{cont}(h) \mid q$. Since

$$
c(\mu)=\left(a_{n} / q\right) / \operatorname{cont}(h)=a_{n} / q \operatorname{cont}(h)=c(\gamma) / q \operatorname{cont}(h),
$$

then $V_{p}(c(\mu))=V_{p}(c(\gamma))$. We now prove the last statement. Suppose that $p^{u} \mid i(\gamma)$ for some positive integer u and $x_{0} \in \mathbb{Z}$. Since $\operatorname{gcd}(p, q)=1$, there exists $y_{0} \in \mathbb{Z}$ such that the congruence $q y_{0} \equiv x_{0}\left(\bmod p^{u}\right)$ holds. In particular $g\left(y_{0}\right) \equiv 0\left(\bmod p^{u}\right)$, so that we have, $f\left(x_{0}\right)=h\left(x_{0}\right) / \operatorname{cont}(h)=q^{n-1} g\left(y_{0}\right) / \operatorname{cont}(h) \equiv 0\left(\bmod p^{u}\right)$. Since x_{0} was arbitrary, then $p^{u} \mid i(\mu)$. Conversely, suppose that $p^{u} \mid i(\mu)$ and let x_{0} and y_{0} as above. Then $f\left(x_{0}\right)=0\left(\bmod p^{u}\right)$, hence $q^{n-1} g\left(y_{0}\right) / \operatorname{cont}(h) \equiv 0\left(\bmod p^{u}\right)$, thus $g\left(y_{0}\right) \equiv 0\left(\bmod p^{u}\right)$. Therefore $p^{u} \mid i(\gamma)$.
We state the main result of this section.
Theorem 3.1. Let K be a number field of degree n over \mathbb{Q} and p be a prime number, Let $\gamma \in K_{n}$ such that $p \mid i(\gamma), c=c(\gamma), d=d(\gamma)$ and $k=v_{p}(d) \geqslant 1$. Then $p<n$ and $k \leq \nu_{p}(c) \leq(n-p) k$.

Proof: Set $d=p^{k} q$ with $\operatorname{gcd}(p, q)=1$. Let $\mu=q \gamma$, then $d(\mu)=p^{k}$ and by Lemma 3.1, we have $v_{p}(c(\mu))=v_{p}(c(\gamma))$ and $v_{p} i(\mu)=v_{p} i(\gamma) \geq 1$. Therefore, $p \mid i(\mu)$. The minimal polynomial of μ over \mathbb{Z} has the form:

$$
g(x)=p^{t}(x)_{n}+b_{n-1}(x)_{n-1}+\cdots+b_{1}(x)_{1}+b_{0}, \text { with } k \leq t \leq n k
$$

By corollary 2.1, $p \mid n$!, hence $p \leq n$. If $p=n$, since $p \mid j!b_{j}$ for all $j=0, \ldots, n-1$, then we conclude that $p \mid b_{0}, b_{1}, \ldots, b_{n-1}$. Therefore $g(x)$ is reducible in $\mathbb{Z}[x]$, which is a contradiction, hence $p<n$. In this case, since $p \mid b_{0}, b_{1}, \ldots, b_{p-1}$, then we may write $g(x)$ in the form

$$
\begin{gathered}
g(x)=x(x-1) \cdots(x-(p-1))\left(p^{t} x^{n-p}+\tilde{a}_{n-p-1} x^{n-p-1}+\cdots+\tilde{a}_{1} x+\tilde{a}_{0}\right) \\
+p\left(c_{p-1} x^{p-1}+\cdots+c_{1} x+c_{0}\right)
\end{gathered}
$$

where all the coefficients \tilde{a}_{i}, c_{j} are integral. Since $g(x)$ is irreducible in $\mathbb{Z}[x]$, there exists $j \in\{0, \ldots, n-p-1\}$ such that $p \nmid \tilde{a}_{j}$. Denote by j_{o} the greatest of these integers. Let $\theta \in A_{n}$ be the unique element such that $\gamma=\frac{\theta}{p^{k}}$. Then we have

$$
\begin{gathered}
\theta\left(\theta-p^{k}\right) \cdots\left(\theta-(p-1) p^{k}\right)\left(p^{t} \theta^{n-p}+p^{k} \tilde{a}_{n-p-1} \theta^{n-p-1}\right. \\
\left.+\cdots+p^{k\left(n-p-j_{o}\right)} \tilde{a}_{j_{0}} \theta^{j_{0}}+\cdots+p^{k(n-p-1)} \tilde{a}_{1} \theta+p^{k(n-p)} \tilde{a}_{0}\right) \\
+p \cdot p^{k(n-(p-1))}\left(c_{p-1} \theta^{p-1}+c_{p-2} p^{k} \theta^{p-2}+\cdots+c_{0} p^{k(p-1)}\right)=0
\end{gathered}
$$

Write this equation in the form:

$$
p^{t} \theta^{n}+u_{n-1} \theta^{n-1}+\cdots+u_{p} \theta^{p}+\cdots+u_{1} \theta+u_{0}=0 .
$$

Since θ is integral, it follows in particular that $p^{t} \mid u_{j}$ for $j=p, \ldots, n-1$. We can set

$$
\theta\left(\theta-p^{k}\right) \cdots\left(\theta-(p-1) p^{k}\right)=\theta^{p}+\sigma_{1} \theta^{p-1}+\cdots+\sigma_{p-1} \theta
$$

Then

$$
\left\{\begin{aligned}
\sigma_{1}= & -\left(p^{k}+\cdots+p^{k}(p-1)\right)=p^{k} \frac{p(p-1)}{2} \\
\sigma_{2}= & p^{2 k} \sum_{\substack{i \neq j \\
i, j \in\{1, \ldots, p-1\}}} i j \\
& \cdots \\
\sigma_{p-1}= & (-1)^{p-1} p^{k(p-1)}(p-1)!
\end{aligned}\right.
$$

We have

$$
\begin{gathered}
\left(x^{p}+\sigma_{1} x^{p-1}+\cdots+\sigma_{p-1} x\right)\left(p^{t} x^{n-p}+\cdots+p^{k\left(n-p-j_{0}\right)} \tilde{a}_{j_{0}} x^{j_{0}}+\cdots+\tilde{a}_{0} p^{k(n-p)}\right)+ \\
p p^{k(n-(p-1))}\left(c_{p-1} x^{p-1}+\cdots+c_{1} x\right)=p^{t} x^{n}+u_{n-1} x^{n-1}+\cdots+u_{p} x^{p}+\cdots+u_{1} x+u_{0}
\end{gathered}
$$

hence

$$
\left\{\begin{aligned}
u_{n-1} & =p^{k} \tilde{a}_{n-p-1}+p^{t} \sigma_{1} \\
u_{n-2} & =p^{2 k} \tilde{a}_{n-p-2}+p^{k} \tilde{a}_{n-p-1} \sigma_{1}+p^{t} \sigma_{2} \\
& \cdots \\
u_{j_{0}+p} & =\tilde{a}_{j_{0}} p^{k\left(n-p-j_{0}\right)}+\tilde{a}_{j_{0}+1} p^{k\left(n-p-\left(j_{0}+1\right)\right.} \sigma_{1}+\cdots+\tilde{a}_{j_{0}+m} p^{k\left(n-p-\left(j_{0}+m\right)\right.} \sigma_{m} \\
& +\cdots+p^{t} \sigma_{n-\left(j_{0}+p\right)}
\end{aligned}\right.
$$

The first equation implies that $p^{t} \mid p^{k} \tilde{a}_{n-p-1}$. Then the second implies that $p^{t} \mid p^{2 k} \tilde{a}_{n-p-2}$. Iterating the process, the last equation gives $p^{t} \mid \tilde{a}_{j_{0}} p^{k\left(n-p-j_{0}\right)}$. Since $p \nless \tilde{a}_{j_{0}}$, then

$$
t \leq k\left(n-p-j_{0}\right) \leq k(n-p)
$$

Theorem 3.2. Let p be a prime number, n and k be positive integers, $p<n$. Then for any integer t, such that $k \leq t \leq(n-p) k$, there exist infinitely many algebraic numbers $\gamma \in \mathbb{C}$ of degree n such that $p \mid i(\gamma), \nu_{p}(c(\gamma))=t$ and $\nu_{p}(d(\gamma))=k$.

Proof: Dividing t by k, we have two possibilities:

$$
\begin{align*}
t & =(n-i) k+\alpha \text { with } 0<\alpha<k \text { and } p<i \leq n-1 \tag{3.3}\\
t & =(n-i) k \text { with } p \leq i \leq n-1 \tag{3.4}
\end{align*}
$$

- First case: $t=(n-i) k+\alpha$ with $0<\alpha<k$ and $p<i \leq n-1$. Then, we have

$$
t>(n-i) \alpha+\alpha=\alpha(n-i+1), \text { hence } \alpha<\frac{t}{n-(i+1)}
$$

On the other hand, choose integers a_{0}, \ldots, a_{n} such that

$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1 \tag{3.5}\\
\nu_{p}\left(a_{j}\right)=t, \text { for } j>i \\
\nu_{p}\left(a_{i}\right)=\alpha,(\text { note that } \alpha \neq 0) \\
\nu_{p}\left(a_{i-1}\right)=0 \\
\nu_{p}\left(a_{j}\right)=1, \text { for } j<i-1
\end{array}\right.
$$

Consider the polynomials

$$
f(x)=\sum_{j=0}^{n} a_{j}(x)_{j}=\sum_{j=0}^{n} \tilde{a}_{j} x^{j}
$$

and

$$
g(x)=\tilde{a}_{n} x^{n}+q^{e_{n-1}} \tilde{a}_{n-1} x^{n-1}+\cdots+q^{e_{1}} \tilde{a}_{1} x+q \tilde{a}_{0}:=\sum_{j=0}^{n} b_{j} x^{j}
$$

where q is a prime number such that $q \equiv 1(\bmod p), q \backslash \tilde{a}_{0}$ and the exponents e_{j} are arbitrary fixed positive integers. Clearly $g(x)$ is irreducible in $\mathbb{Z}[x]$ by Eisenstein's Theorem. Let γ be a root of $\mathrm{g}(\mathrm{x})$. Since $p \leq i-1$, then by Lemma 2.2, we conclude that $p \mid i(f)$ and since $g(x) \equiv f(x)$ $(\bmod p)$ for any $x \in \mathbb{Z}$, then $p \mid i(\gamma)$. We look at the p-adic valuations of the \tilde{a}_{j}. Recall that $\tilde{a}_{n}=c(\gamma)$ and $\tilde{a}_{0}=a_{0}$, hence $\nu_{p}\left(\tilde{a}_{n}\right)=t$ and $\nu_{p}\left(\tilde{a}_{0}\right)=1$. We claim that

$$
\left\{\begin{array}{l}
\nu_{p}\left(\tilde{a}_{j}\right) \geq t, \text { for } j>i \tag{3.6}\\
\nu_{p}\left(\tilde{a}_{a}\right)=\alpha, \\
\nu_{p}\left(\tilde{a}_{i-1}\right)=0 .
\end{array}\right.
$$

For any $j \geq 1$ we have $\tilde{a}_{j}=a_{j}+\sum_{l=j+1}^{n} a_{l} c_{l}$, where $c_{l} \in \mathbb{Z}$ for any l.
If $j>i$ then $\nu_{p}\left(a_{j}\right)=\nu_{p}\left(a_{j+1}\right)=\cdots=\nu_{p}\left(a_{l}\right)=t$, hence $\nu_{p}\left(\tilde{a}_{j}\right) \geq t$.
For $j=i$ we have $\nu_{p}\left(a_{j}\right)=\alpha<t$ and $\nu_{p}\left(a_{l}\right)=t$ for $l=i+1, \ldots, n$, hence $\nu_{p}\left(\tilde{a}_{i}\right)=\alpha$.
For $j=i-1$ we have $\nu_{p}\left(a_{i-1}\right)=0$ and $\nu_{p}\left(a_{l}\right) \geq \alpha$ for $l=i, \ldots, n$, hence $\nu_{p}\left(\tilde{a}_{i-1}\right)=0$. Thus we obtain the desired claim.
To compute the p-adic valuation of the denominator of γ, we use Lemma 2.1. For $j>i$, we have

$$
\frac{\nu_{p}\left(b_{n}\right)-\nu_{p}\left(b_{j}\right)}{n-j}=\frac{\nu_{p}\left(\tilde{a}_{n}\right)-\nu_{p}\left(\tilde{a}_{j}\right)}{n-j}=\frac{t-t_{j}}{n-j} \leq 0, \text { because } t_{j} \geq t
$$

For $j=i$, we have

$$
\frac{\nu_{p}\left(b_{n}\right)-\nu_{p}\left(b_{i}\right)}{n-i}=\frac{\nu_{p}\left(\tilde{a}_{n}\right)-\nu_{p}\left(\tilde{a}_{i}\right)}{n-i}=\frac{t-\alpha}{n-i}=k .
$$

For $j<i$ we have

$$
\frac{\nu_{p}\left(b_{n}\right)-\nu_{p}\left(b_{j}\right)}{n-j}=\frac{\nu_{p}\left(\tilde{a}_{n}\right)-\nu_{p}\left(\tilde{a}_{j}\right)}{n-j}=\frac{t-t_{j}}{n-j} \leq \frac{t}{n-(i-1)} \leq \frac{(n-i) k+\alpha}{n-(i-1)}<\frac{(n-i) k+k}{n-(i-1)}=k,
$$

hence $\nu_{p}(d(\gamma))=k$.

- Second case: $t=(n-i) k$ with $p \leq i \leq n-1$. Choose integers a_{0}, \ldots, a_{n} such that $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$ and

$$
\left\{\begin{array}{l}
\nu_{p}\left(a_{j}\right) \geq t, \text { for } j>i, \tag{3.7}\\
\nu_{p}\left(a_{i}\right)=0, \\
\nu_{p}\left(a_{j}\right)=1, \text { for } j<i, \\
\nu_{p}\left(a_{n}\right)=t .
\end{array}\right.
$$

Consider the polynomials

$$
f(x)=\sum_{j=0}^{n} a_{j}(x)_{j}=\sum_{j=0}^{n} \tilde{a}_{j} x^{j}
$$

and

$$
g(x)=\tilde{a}_{n} x^{n}+q^{e_{n-1}} \tilde{a}_{n-1} x^{n-1}+\cdots+q^{e_{1}} \tilde{a}_{1} x+q \tilde{a}_{0}:=\sum_{j=0}^{n} b_{j} x^{j}
$$

where q and the e_{j} have the same meaning as in the preceding case. Clearly $g(x)$ is irreducible in $\mathbb{Z}[x]$ by Eisenstein's Theorem. Let γ be a root of $\mathrm{g}(\mathrm{x})$. Since $p \leq i$, then by Lemma 2.2, we conclude that $p \mid i(f)$ and since $g(x) \equiv f(x)(\bmod p)$ for any $x \in \mathbb{Z}$, then $p \mid i(\gamma)$. We look at the p-adic valuations of the \tilde{a}_{j}. We have $\tilde{a}_{n}=a_{n}$ hence $\nu_{p}\left(\tilde{a}_{n}\right)=t$. For $j>i$, we have $\tilde{a}_{j}=a_{j}+\sum_{l=j+1}^{n} a_{l} c_{l}$ where $c_{l} \in \mathbb{Z}$ and we have $\nu_{p}\left(a_{j}\right) \geq t$ and $\nu_{p}\left(a_{l}\right) \geq t$ for $l \geq j+1$, hence $\nu_{p}\left(\tilde{a}_{i}\right) \geq t$.
For $j=i$, we have $\nu_{p}\left(a_{i}\right)=0$ and $\nu_{p}\left(a_{l}\right)=t, l \geq j+1$, hence $\nu_{p}\left(\tilde{a}_{i}\right)=0$.
For $j<i$, we have $\nu_{p}\left(\tilde{a}_{j}\right) \geq 0$.
For $j<i$, we have $\nu_{p}\left(\tilde{a}_{j}\right) \geq 0$.
We compute the p-adic valuation of the denominator of γ by using Lemma 2.1.
For $j>i$, we have

$$
\frac{\nu_{p}\left(b_{n}\right)-\nu_{p}\left(b_{j}\right)}{n-j}=\frac{\nu_{p}\left(\tilde{a}_{n}\right)-\nu_{p}\left(\tilde{a}_{j}\right)}{n-j}=\frac{t-t_{j}}{n-j} \leq 0, \text { because } t_{j} \geq t
$$

For $j=i$, we have

$$
\frac{\nu_{p}\left(b_{n}\right)-\nu_{p}\left(b_{i}\right)}{n-i}=\frac{\nu_{p}\left(\tilde{a}_{n}\right)-\nu_{p}\left(\tilde{a}_{i}\right)}{n-i}=\frac{t}{n-i}=k .
$$

For $j<i$ we have

$$
\frac{\nu_{p}\left(b_{n}\right)-\nu_{p}\left(b_{j}\right)}{n-j}=\frac{\nu_{p}\left(\tilde{a}_{n}\right)-\nu_{p}\left(\tilde{a}_{j}\right)}{n-j}<\frac{t-t_{j}}{n-i} \leq \frac{t}{n-i}=k
$$

hence $\nu_{p}(d(\gamma))=k$.
Since we can choose q and the e_{j} in an infinite number of ways, then the number of γ 's is infinite.

4. Upper bounds for the enumeration of the denominators of some algebraic numbers

Proposition 4.1. Let $\theta \in A_{n}$, and $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ its minimal polynomial over \mathbb{Q}. Suppose that $\theta \not \equiv 0(\bmod p A)$. Construct the Newton polygon of $f(x)$ by plotting in the (x, y) plan the points A_{i} whose coordinates are $\left(i, \nu_{p}\left(a_{i}\right)\right)$ for all $i \in\{0, \ldots, n\}$ such that $a_{i} \neq 0$. Suppose that there exists $k \geq 1$ such that $p \mid i\left(\theta / p^{k}\right)$. Then there exists two integers m, M such that $1 \leq m<M \leq n-1$ and the line joining the points A_{m} and A_{M} has the following equation

$$
y+k x-u=0, \text { where } k M \leq u<\nu_{p}\left(a_{0}\right) \text { and } u=\nu_{p}\left(\operatorname{cont}\left(f\left(p^{k} x\right)\right)\right)
$$

Moreover all the points A_{i} such that $i<m$ or $i>M$ belong to the domain of all points (x, y) such that $y+k x-u>0$. If $m<i<M$, then we have $\nu_{p}\left(a_{i}\right)+k i-u \geq 0$.

Proof: The minimal polynomial over \mathbb{Z} of θ / p^{k} is given by

$$
f\left(p^{k} x\right) / p^{u}=p^{n k-u} x^{n}+p^{(n-1) k-u} a_{n-1} x^{n-1}+\cdots+p^{k-u} a_{1} x+p^{-u} a_{0}:=g(x)
$$

where $u=\nu_{p}\left(\operatorname{cont}\left(f\left(p^{k} x\right)\right)\right)$. Let

$$
I=\left\{i: 1 \leq i \leq n-1, a_{i} \neq 0 \text { and } i k+\nu_{p}\left(a_{i}\right)-u=0\right\} .
$$

Since θ / p^{k} is not integral then $n k-u>0$. Since $g(0) \equiv 0(\bmod p)$, then $\nu_{p}\left(a_{0}\right)-u>0$. Adding these two facts to the property that $g(x)$ is primitive implies that $I \neq \emptyset$. Furthermore $g(1) \equiv 0(\bmod p)$, hence $|I| \geq 2$.
Let $m=\inf (I)$ and $M=\max (I)$. Clearly the equation of the line joining the points A_{m} and A_{M} is given by: $y+k x-u=0$. Moreover a point $\left(i, \nu_{p}\left(a_{i}\right)\right)$ of the Newton polygon belongs to this line if and only if $i \in I$. The definition of m and M implies the properties of the points A_{i} and of u.

Remark 4.1. Proposition 4.1 shows that $-k$ is the slope of some line joining two points A_{m} and A_{M}. Moreover all the others points belong to the same side of the line (or on the line). Therefore, if we fix a prime p and an algebraic integer θ such that $\theta \neq 0(\bmod p A)$, it is possible to find explicitly all the values of k such that $p \mid i\left(\theta / p^{k}\right)$. This proposition shows also that the set of such nonnegative integers k is finite (may be empty).

Example 4.1. Let $t \geq 2$ be an integer, $f(x)=x^{3}+x^{2}+2^{t} x+2^{t+1}$ and θ_{t} be a root of $f(x)$. It is seen that $f(x)$ is irreducible over \mathbb{Q} : if not, it has a root a / b in \mathbb{Q} with $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=1$. Substitution then yields

$$
a^{3}+a^{2} b+2^{t} a b^{2}+2^{t+1} b^{3}=0,
$$

implying $b \mid a^{3}$. Thus, $b= \pm 1$, and we then obtain $a \mid 2^{t+1}$. Letting $a=2^{i}$, we obtain $2^{3 i}+2^{t+i}=2^{2 i}+2^{t+1}$, implying that $t+i \leq t+1$ so $i=1$ which is impossible.

For any nonnegative integer, let $\gamma_{t, k}=\theta_{t} / 2^{k}$. We show that $V_{2}\left(\theta_{t}\right)=\{0, t\}$. Clearly, $2 \mid i\left(\theta_{t}\right)$, hence $0 \in V_{2}\left(\theta_{t}\right)$. The Newton diagram for $p=2$ has the following shape:

The possible edges of the convex hull which may give rise to values of $k \in V_{2}\left(\theta_{t}\right), k \geq 1$, are $\left[A_{0} A_{1}\right]$ and $\left[A_{1} A_{2}\right]$. Their slopes are equal to $-t-1$ and t respectively. Thus, $k=t+1$ or $k=t$.

If $k=t+1$, the minimal polynomial of $\gamma_{t, k}$ over \mathbb{Z} is given by $g(x)=2^{t+2} x^{3}+2 x^{2}+x+1$. This shows that $2 \not \operatorname{Xi}(g(x))$, hence $t+1 \notin V_{2}\left(\theta_{t}\right)$.

If $k=t$, the minimal polynomial of $\gamma_{t, k}$ over \mathbb{Z} is given by $h(x)=2 x^{3}+x^{2}+x+2$. This shows that $2 \mid i(h(x))$, hence $t \in V_{2}\left(\theta_{t}\right)$. Thus, $V_{2}\left(\theta_{t}\right)=\{0, t\}$.

We state now our main result on the upper bounds for the enumeration of the denominators of algebraic numbers γ such that $p \mid i(\gamma)$.

Theorem 4.1. Let θ be a root of $f(x) \in \mathbb{Z}[x]$, monic irreducible, p a prime number such that $\theta \not \equiv 0(\operatorname{modp} A)$ and let $a_{0}=f(0)$. We set

$$
V_{p}(\theta)=\left\{k \geq 0 ; p \mid i\left(\theta / p^{k}\right)\right\} .
$$

Suppose that $V_{p}(\theta) \neq \emptyset$ then we have

$$
\begin{align*}
& \left|V_{p}(\theta)\right| \leq \frac{n-1}{p-1}, \tag{4.8}\\
& \sum_{k \in V_{p}(\theta)} k<\frac{\nu_{p}\left(a_{0}\right)}{p} . \tag{4.9}
\end{align*}
$$

For the proof of this theorem, we need the following lemma.
Lemma 4.1. Let p be a prime number and $g(x)=a_{M} x^{M}+\cdots+a_{m} x^{m}, M>m>0$ such that $p \nmid a_{M}$. If $p \mid i(g)$, then $M-m \geq p-1$.

Proof: Suppose that $p \mid i(g)$, then clearly $p \mid i\left(x g_{1}\right)$, where $g_{1}(x)=a_{M} x^{M-m}+\cdots+a_{m}$. Write $x g_{1}$ in the form

$$
x g_{1}(x)=a_{M}(x)_{M-m+1}+\sum_{j<M-m+1} b_{j}(x)_{j},
$$

then by Lemma $2.2 p \mid(M-m+1)!a_{M}$, hence $p \mid(M-m+1)$!. Therefore $p \leq M-m+1$.
Proof of Theorem 4.1. Suppose that the complete list of elements of $V_{p}(\theta)$ is given by $k_{1}<k_{2}<$ $\cdots<k_{z}$. We have $k_{1}=0$ if and only if $p \mid i(\theta)$. Set $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. For each $j=1, \ldots, z$, let $g_{j}(x)$ be the minimal polynomial of $\theta / p^{k_{j}}$ over \mathbb{Z}.
Set $g_{j}(x)=p^{t_{j}} x^{n}+b_{n-1}^{(j)} x^{n-1}+\cdots+b_{1}^{(j)} x+b_{0}^{(j)}$, we have

$$
g_{1}(x)=\left\{\begin{array}{cc}
f(x) & \text { if } k_{1}=0 \tag{4.10}\\
f\left(p^{k_{1}} x\right) p^{-u_{1}} & \text { if } k_{1} \geq 1
\end{array}\right.
$$

and $g_{j+1}(x)=g_{j}\left(p^{k_{j+1}-k_{j}} x\right) p^{-u_{j+1}}$ for $j=1, \ldots, z-1$ and u_{1}, \ldots, u_{z} are positive integers.
For any $j=1, \ldots, z$, let $I_{j}=\left\{i \in\{1, \ldots, n-1\}, \nu_{p}\left(b_{i}^{(j)}\right)=0\right\}$. Since $t_{j}>0, \nu_{p}\left(b_{0}^{(j)}\right)>0$ and $g_{j}(x)$ is irreducible in $\mathbb{Z}[x]$, then it follows that $I_{j} \neq \emptyset$. Let $m_{j}=\inf \left(I_{j}\right)$ and $M_{j}=\sup \left(I_{j}\right)$. Since $g_{j}(1) \equiv 0(\bmod p)$ then $\left|I_{j}\right| \geq 2$ and $m_{j}<M_{j}$. Clearly $m_{j} \geq 1$ and $M_{j} \leq n-1$. We claim that:

- $M_{j}-m_{j} \geq p-1$ for $j=1, \ldots, z$.
- $u_{1} \geq k_{1} M_{1}$ and $u_{j} \geq\left(k_{j}-k_{j-1}\right) M_{j}$ for $j=2, \ldots, z$.
- $n \geq M_{1}>m_{1} \geq M_{2}>m_{2} \geq \cdots \geq M_{z}>m_{z} \geq 1$.

The first claim follows from Lemma 4.1. If $k_{1}=0$, then from (4.10) we have $u_{1}=0=k_{1} M_{1}$. From the definition of M_{1} and the definition of the interval I_{1}, it follows that

$$
\nu_{p}\left(b_{M_{1}}^{(1)}\right)=0
$$

Therefore, if $k_{1} \geq 1$, equation (10) and the above equality imply that

$$
0=\nu_{p}\left(b_{M_{1}}^{(1)}\right)=\nu_{p}\left(a_{M_{1}}\right)+k_{1} M_{1}-u_{1}
$$

hence $u_{1} \geq k_{1} M_{1}$. Similarly for $j=2, \ldots, z$, we have

$$
0=\nu_{p}\left(b_{M}^{(j)}\right)=\nu_{p}\left(b_{M_{j}}^{(j-1)}\right)+\left(k_{j}-k_{j-1}\right) M_{j}-u_{j}
$$

hence $u_{j} \geq\left(k_{j}-k_{j-1}\right) M_{j}$, which proves the second part of the claim. For the last part of the claim it is sufficient to prove that $m_{j} \geq M_{j+1}$ for $j=1, \ldots, z-1$. For, suppose that $m_{j}<M_{j+1}$ for some $j \in\{1, \ldots, z-1\}$. We have $0=\nu_{p}\left(b_{m_{j}}^{(j)}\right)$, hence

$$
\nu_{p}\left(b_{m_{j}}^{(j+1)}\right)=\nu_{p}\left(b_{m_{j}}^{(j)} \cdot p^{\left(k_{j+1}-k_{j}\right) m_{j}} \cdot p^{-u_{j+1}}\right)=\left(k_{j+1}-k_{j}\right) m_{j}-u_{j+1}
$$

We deduce that $\left(k_{j+1}-k_{j}\right) m_{j} \geq u_{j+1}$ and then $\left(k_{j+1}-k_{j}\right) M_{j+1}>u_{j+1}$. It follows that

$$
\nu_{p}\left(b_{M_{j+1}}^{(j+1)}\right)=\nu_{p}\left(b_{M_{j+1}}^{(j)}\right)+\left(k_{j+1}-k_{j}\right) M_{j+1}-u_{j+1}>0
$$

which contradicts the definition of M_{j+1} and completes the proof of the claim.
We now come back to the proof of Theorem 4.1.
Completion of proof of Theorem 4.1: We use the first and the third points of the claim. We have

$$
n \geq M_{1}>M_{2}>\cdots>M_{z-1}>M_{z} \geq p>1
$$

Using the claim, we obtain

$$
n-p \geq M_{1}-M_{z}=\left(M_{1}-M_{2}\right)+\cdots+\left(M_{z-1}-M_{z}\right) \geq(p-1)(z-1)
$$

hence

$$
z \leq \frac{n-p}{p-1}+1=\frac{n-1}{p-1}
$$

Therefore (4.8) is proved.
We prove the inequality (4.9) of Theorem 4.1. We have $b_{0}^{(1)}=a_{0} p^{-u_{1}}, b_{0}^{(j+1)}=b_{0}^{(j)} p^{-u_{j+1}}$ for $j=1, \ldots, z-1$ and since $g_{z}(0) \equiv 0(\bmod p)$, then $\nu_{p}\left(b_{0}^{(z)}\right)>0$. Hence $u_{1}+u_{2}+\cdots+u_{z}<\nu_{p}\left(a_{0}\right)$. On the other hand, using the first and the second parts of the claim, we obtain

$$
\begin{aligned}
u_{1}+u_{2}+\cdots+u_{z} & \geq k_{1} M_{1}+\left(k_{2}-k_{1}\right) M_{2}+\cdots+\left(k_{z}-k_{z-1}\right) M_{z} \\
& \geq k_{1} z p+\left(k_{2}-k_{1}\right)(z-1) p+\cdots+\left(k_{z}-k_{z-1}\right) p \\
& =p\left(k_{1} z+k_{2} z-k_{1} z-k_{2}+k_{1}+k_{3} z-k_{2} z-2 k_{3}+2 k_{2}+\cdots+k_{z}-k_{z-1}\right) \\
& =p\left(\left(k_{1}+k_{2}+\cdots+k_{z}\right)\right.
\end{aligned}
$$

Therefore, we have

$$
\nu_{p}\left(a_{0}\right)>\sum_{j=1}^{z} u_{j} \geq p \sum_{j=1}^{z} k_{j}
$$

hence

$$
\sum_{j=1}^{z} k_{j}<\nu_{p}\left(a_{0}\right) / p
$$

Remark 4.2. Theorem 4.1, shows that if $\nu_{p}\left(a_{0}\right) \leq p$, then $V_{p}(\theta)=\{0\}$ or $V_{p}(\theta)=\emptyset$.
The following result shows that the bound (4.8) in Theorem 4.1 is the best possible. More precisely, we have

Proposition 4.2. Let p and q be distinct prime numbers such that $q \equiv 1(\bmod p), \theta$ be a root of

$$
f(x)=x^{n}+\sum_{i=1}^{N} a_{i} x^{n-i(p-1)}+q p^{\lambda}
$$

where $N=\lfloor(n-1) /(p-1)\rfloor, a_{i}=(-1)^{i} q p^{(p-1) i(i-1) / 2}$, for $i=1, \ldots, N$ and

$$
\lambda>\frac{2 n(N-1)-(p-1)\left((N-1)^{2}+N-1\right)}{2}
$$

Then

$$
\left|V_{p}(\theta)\right|=\left\lfloor\frac{n-1}{p-1}\right\rfloor
$$

Proof: Clearly, by Eisenstein's criterion, $f(x)$ is irreducible over \mathbb{Q}. The coefficient of $x^{n-(p-1)}$ is coprime to p, hence $\theta \not \equiv 0(\bmod p A)$. By Theorem 4.1, we have

$$
\left|V_{p}(\theta)\right| \leq\left\lfloor\frac{n-1}{p-1}\right\rfloor
$$

We show that the integers $0,1, \ldots,\left\lfloor\frac{n-1}{p-1}\right\rfloor-1$ belong to $V_{p}(\theta)$ and this will complete the proof of Proposition 4.2. Since $f(x) \equiv x^{n}-q x^{n-(p-1)}(\bmod p \mathbb{Z}[x])$ and $q \equiv 1(\bmod p)$, then $f(x) \equiv x^{n-(p-1)}\left(x^{p}-1\right)(\bmod p \mathbb{Z}[x])$. Thus, $p \mid i(f)$ and $0 \in V_{p}(\theta)$. Set $a_{0}=1$ and fix $k \in\left\{1, \ldots,\left\lfloor\frac{n-1}{p-1}\right\rfloor-1\right\}$. We have

$$
f\left(p^{k} x\right)=p^{n k} x^{n}+\sum_{i=1}^{N} a_{i} p^{n k-i(p-1) k} x^{n-i(p-1)}+q p^{\lambda} .
$$

We claim, omitting the proofs that

$$
\nu_{p}\left(a_{k} p^{n k-k(p-1) k}\right)=\nu_{p}\left(a_{k+1} p^{n k-k(p-1)(k+1)}\right)=\frac{2 n k-(p-1)\left(k^{2}+k\right)}{2}
$$

and

$$
\nu_{p}\left(a_{i} p^{n k-i(p-1) k}\right)>\frac{2 n k-(p-1)\left(k^{2}+k\right)}{2} \text { if } i \neq k, k+1
$$

Moreover, since the function $x \mapsto \psi(x)=2 n x-(p-1)\left(x^{2}+x\right)$ is increasing in $[0, N-1]$ and since $\lambda>\frac{2 n(N-1)-(p-1)(N-1)^{2}+N-1}{2}$, then $\lambda>\frac{2 n k-(p-1)\left(k^{2}+k\right)}{2}$. It follows that $\operatorname{cont}\left(f\left(p^{k} x\right)\right)=$ $\frac{2 n k-(p-1)\left(k^{2}+k\right)}{2}$ and the minimal polynomial over \mathbb{Z} of $\gamma_{k}=\frac{\theta}{p^{k}}$ is given by

$$
g_{k}(x)=f\left(p^{k} x\right) p^{-\left(2 n k-(p-1) k^{2}+k\right) / 2}
$$

From the above it is seen that

$$
g_{k}(x) \equiv(-1)^{k} x^{n-k(p-1)}+(-1)^{k+1} x^{n-(k+1)(p-1)}(\bmod p) \equiv(-1)^{k} x^{n-(k+1)(p-1)}\left(x^{p-1}-1\right)(\bmod p)
$$

hence $p \mid i\left(\gamma_{k}\right)$, thus $k \in V_{p}(\theta)$.
Corollary 4.1. Let p be a prime number, and θ be a root of

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x],
$$

irreducible over \mathbb{Q}. Suppose that there exists $i \in\{0, \ldots, \min (p, n)-1\}$ such that $\nu_{p}\left(a_{i}\right)=0$. Then

$$
\theta \not \equiv 0(\bmod p A) \text { and } V_{p}(\theta)=\emptyset \text { or } V_{p}(\theta)=\{0\}
$$

Moreover if $p>n$, then $V_{p}(\theta)=\emptyset$.
Proof: Let α be an algebraic integer and $g(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}$ be its minimal polynomial over \mathbb{Q}. It is easy to prove that $\alpha \equiv 0(\bmod p)$ if and only if $\nu_{p}\left(b_{i}\right) \geq n-i$ for $i=0, \ldots, n-1$. Our assumption then implies that $\theta \not \equiv 0(\bmod p A)$. Suppose that $V_{p}(\theta) \neq \emptyset$ and let $k \in V_{p}(\theta)$. Assume that $k \geq 1$ and let $\gamma=\theta / p^{k}$ and $u=\operatorname{cont}\left(f\left(p^{k} x\right)\right)$. Then the minimal polynomial of γ over \mathbb{Z} is given by

$$
g(x)=f\left(p^{k} x\right) p^{-u}=p^{n k-u} x^{n}+p^{(n-1) k-u} a_{n-1} x^{n-1}+\cdots+p^{-u} a_{0}
$$

As in Theorem 4.1, let

$$
I=\left\{j \in\{1, \ldots, n-1\} ; \nu_{p}\left(a_{j}\right)+k j-u=0\right\}, m=\inf (I), M=\sup (I)
$$

Suppose first that $m \leq i$. We have $i k-u=\nu_{p}\left(a_{i}\right)+i k-u \geq 0$. Since $M-m \geq p-1$, then $M>i$ which implies $\nu_{p}\left(a_{M}\right)+M k-u \geq M k-u>i k-u \geq 0$, a contradiction. We deduce that $m>i$ and then $\left.\nu_{p}\left(a_{m}\right)\right)+k m-u \geq k m-u>k i-u=\nu_{p}\left(a_{i}\right)+k i-u \geq 0$, a contradiction again. Therefore $V_{p}(\theta)=\{0\}$.

5. A new invariant of number fields and a generalisation of MacCluer's Theorem

Let p be a fixed prime integer. We have shown that for any algebraic integer θ such that $\theta \not \equiv 0(\bmod p A), p \mid i\left(\theta / p^{k}\right)$ for some $k \geq 1$, then $k<\nu_{p}\left(N_{\mathbb{Q}(\theta) / \mathbb{Q}}(\theta)\right) / p$. Does there exist some constant $c>0$ such that if $\theta \in \overline{\mathbb{Q}}, \theta \not \equiv 0(\bmod p A)$ and $p \mid i\left(\theta / p^{k}\right)$ then $k<c$?
Even if we fix the degree n of θ and suppose that the constant c depends on n, the answer is negative as it is shown by the following result.

Proposition 5.1. Let n, N be positive integers and p be a prime number such that $p<n$. Then there exists an integer $k>N$ and an algebraic integer θ of degree n such that

$$
\theta \not \equiv 0(\bmod p A) \text { and } p \mid i\left(\theta / p^{k}\right)
$$

Proof: Let F be a number field of degree $n-1$ such that $p \mid i(F)$. In particular, we can take F such that p completely splits in F, so that $p \mid i(F)$ by MacCluer's Theorem. Such a field F exists by Tchebotarev's theorem [Neu99]. Let α be a primitive element of F / \mathbb{Q}. Suppose that α is integral and $p \mid i(\alpha)$. Let $F_{\alpha}(x)$ be the minimal polynomial of α over \mathbb{Q}. Let q be a prime number such that

$$
q \neq p \text { and } q \backslash N_{F / \mathbb{Q}}(\alpha) .
$$

Let t be an integer such that $t>n N$ and let $g(x)=p^{t} x^{n}+q F_{\alpha}(x)$. Then Eisenstein's criterion shows that $g(x)$ is irreducible over \mathbb{Q}. Obviously $g(x)$ is primitive, hence it is irreducible in $\mathbb{Z}[x]$. Let γ be a root of $g(x)$, then clearly $p \mid i(\gamma)$ and $d(\gamma)=p^{k}$ for some positive integer k such that $k \leq t \leq n k$, hence $k \geq t / n>N$. The algebraic integer $\theta=p^{k} \gamma$ satisfies all the conditions of the proposition and the proof is complete.

Let K be a number field of degree n over \mathbb{Q} and A be its ring of integers. We define the integer $\nu_{p}(K)$ as follows.

Definition 5.1. Let

$$
V_{p}(K)=\left\{k \geq 0, \text { there exists } \theta \in A_{n}, \theta \not \equiv 0(\bmod p A), \text { and } p \mid i\left(\theta / p^{k}\right)\right\},
$$

and we define

$$
v_{p}(K)=\left\{\begin{array}{ccc}
-\infty & \text { if } V_{p}(K)=\emptyset, \\
\infty & \text { if } & V_{p}(K) \text { is infinite }, \\
\max \left(V_{p}(K)\right) & \text { if } & V_{p}(K) \text { is finite } .
\end{array}\right.
$$

Remark 5.1. By Theorem 3.1, we have $v_{p}(K)=-\infty$ if and only if $p \nmid(K)$. So there is no need to give examples illustrating this fact. Theorem 3.1 again shows that if the degree of the number field K is a prime p then $v_{p}(K)=0$ if $p \mid i(K)$ and $v_{p}(K)=-\infty$ if p Xi (K).

In the following we compute explicitly $v_{2}(K)$ for some number fields of degree 3 or 4 over \mathbb{Q}.
Proposition 5.2. (Galois field of degree 4) Let K / \mathbb{Q} be a Galois number field of degree 4 in which the prime 2 splits into a product of two prime ideals having their residual degree equal to 2 . Then we have $v_{2}(K)=0$.

Proof: By MacCluer's theorem, $2 \mid i(K)$, hence $0 \in V_{p}(K)$. Let \mathfrak{p} and \mathfrak{p}^{\prime} be the conjugate prime ideals of A lying over 2 and having their residual degree equal to 2 . Suppose that $2 \mid i\left(\theta / 2^{k}\right)$ for some $k \geq 1$ and $\theta \in A_{n}$ such that $\theta \not \equiv 0(\bmod 2 A)$. Since $N_{K / \mathbb{Q}}(\theta) \equiv 0(\bmod 2)$, then we may suppose that $\mathfrak{p}^{e} \| \theta$ and $\mathfrak{p}^{\prime} X \theta$ for some $e \geq 1$. We suppose that the conjugates $\theta_{1}=\theta, \theta_{2}, \theta_{3}, \theta_{4}$ of θ satisfy the following conditions:

$$
\mathfrak{p}^{e}\left\|\theta_{1}, \mathfrak{p}^{e}\right\| \theta_{3}, \mathfrak{p}^{\prime} \times \theta_{1} \theta_{3}, \mathfrak{p}^{\prime e}\left\|\theta_{2}, \mathfrak{p}^{\prime e}\right\| \theta_{4}, \mathfrak{p} \times \theta_{2} \theta_{4} .
$$

Let $f(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$ be the minimal polynomial of θ over \mathbb{Q}. Let $g(x) \in \mathbb{Z}[x]$ be the minimal polynomial of $\gamma=\theta / 2^{k}$ over \mathbb{Z}, then

$$
g(x)=f\left(2^{k} x\right) \cdot 2^{-u}=2^{4 k-u} x^{4}+2^{3 k-u} a_{3} x^{3}+2^{2 k-u} a_{2} x^{2}+2^{k-u} a_{1} x+2^{-u} a_{0}
$$

where u is the content of $f\left(2^{k} x\right)$. Using the elementary symmetric functions of the θ_{j} and our assumption on their \mathfrak{p}-adic and \mathfrak{p}^{\prime}-adic valuations, we get

$$
\nu_{2}\left(a_{0}\right)=2 e, \nu_{2}\left(a_{1}\right) \geq e \text { and } \nu_{2}\left(a_{2}\right)=0
$$

If $k \geq e$, then $\nu_{2}\left(2^{4 k-u}\right) \geq 4 e-u, \nu_{2}\left(2^{3 k-u} a_{3}\right) \geq 3 e-u, \nu_{2}\left(2^{2 k-u} a_{2}\right)=2 k-u \geq 2 e-u$, $\nu_{2}\left(2^{k-u} a_{1}\right) \geq 2 e-u, \nu_{2}\left(2^{-u} a_{0}\right)=2 e-u$. Since these five 2 -adic valuations must be nonnegative, then $u \leq 2 e$. Furthermore one (at least) of these valuations must be 0 , hence $u=2 e$. In this case, $g(0) \not \equiv 0(\bmod 2)$ which is a contradiction to $2 \mid i(\gamma)$. If $k<e$, then $\nu_{2}\left(2^{4 k-u}\right)=4 k-u$, $\nu_{2}\left(2^{3 k-u} a_{3}\right) \geq 3 k-u, \nu_{2}\left(2^{2 k-u} a_{2}\right)=2 k-u, \nu_{2}\left(2^{k-u} a_{1}\right)>2 k-u, \nu_{2}\left(2^{-u} a_{0}\right)>2 k-u$. Using similar arguments as in the preceding case, we obtain $u=2 k$. We conclude that all the coefficients of $g(x)$ have their 2 -adic valuations positive except the coefficient of x^{2} which has a 2 -adic valuation equal to 0 . In this case also we reach a contradiction since $g(1) \not \equiv 0((\bmod) 2)$. It follows that $V_{2}(K)=\{0\}$ and $v_{2}(K)=0$.

For the proof of the next proposition, we will need the following lemma.
Lemma 5.1. (Engstrom) Let K be a number field, A be its ring of integers and p be a prime integer. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ be distinct prime ideals of A lying over p and let $\Phi_{1}(x), \ldots, \Phi_{s}(x)$ be monic irreducible polynomials over \mathbb{F}_{p} not necessarily distincts of degree d_{1}, \ldots, d_{s} respectively, where d_{i} divides the residual degree of \mathfrak{p}_{i}. Let h_{1}, \ldots, h_{s} be positive integers. Then there exists a primitive element $\theta \in A$ such that $\mathfrak{p}_{i}^{h_{i}} \| \Phi_{i}(\theta)$ for $i=1, \ldots, s$

Proof: see [Eng30].
Proposition 5.3. (Cubic Galois) Let K / \mathbb{Q} be a Galois number field of degree 3 in which the prime 2 splits completely. Then $V_{2}(K)=\mathbb{N}$.

Proof: Let k and e be positive integers such that $e>k$. Let $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and \mathfrak{p}_{3} be the prime ideals of A lying over 2. By Lemma 5.1 there exists $\theta \in A_{n}$ such that

$$
\mathfrak{p}_{1}^{e}\left\|\theta, \mathfrak{p}_{2}^{k}\right\| \theta \text { and } \mathfrak{p}_{3} \not X \theta .
$$

Assume that the conjugates of $\theta, \theta_{1}=\theta, \theta_{2}, \theta_{3}$ are labelled in order to satisfy the following conditions:

$$
\begin{aligned}
& \mathfrak{p}_{2}^{e}\left\|\theta_{2}, \mathfrak{p}_{3}^{k}\right\| \theta_{2}, \mathfrak{p}_{1} \quad \chi \theta_{2} \\
& \mathfrak{p}_{3}^{e}\left\|\theta_{3}, \mathfrak{p}_{1}^{k}\right\| \mid \theta_{3}, \mathfrak{p}_{2} \quad X \theta_{3} .
\end{aligned}
$$

Let $f(x)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$ be the minimal polynomial of θ over \mathbb{Q}. Expressing a_{0}, a_{1} and a_{2} in terms of $\theta_{1}, \theta_{2}, \theta_{3}$, we get

$$
\nu_{2}\left(a_{0}\right)=e+k, \nu_{2}\left(a_{1}\right)=k \text { and } \nu_{2}\left(a_{2}\right)=0
$$

We have

$$
f\left(2^{k} x\right)=2^{3 k} x^{3}+2^{2 k} a_{2} x^{2}+2^{k} a_{1} x+a_{0}
$$

Set

$$
b_{3}=2^{3 k}, b_{2}=2^{2 k} a_{2}, b_{1}=2^{k} a_{1}, b_{0}=a_{0}
$$

Using the 2 -adic valuation of a_{0}, a_{1}, a_{2} we obtain

$$
\nu_{2}\left(b_{1}\right)=\nu_{2}\left(b_{2}\right)=2 k, \nu_{2}\left(b_{0}\right)=e+k>2 k, \nu_{2}\left(b_{3}\right)=3 k>2 k .
$$

Therefore $\operatorname{cont}\left(f\left(2^{2 k} x\right)\right)=2^{2 k}$ and the minimal polynomial of $\theta / 2^{k}$ is given by

$$
g(x)=f\left(2^{k} x\right) \cdot 2^{-2 k}
$$

Clearly we have $g(0) \equiv g(1) \equiv 0(\bmod 2)$ hence $2 \mid i\left(\theta / p^{k}\right)$. Since the prime 2 splits completely in K, then $0 \in V_{2}(K)$. Therefore $V_{2}(K)=\mathbb{N}$ and $v_{2}(K)=\infty$.

Remark 5.2. Our result in the sequel can be viewed as a generalization of MacCluer's theorem which establishes a relation between the number of prime ideals of A lying over p and the property of p to be a divisor of $i(K)$.

Fix a prime number p and define, for any primitive element $\theta \in A$ of K, the integer $j_{p}(\theta)$ as follows.
Definition 5.2. Let $F_{\theta}(x)$ be the minimal polynomial of θ over \mathbb{Q}. Let $j_{p}(\theta)$ be the largest integer y, if it exists, $1 \leq y \leq p$ such that $F_{\theta}(1) \equiv F_{\theta}(2) \equiv \cdots \equiv F_{\theta}(y) \equiv 0(\bmod p)$. If not set $j_{p}(\theta)=0$. We define also $j_{p}(K)=\max _{\theta \in A_{n}} j_{p}(\theta)$.

Theorem 5.1. Let r be the number of prime ideals of A lying over p. Then

$$
j_{p}(K)=\inf (r, p)
$$

Moreover

$$
p \mid i(K) \Longleftrightarrow j_{p}(K)=p
$$

Proof: Suppose first that $r \leq p$ and let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be the distinct prime ideals of A lying over p. By Lemma 5.1 there exists $\theta \in A_{n}$ such that $\theta \equiv i(\bmod p)$ for $i=1, \ldots, r$. It follows that the minimal polynomial $F_{\theta}(x)$ of θ satisfies the condition

$$
F_{\theta}(x) \equiv(x-1)(x-2) \cdots(x-r) g(x)(\bmod p)
$$

hence $j_{p}(\theta) \geq r$ which implies that $j_{p}(K) \geq r$. On the other hand, let $\theta \in A_{n}$ such that

$$
j_{p}(K)=j_{p}(\theta):=t
$$

then

$$
F_{\theta}(x) \equiv(x-1)(x-2) \cdots(x-t) g(x)(\bmod p)
$$

hence, by Hensel's Lemma, we deduce that $F_{\theta}(x)$ has at least t irreducible factors over \mathbb{Z}_{p}, the ring of p-adic integers. Again by Theorem 5.1 of chap. 2 of [Jan96], we have $t \leq r$. We conclude that
$j_{p}(K)=r=\inf (p, r)$.
Suppose now that $r>p$. By Lemma 5.1, let $\theta \in A_{n}$ such that $\theta \equiv i(\bmod p)$ for $i=1, \ldots, p$. Then

$$
F_{\theta}(x) \equiv(x-1)(x-2) \cdots(x-p) g(x)(\bmod p) .
$$

therefore we have $j_{p}(\theta) \geq p$ which implies $j_{p}(K) \geq p$. From the definition we have $j_{p}(K) \leq p$, hence $j_{p}(K)=p=\inf (r, p)$.
We now prove the last statement of the proposition. We have

$$
p \mid i(K) \Longleftrightarrow r \geq p \text { (by MacCluer's theorem) } \Longleftrightarrow \inf (r, p)=p \Longleftrightarrow j_{p}(K)=p
$$

6. Concluding remarks

Questions Let K be a number field of degree n . If $[K: \mathbb{Q}]=2$, then by Corollary $2.1, i(K)$ and $\hat{\imath}(K)$ are equal to 1 or 2 . Theorem 3.1 shows that $2 \not \backslash i(\gamma)$ if $\gamma \notin A_{n}$, hence $i(K)=\hat{\imath}(K) \in\{1,2\}$.

If $[K: \mathbb{Q}]=3$, then $i(K)$ and $\hat{\imath}(K) \in\{1,2,3,6\}$. Moreover, Theorem 3.1 shows that $3 \mid \hat{\imath}(K)$ if and only if $3 \mid i(K)$.

Suppose that there exists $\gamma=\theta / 2^{k}$ with $k \geq 1, k \leq t \leq 3 k$ and $\theta \not \equiv 0(\bmod p)$ such that $2 \mid i(\gamma)$. Let $g(x)=2^{t} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$ be the minimal polynomial of γ over \mathbb{Z}. Since $g(0) \equiv 0(\bmod 2)$, then $b_{0} \equiv 0(\bmod 2)$. Since $g(1) \equiv 0(\bmod 2)$, then $b_{1}+b_{2} \equiv 0(\bmod 2)$, thus $b_{1} \equiv b_{2}(\bmod 2)$. Moreover, since $g(x)$ is primitive, then $b_{1} \equiv b_{2} \equiv 1(\bmod 2)$. By Theorem 3.1, $t \leq k$. Since $k \leq t$, then $k=t$. The minimal polynomial of θ is then given by

$$
f(x)=x^{3}+b_{2} x^{2}+b_{1} 2^{t} x+b_{0} 2^{2 t} .
$$

This shows that $2 \mid i(f)$ and then $2 \mid i(\theta)$, thus $2 \mid i(K)$. We conclude that $i(K)=\hat{\imath}(K)$.
Let K be a number field of degree n and let $\gamma \in K_{n} \backslash A_{n}$. Set $\gamma=\theta / d$, where d is an integer at least equal to 2 such that $\theta \not \equiv 0(\bmod p)$ for any prime divisor p of d. It is proved in Lemma 3.1 that if $d=p^{k} q$ with $\operatorname{gcd}(p, q)=1$ and $k \geq 1$, then $p \mid i(\gamma)$ if and only if $p \mid i\left(\theta / p^{k}\right)$. We ask that following: Is it true that if $p \mid i\left(\theta / p^{k}\right)$ with $k \geq 1$ and $\theta \not \equiv 0(\bmod p)$, then $p \mid i(K)$? Do we have $\hat{\imath}(K)=i(K)$?

Recall that $\nu_{p}(K)$ is the greatest element of the set $V_{p}(K)$, when this set is finite. Do we have $\left\{0,1, \ldots, \nu_{p}(K)\right\}=V_{p}(K)$? The example given in section 4 shows that $V_{p}\left(\theta_{t}\right)=\{0, t\} \neq$ $\{0,1, \ldots, t\}$. We may ask a similar question when $V_{p}(K)$ is infinite. Do we have $V_{p}(K)=\mathbb{N}$?
Acknowledgements. The authors express their gratitude to the anonymous referee for constructive suggestions which improved the quality of the paper. The third author was supported in part by NSERC.

References

[ARW96] S. Arno, M. L. Robinson, and F.S. Wheeler, On denominators of algebraic numbers and integer Polynomials, J. Number theory 57 (1996), 292-302.
[AyKi11] M. Ayad, O. Kihel, Common Divisors of Values of Polynomials and Common Factors of Indices in a Number Field, Inter. J. Number Theory 7 (2011), 1173-1194.
[ABK15] M. Ayad, A. Bayad, and O. Kihel, Denominators of Algebraic Numbers in a Number Field, J. Number Theory 149 (2015), 1-14.
[Eng30] H. T. Engstrom, On the common index divisors of an algebraic field, Trans. A.M.S 32 (1930), 223-237.
[GuMc70] H. Gunji, D. L. McQuillan, On a class of ideals in an algebraic number field, J. Number Theory 2 (1970), $207-222$.
[Jan96] G. J. Janusz, Algebraic Number Fields, Graduate Studies in Math, A.M.S. (1996).
[Mac71] C. R. MacCluer, Common divisors of values of polynomials, J. Number Theory 3 (1971), 33-34.
[Neu99] O. Neukirch, Algebraic Number Theory, Springer (1999).

Mohamed Ayad

Laboratoire de Mathématiques Pures et Appliquées
Université du Littoral, F-62228 Calais, France
e-mail: ayad@lmpa.univ-littoral.fr

Abdelmejid Bayad
Laboratoire de Mathématiques et Modélisation d'Évry (LAMME)
Université Paris-Saclay, CNRS (UMR 8071)
Bâtiment I.B.G.B.I., 23 Boulevard de France, CEDEX, 91037 Evry, France
e-mail: abdelmejid.bayad@univ-evry.fr and
e-mail: abayad@maths.univ-evry.fr
Omar Kihel
Department of Mathematics
Brock University, Ontario, Canada L2S 3A1
e-mail: okihel@brocku.ca

[^0]: We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal

