Hardy-Ramanujan Journal

Vol. 12 (1989) 6-13

A LEMMA IN COMPLEX FUNCTION THEORY-II BY
 R. BALASUBRAMANIAN AND K. RAMACHANDRA

§1. INTRODUCTION. This is a continuation of [1] and [2]. However the method here is different and is self-contained. In [2] we proved a general result which implied the following
THEOREM 1. Lei $f(z)$ be analytic in $|z| \leq r$ and there let $|f(z)| \leq$ $M,(M \geq 3)$. Let $A \geq 1$. Then

$$
\begin{equation*}
|f(0)| \leq(24 A \log M)\left(\frac{1}{2 r} \int_{-r}^{r}|f(i y)| d y\right)+M^{-A} \tag{1}
\end{equation*}
$$

We also proved a corresponding result with $|f(x+i y)|$ in place of $|f(i y)|$, with suitable restrictions on x and also on the range of integration namely on y. These are statements about $|f(z)|$ where $f(z)$ is analytic. We now consider $|f(z)|^{k}$ where $k>0$ is any real number independent of z. We prove

THEOREM 2. Let k be any positive real number. Let $f(z)$ be analytic in $|z| \leq 2 r$ and there $|f(z)|^{k} \leq M(M \geq 9)$. Let $x=r(\log M)^{-1}$, and let x_{1} be any real number with $\left|x_{1}\right| \leq x$. Put $r_{0}=\sqrt{4 r^{2}-x_{1}^{2}}$. Then with $A \geq 1$ we have

$$
\begin{equation*}
|f(0)|^{k} \leq 2 e^{84 A} M^{-A}+\frac{24}{(2 \pi)^{2}} e^{84 A} \log M\left(\frac{1}{2 r_{0}} \int_{-r_{0}}^{r_{0}}\left|f\left(x_{1}+i y\right)\right|^{k} d y\right) \tag{2}
\end{equation*}
$$

REMARK 1. It is easy to remember a somewhat crude result namely

$$
|f(0)|^{k} \leq e^{90 A}\left\{M^{-A}+(\log M)\left(\frac{1}{2 r_{0}} \int_{-r_{0}}^{r_{0}}\left|f\left(x_{1}+i y\right)\right|^{k} d y\right)\right\}
$$

REMARK 2. In Theorem 1 the constants are reasonably small whereas in Theorem 2 they are big. We have not attempted to get optimal constants.
REMARK 3. Let $k_{1}, k_{2}, \ldots, k_{m}$ be any set of positive real numbers. Let $f_{1}(z), f_{2}(z), \ldots, f_{m}(z)$ be analytic in $|z| \leq 2 r$, and there

$$
\left|\left(f_{1}(z)\right)^{k_{1}} \ldots\left(f_{m}(z)\right)^{k_{m}}\right| \leq M(M \geq 9)
$$

Then Theorem 2 holds good with $|f(z)|^{k}$ replaced by $\left|\left(f_{1}(z)\right)^{k_{1}} \ldots\left(f_{m}(z)\right)^{k_{m}}\right|$

REMARK 4. A corollary to our result mentioned in Remark 3 was pointed out to us by Professor J.P. Demailly. It is this : Theorem 2 holds good with $|f(z)|^{k}$ replaced by $\operatorname{Exp}(u)$ where u is any subharmonic function. To prove this it suffices to note that the set of functions of the form $\sum_{j=1}^{m} k_{j} \log \left|f_{j}(z)\right|$ is dense in $L_{l o c}^{1}$ in the set of subharmonic functions. (This follows by using Green-Riesz representation formula for u and approximating the measure Δ_{u} by finite sums of Dirac measures).
REMARK 5. Consider $k=1$ in Theorem 2. Put $\varphi(z)=f^{(\ell)}(z)$ the $\boldsymbol{\ell}$ th derivative of $f(z)$. Then our method of proof gives

$$
|\varphi(0)| \leq C M^{-A}+C(\log M)^{\ell+1}\left(\frac{1}{4 r} \int_{-4 r}^{4 r}|f(i y)| d y\right)
$$

where C depends only on A and ℓ.
REMARK 6. (Due to J.-P. Demailly). In view of the example $f(z)=$ $\left(\frac{e^{n x}-1}{n z}\right)^{2}$, where n is a large positive integer and $r=1$, the result of Remark 5 is best possible.
§ 2. PROOF OF THEOREM 2. The proof consists of four steps.
STEP 1. First we consider the circle $|\boldsymbol{z}|=r$. Let

$$
\begin{equation*}
0<2 x \leq r \tag{3}
\end{equation*}
$$

and let PQS denote respectively the points $r e^{i \theta}$ where $\theta=-\cos ^{-1}\left(\frac{2 x}{r}\right), \cos ^{-1}\left(\frac{2 x}{r}\right)$ and π. By the consideration of Riemann mapping theorem and the zero cancellation factors we have for a suitable meromorphic function $\phi(z)$ (in PQSP)
that (we can assume that $f(z)$ has no zeros on the boundary)

$$
\begin{equation*}
F(z)=(\phi(z) f(z))^{k} \tag{4}
\end{equation*}
$$

is analytic in the region enclosed by the straight line $P Q$ and the circular arc QSP. Further $\phi(z)$ satisfies

$$
\begin{equation*}
|\phi(x)|=1 \tag{5}
\end{equation*}
$$

on the boundary of PQSP and also

$$
\begin{equation*}
|\phi(0)| \geq 1 \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
X=E x p\left(u_{1}+u_{2}+\ldots+u_{n}\right) \tag{7}
\end{equation*}
$$

where $u_{1}, u_{2}, \ldots, u_{n}$ vary over the box B defined by

$$
0 \leq u_{j} \leq B(j=1,2, \ldots, n)
$$

and $B>0$.
We begin with
LEMMA 1. The function $F(z)$ defined above satisfies

$$
\begin{equation*}
F(0)=I_{1}+I_{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{1}=\frac{1}{2 \pi i} \int_{P Q} F(z) X^{z} \frac{d z}{z} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\frac{1}{2 \pi i} \int_{Q S P} F(z) X^{z} \frac{d z}{z} \tag{10}
\end{equation*}
$$

where the lines of integration are the straight line PQ and the circular arc QSP.

PROOF. Follows by Cauchy's theorem.
LEMMA 2. We have

$$
\begin{equation*}
\left|I_{1}\right| \leq \frac{e^{2 B n x}}{2 \pi} \int_{P Q}\left|(f(z))^{k} \frac{d z}{x}\right| \tag{11}
\end{equation*}
$$

PROOF. Follows since $\left|X^{z}\right| \leq e^{2 B n x}$ and also $|\phi(z)|=1$ on PQ.

LEMMA 3. We have,

$$
\begin{equation*}
\left|B^{-n} \int_{B} I_{2} d u_{1} \ldots d u_{n}\right| \leq e^{2 B n x}\left(\frac{2}{B r}\right)^{n} M \tag{12}
\end{equation*}
$$

PROOF. Follows since on QSP we have $|\phi(z)|=1$ (and so $|F(z)| \leq M)$ and also

$$
\left|B^{-n} \int_{D}\left(\int_{Q S P} X^{z} \frac{d z}{2 \pi i z}\right) d u_{1} \ldots d u_{n}\right| \leq\left(\frac{2}{B r}\right)^{n}
$$

LEMMA 4. We have,

$$
\begin{equation*}
|f(0)|^{k} \leq e^{2 B n x}\left(\frac{2}{B r}\right)^{n} M+\frac{e^{2 B n x}}{2 \pi} \int_{P Q}\left|(f(z))^{k} \frac{d z}{z}\right| \tag{13}
\end{equation*}
$$

PROOF. Follows by Lemmas 1,2 and 3.
STEP 2. Next in (13), we replace $|f(z)|^{k}$ by an integral over a chord $P_{1} Q_{1}$ (parallel to $P Q$) of $|w|=2 r$, of slightly bigger length with a similar error. Let x_{1} be any real number with

$$
\begin{equation*}
\left|x_{1}\right| \leq x . \tag{14}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\text { Let } P_{1} Q_{1} R_{1} \text { be the points } 2 r e^{i \theta} \tag{15}\\
\text { where } \theta=-\cos ^{-1}\left(\frac{x_{1}}{2 r}\right), 0 \text { and } \cos ^{-1}\left(\frac{x_{1}}{2 r}\right) . \\
\text { (If } x_{1} \text { is negative we have to consider the points } \\
\left.\theta=-\frac{\pi}{2}-\sin ^{-1}\left(\frac{x_{1}}{2 r}\right), 0 \text { and } \frac{\pi}{2}+\sin ^{-1}\left(\frac{x_{1}}{2 r}\right)\right) .
\end{array}\right.
$$

Let X be as in (7). As before let

$$
\begin{equation*}
G(w)=(\psi(w) f(w))^{k} \tag{16}
\end{equation*}
$$

be analytic in the region enclosed by the circular arc $P_{1} R_{1} Q_{1}$ and the straight line $Q_{1} P_{1}$ (we can assume that $f(z)$ has no zeros on the boundary $P_{1} R_{1} Q_{1} P_{1}$). By the consideration of Riemann mapping theorem and the zero cancelling factors there exists such a meromorphic function $\psi(w)$ (in $P_{1} R_{1} Q_{1} P_{1}$) with the extra properties,

$$
\begin{equation*}
|\psi(w)|=1 \text { on the boundary of } P_{1} R_{1} Q_{1} P_{1} \text { and }|\psi(z)| \geq 1 . \tag{17}
\end{equation*}
$$

LEMMA 5. we have with z on $P Q$,

$$
G(z)=I_{3}+I_{4}
$$

where

$$
\begin{equation*}
I_{3}=\frac{1}{2 \pi i} \int_{Q_{1} P_{1}} G(w) X^{-(w-z)} \frac{d w}{w-z} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{4}=\frac{i}{2 \pi i} \int_{P_{1} R_{1} Q_{1}} G(w) X^{-(w-z)} \frac{d w}{w-z} \tag{19}
\end{equation*}
$$

PROOF. Follows by Cauchy's theorem
LEMMA 6. We have with z on PQ

$$
\begin{equation*}
\left|I_{3}\right| \leq \frac{e^{3 B n z}}{2 \pi} \int_{P_{1} Q_{1}}\left|(f(w))^{k} \frac{d w}{w-z}\right| \tag{20}
\end{equation*}
$$

PROOF. Follows since $\left|X^{-(w-z)}\right| \leq e^{3 B n x}$ and $|\psi(w)|=1$ on $P_{1} Q_{1}$.
LEMMA 7. We have with z on PQ ,

$$
\begin{equation*}
\left|B^{-n} \int_{B} I_{4} d u_{1} \ldots d u_{n}\right| \leq e^{3 B n x}\left(\frac{2}{B r}\right)^{n} M \tag{21}
\end{equation*}
$$

PROOF. Follows since on $P_{1} R_{1} Q_{1}$ we have $|\psi(w)|=1$ (and so $|G(w)| \leq$ $M)$ and also

$$
\left|B^{-n} \int_{B} \int x^{-(w-z)} \frac{d w}{2 \pi i(w-z)} d u_{1} \ldots d u_{n}\right| \leq\left(\frac{2}{B r}\right)^{n}
$$

LEMMA 8. We have with z on PQ ,

$$
\begin{equation*}
|f(x)|^{k} \leq e^{3 B n x}\left(\frac{2}{B r}\right)^{n} M+\frac{e^{3 B n x}}{2 \pi} \int_{P_{1} Q_{1}}|f(w)|^{k}\left|\frac{d w}{w-z}\right| \tag{22}
\end{equation*}
$$

PROOF. Follows from Lemmas 5,6 and 7.
STEP 3. We now combine Lemmas 4 and 8.
LEMMA 9. We have

$$
\begin{equation*}
|f(0)|^{k} \leq e^{2 B n x}\left(\frac{2}{B r}\right)^{n} M+J_{1}+J_{2} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{1}=\frac{e^{5 B n x}}{2 \pi}\left(\frac{2}{B r}\right)^{n} M \int_{P Q}\left|\frac{d z}{z}\right| \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.J_{2}=\frac{e^{5 B n x}}{(2 \pi)^{2}} \int_{P_{1} Q_{1}}|f(w)|^{k}\left(\int_{P Q}\left|\frac{d z}{z(w-z)}\right|\right) \right\rvert\, d w \tag{25}
\end{equation*}
$$

LEMMA 10. We have

$$
\begin{equation*}
\int_{P Q}\left|\frac{d z}{z}\right| \leq 2+2 \log \left(\frac{r}{2 x}\right) . \tag{26}
\end{equation*}
$$

PROOF. On PQ we have $z=2 x+i y$ with $|y| \leq r$ and $2 x \leq r$. We split the integral into $|y| \leq 2 x$ and $2 x \leq|y| \leq r$. On these, we use respectively the lower bounds $|z| \geq 2 x$ and $|z| \geq y$. The lemma follows by these observations.

LEMMA 11. We have for w on $P_{1} Q_{1}$ and z on $P Q$,

$$
\begin{equation*}
\int_{P Q}\left|\frac{d z}{z(w-z)}\right| \leq \frac{6}{x} \tag{27}
\end{equation*}
$$

PROOF. On PQ we have Re $z=2 x$ and on $P_{1} Q_{1}$ we have $|\operatorname{Re} w| \leq x$ and so $|\operatorname{Re}(w-z)| \geq x$. We have

$$
\left|\frac{d z}{z(w-z)}\right| \leq\left|\frac{d z}{z^{2}}\right|+\left|\frac{d z}{(w-z)^{2}}\right|
$$

Writing $z=2 x+i y$ we have

$$
\begin{aligned}
\int_{P Q}\left|\frac{d z}{z^{2}}\right| & \leq \frac{2}{(2 x)^{2}} 2 x+2 \int_{2 x}^{\infty} \frac{d y}{y^{2}} \\
& =\frac{2}{x} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\int_{P Q}\left|\frac{d x}{(w-x)^{2}}\right| & \leq 2\left(\frac{1}{x}+\int_{x}^{\infty} \frac{d y}{y^{2}}\right) \\
& =\frac{4}{x} .
\end{aligned}
$$

This completes the proof of the lemma.
STEP 4. We collect together the results in Steps 3 and 4 and choose the parameters B and n and this will give Theorem 2. Combining Lemmas 9,10 and 11 we state the following lemma.

LEMMA 12. We have

$$
\begin{align*}
|f(0)|^{k} \leq & e^{2 B n x}\left(\frac{2}{B r}\right)^{n} M+\frac{e^{5 B n x}}{x}\left(\frac{2}{B r}\right)^{n}\left(1+\log \frac{r}{2 x}\right) M \\
& +\frac{e^{5 B n x}}{(2 \pi)^{2}} \cdot \frac{6}{x} \int_{P_{1} Q_{1}}\left|(f(w))^{k} d w\right| \tag{28}
\end{align*}
$$

where $0<2 x \leq r, x_{1}$ is any real number with $\left|x_{1}\right| \leq x, n$ any natural number and B is any positive real number and $P_{1} Q_{1}$ is the straight line joining - r_{0} and r_{0} where $r_{0}=\sqrt{4 r^{2}-x_{1}^{2}}$.

Next we note that $1+\log \frac{r}{2 x} \leq \frac{r}{2 x}$ and so by putting $x=r(\log M)^{-1}$ the first two terms on the RHS of (28) together do not exceed

$$
\left(\frac{2}{B r}\right)^{n} e^{5 B n x}\left(1+\frac{1}{2 \pi} \log M\right) M \leq 2\left(\frac{2}{B r}\right)^{n} e^{5 B n x} M \log M .
$$

Also,

$$
\frac{6}{x}=\frac{6 \log M}{r}=6 \log M\left(\frac{2 r_{0}}{r}\right) \frac{1}{2 r_{0}} \leq(24 \log M)\left(\frac{1}{2 r_{0}}\right) .
$$

Thus RHS of (28) does not exceed

$$
2\left(\frac{2}{B r}\right)^{n} e^{5 B n x} M \log M+\left(\frac{24}{(2 \pi)^{2}} e^{5 B n x} \log M\right)\left(\frac{1}{2 r_{0}} \int_{P_{1} Q_{1}}\left|(f(w))^{k} d w\right|\right)
$$

We have chosen $x=r(\log M)^{-1}$. We now choose B such that $B r=2 e$ and $n=[C \log M]+1$, where $C \geq 1$ is any real number. We have $5 B n x \leq$ $\frac{5 B n r}{\log M} \leq 10 e(C+1) \leq 28(C+1)$ and also

$$
\left(\frac{2}{B r}\right)^{n} \leq e^{-C \log M}=M^{-C}
$$

With these choices of x, B, n we see that RHS of (28) does not exceed

$$
\left.\left.2 M^{-C} e^{28(C+1)} M \log M+\left(\frac{24}{(2 \pi)^{2}} e^{28(C+1)} \log M\right)\left(\left.\frac{1}{2 r_{0}} \int_{P_{1} Q_{1}} \right\rvert\, f(w)\right)^{k} d w \right\rvert\,\right)
$$

Putting $C=A+2$ we obtain Theorem 2 since $C+1 \leq 3 A$. This completes the proof of Theorem 2.
ACKNOWLEDGEMENT. The authors are thankful to Dr. R.R. SIMHA for some discussions on Riemann mapping theorem. They are also thankful to Professor J.-P. DEMAILLY for his Remarks 4 and 6 below Theorem 2.

REFERENCES

[1] R. BALASUBRAMANIAN AND K. RAMACHANDRA, Some local convexity theorems for the zeta-function-like analytic functions, HardyRamanujan J., 11 (1988), 1-12.
[2] R. BALASUBRAMANIAN AND K. RAMACHANDRA, A lemma in complex function theory - I, Hardy-Ramanujan J., Vol. 12 (1989), 1-5.

ADDRESS OF THE AUTHORS

1) PROFESSOR R. BALASUBRAMANIAN, MATSCIENCE, (ON DEPUTATION FROM T.I.F.R.) THARAMANI P.O., MADRAS - 600113 INDIA
2) PROFESSOR K. RAMACHANDRA, SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, BOMBAY - 400005 INDIA
