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A q-analog of Jacobi’s two squares formula and its

applications

José Manuel Rodŕıguez Caballero

Abstract. We consider a q-analog r2(n, q) of the number of representations of an integer as a sum of two squares r2(n). This q-analog
is generated by the expansion of a product that was studied by Kronecker and Jordan. We generalize Jacobi’s two squares formula from

r2(n) to r2(n, q). We characterize the signs in the coefficients of r2(n, q) using the prime factors of n. We use r2(n, q) to characterize

the integers which are the length of the hypotenuse of a primitive Pythagorean triangle.
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1. Introduction

Using the formal identity

∞∏
m=1

1− (−t)m

1 + (−t)m
=

∞∑
n=−∞

tn
2
, (1.1)

due to C. F. Gauss [Gau1866], the generating function for the number of representations of an integer n
as the sum of the squares of two integers, denoted r2(n), immediately follows,

∞∏
m=1

(1− (−t)m)2

(1 + (−t)m)2 = 1 +
∞∑
n=1

r2(n)tn. (1.2)

C. G. J. Jacobi [Jac1829] expressed r2(n) as a function of the divisors of n ≥ 1,

r2 (n) = 4d1,4(n)− 4d3,4(n), (1.3)

where dk,m(n) is the number of divisors of n which are congruent to k modulo m.

The explicit formula for r2(n, q) defined by the expansion of the product

∞∏
m=1

(1− (−qt)m)2

(1 + q(−qt)m) (1 + q−1(−qt)m)
= 1 +

∞∑
n=1

r2 (n, q) tn, (1.4)

which is a q-deformation1 of identity (1.2), can be attributed to L. Kronecker [Kro1890], who proved a
more general version and C. Jordan [Jor1894], who described a method to derive this particular case.
The polynomial r2 (n, q) was first introduced in the article [Cab19c], using the notation Γn(q), and it
was called Kassel–Reutenauer q-analog of the number of representations as a sum of two squares. Some
versions of the polynomial r2 (n, q), e.g., changing the sign of q and sometimes dividing it by q− 1 or by
(q−1)2, have been studied by several authors, in connection with different branches of mathematics: finite
fields [KR18a, KR18b, Cab18], algebraic topology [HLR13], modular functions [KR17] and elementary
number theory [Cab19b, Cab20, Cab19a].

We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal
1A q-deformation of an expression A(t) is another expression A(t, q) satisfying A(t, 1) = A(t).

http://episciences.org
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The aim of the present note is to prove that there are polynomials 4d1,4(n, q) and 4d3,4(n, q) satisfying
the following properties2:

(i) all the coefficients of 4d1,4(n, q) and 4d3,4(n, q) are non-negative integers;
(ii) for every k, qk cannot appear with non-zero coefficient in both 4d1,4(n, q) and 4d3,4(n, q);
(iii) the decomposition of r2(n, q) into positive and negative parts,

r2(n, q) = 4d1,4(n, q)− 4d3,4(n, q) (1.5)

holds;
(iv) 4d1,4(n, q) and 4d3,4(n, q) are q-analogs of 4d1,4(n) and 4d3,4(n) respectively, i.e., 4d1,4(n, 1) =

4d1,4(n) and 4d3,4(n, 1) = 4d3,4(n).

Therefore, the identity (1.5) is a generalization of Jacobi’s two squares formula from integers to
polynomials. Considering that properties (i), (ii) and (iii) uniquely define the polynomials 4d1,4(n, q)
and 4d3,4(n, q), it is non-trivial that they should also satisfy property (iv). Furthermore, as applications
of this formula, we will determine when r2(n, q) has a negative coefficient by analyzing the prime factors
of n. Also, we will use r2(n, q) to characterize the integers which are the length of the hypotenuse of a
primitive Pythagorean triangle.

2. Generalization of Jacobi’s formula

In this section we will prove our main result.

Theorem 2.1. Let n be a positive integer. The polynomials

4d1,4(n, q) = (q + 1)
∑
d|n

d ≡ 1 (mod 4)

(
q( 2n

d
+1)(d−1)/2 + q( 2n

d
−1)(d+1)/2

)
, (2.6)

4d3,4(n, q) = (q + 1)
∑
d|n

d ≡ 3 (mod 4)

(
q( 2n

d
+1)(d−1)/2 + q( 2n

d
−1)(d+1)/2

)
, (2.7)

satisfy properties (i), (ii), (iii) and (iv).

Proof. Property (i) immediately follows from the explicit expressions (2.6) and (2.7). Property (iv) is
just the result of the evaluations of these expressions at q = 1.

Property (iii) follows from the following formal manipulation. Take formula (0.100) from [Coo17],

∞∏
m=1

(1− tm)2

(1− qtm) (1− q−1tm)
= 1 +

(
q1/2 − q−1/2

) ∞∑
d=1

∞∑
k=1

tdk
(
qd−k/2 − q−d+k/2

)
. (2.8)

Replace t by qt in (2.8),

∞∏
m=1

(1− (qt)m)2

(1− q(qt)m) (1− q−1(qt)m)
= 1 + (q − 1)

∞∑
d=1

∑
k ≥ 1
k odd

tdk
(
qdk+d−k/2−1/2 − qdk−d+k/2−1/2

)
, (2.9)

where the restriction to only odd values of k is because of the identity

∞∑
d=1

∑
k ≥ 1
k even

tdk
(
qdk+d−k/2−1/2 − qdk−d+k/2−1/2

)
=
∞∑
d=1

∞∑
e=1

t2de
(
q2de+d−e−1/2 − q2de−d+e−1/2

)
(2.10)

= q−1/2

( ∞∑
d=1

∞∑
e=1

t2deq2de+d−e −
∞∑
d=1

∞∑
e=1

t2deq2de−d+e

)
(2.11)

= 0. (2.12)

2We consider that it is more elegant to work with 4d1,4(n, q) and 4d3,4(n, q) rather than d1,4(n, q) and d3,4(n, q) because
of property (i).
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Replace q by −q in (2.9),

∞∏
m=1

(1− (−qt)m)2

(1 + q(−qt)m)(1 + q−1(−qt)m)
= 1 + (q + 1)

∞∑
d=1

∑
k ≥ 1
k odd

tdk
(
(−q)(2d+1)(k−1)/2−(−q)(2d−1)(k+1)/2

)
(2.13)

= 1 + (q + 1)
∞∑
d=1

∑
k ≥ 1

k ≡ 1 (mod 4)

tdk
(

(−q)(2d+1)(k−1)/2 − (−q)(2d−1)(k+1)/2
)

+ (q + 1)
∞∑
d=1

∑
k ≥ 1

k ≡ 3 (mod 4)

tdk
(

(−q)(2d+1)(k−1)/2 − (−q)(2d−1)(k+1)/2
)

(2.14)

= 1 + (q + 1)

∞∑
d=1

∑
k ≥ 1

k ≡ 1 (mod 4)

tdk
(
q(2d+1)(k−1)/2 + q(2d−1)(k+1)/2

)

− (q + 1)

∞∑
d=1

∑
k ≥ 1

k ≡ 3 (mod 4)

tdk
(
q(2d+1)(k−1)/2 + q(2d−1)(k+1)/2

)
(2.15)

= 1 +

∞∑
n=1

(4d1,4(n, q)− 4d3,4(n, q)) tn. (2.16)

To prove property (ii), we proceed by reductio ad absurdum. Suppose that for some k, the coefficient
of qk is non-zero in both 4d1,4(n, q) and 4d3,4(n, q). We need to analyze 16 possible cases. We will use
the notations d and e for two arbitrary divisors of n satisfying d ≡ 1 (mod 4) and e ≡ 3 (mod 4).

Let f(x) =
(

2n
x + 1

)
x−1

2 . Notice that f(x), on the domain x > 0, is strictly increasing and satisfies
the inequality f(x + 2)− f(x) > 1. Furthermore, f

(
2n
x

)
=
(

2n
x − 1

)
x+1

2 .

Notice that, k = f(d) = f(e) implies d = e. Nevertheless, this is impossible because d 6≡ e (mod 4).
In the same way, it is easy to prove that k = f

(
2n
d

)
= f

(
2n
d

)
also implies an absurde. Similarly,

k = f(d) + 1 = f(e) + 1 and k = f
(

2n
d

)
+ 1 = f

(
2n
d

)
+ 1 are impossible.

Notice that k = f (d) = f
(

2n
e

)
implies d = 2n

e . If this is the case, de = 2n, which is absurd, since
d and e are odd. In the same vein, k = f

(
2n
d

)
= f (e) is also absurd. Similarly, we exclude the cases

k = f (d) + 1 = f
(

2n
e

)
+ 1 and k = f

(
2n
d

)
+ 1 = f (e) + 1.

Assume that k = f (d) + 1 = f (e). It follows that e > d. Because e and d share the same parity
(both are odd), e ≥ d + 2. Hence, f(e)− f(d) ≥ f(d + 2)− f(d) > 1, which contradicts our assumption.
In the same vein, it is easy prove that k = f (d) = f (e) + 1 implies an absurd conclusion. Similarly, we
exclude the cases, k = f

(
2n
d

)
+ 1 = f

(
2n
e

)
and k = f

(
2n
d

)
= f

(
2n
e

)
+ 1 by considering that 2n

d and 2n
e

share the same parity (both are even).

Assume that k = f (d)+1 = f
(

2n
e

)
. On the one hand, f(d) =

(
2n
d + 1

)
d−1

2 is even, since d−1
2 is even.

On the other hand f
(

2n
e

)
=
(

2n
e − 1

)
e+1

2 is also even, since e+1
2 is even. We derive the absurd conclusion

that 1 = f
(

2n
e

)
−f (d) should be even. In the same vein, we can easily prove that k = f (d) = f

(
2n
e

)
+ 1

imples an absurd. Similarly, we can exclude the cases k = f
(

2n
d

)
+ 1 = f (e) and k = f

(
2n
d

)
= f (e) + 1.

3. Applications

In this section we derive some immediate consequences of our generalization of Jacobi’s formula.

Corollary 3.1. Let n be a positive integer. The polynomial r2 (n, q) has a negative coefficient if and
only if some of the prime factors of n are congruent to 3 modulo 4.

Proof. Considering that d3,4(n, q) 6= 0 if and only if some of the prime factors of n are congruent to 3
modulo 4, the result immediately follows from Theorem 2.1 and the definition of d1,4(n, q) and d3,4(n, q).
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We recall that n is the hypotenuse of a primitive Pythagorean triangle if and only if for some pair of
positive integers u and v the equality u2 + v2 = n2 holds and u, v and n are relatively prime.

Corollary 3.2. An odd integer n larger than 1 is the length of the hypotenuse of a primitive Pythagorean
triangle if and only if all the coefficients of the polynomial r2 (n, q) are non-negative.

Proof. E. J. Eckert [Eck84] proved that an integer larger than 1 is the hypotenuse of a primitive
Pythagorean triangle if and only if all its prime factors are congruent to 1 modulo 4. Combining this
result with Corollary 3.1, the result follows.

4. Final remarks

In the spirit of the work of C. Kassel and C. Reutenauer [KR18b], the value of the polynomial r2(n, q),
when q is a prime power, may have a combinatorial interpretation in the ring Fq[X,Y,X−1, Y −1].

Let r4(n) be the number of representations of n as the sum of 4 squares of integers. We suggest to
empirically study the q-analog of r4(n) obtained from the square(

1 +
∞∑
n=1

r2 (n, q) tn

)2

= 1 +
∞∑
n=1

r4 (n, q) tn (4.17)

and check whether some of the classical results about r4(n) can be generalized to r4(n, q). The expansion
of the corresponding product can be found in equation (0.101) of [Coo17].
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