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A g¢-analog of Jacobi’s two squares formula and its
applications

José Manuel Rodriguez Caballero

Abstract. We consider a g-analog r2(n, ¢) of the number of representations of an integer as a sum of two squares ro(n). This g-analog
is generated by the expansion of a product that was studied by Kronecker and Jordan. We generalize Jacobi’s two squares formula from
ro(n) to r2(n,q). We characterize the signs in the coefficients of r2(n, ¢) using the prime factors of n. We use r2(n, ¢) to characterize
the integers which are the length of the hypotenuse of a primitive Pythagorean triangle.
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1. Introduction

Using the formal identity
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due to C.F. Gauss [Gaul866], the generating function for the number of representations of an integer n
as the sum of the squares of two integers, denoted r3(n), immediately follows,
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C.G.J. Jacobi [Jacl1829] expressed ra2(n) as a function of the divisors of n > 1,
r2 (n) = 4d14(n) — 4ds 4(n), (1.3)

where dj, ,(n) is the number of divisors of n which are congruent to £ modulo m.

The explicit formula for r9(n, q) defined by the expansion of the product
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which is a g-deformation® of identity (1.2), can be attributed to L. Kronecker [Kro1890], who proved a
more general version and C. Jordan [Jor1894], who described a method to derive this particular case.
The polynomial 7o (n,q) was first introduced in the article [Cab19c], using the notation I';,(¢), and it
was called Kassel-Reutenauer g-analog of the number of representations as a sum of two squares. Some
versions of the polynomial 9 (n, q), e.g., changing the sign of ¢ and sometimes dividing it by ¢ — 1 or by
(g—1)2, have been studied by several authors, in connection with different branches of mathematics: finite
fields [KR18a, KR18b, Cabl8], algebraic topology [HLR13], modular functions [KR17] and elementary
number theory [Cabl9b, Cab20, Cab19a].
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The aim of the present note is to prove that there are polynomials 4d; 4(n, ¢) and 4ds 4(n, q) satisfying
the following properties?:

(i) all the coefficients of 4d; 4(n, q) and 4ds 4(n, q) are non-negative integers;
(i) for every k, ¢* cannot appear with non-zero coefficient in both 4d; 4(n, q) and 4ds 4(n, q);
(iii) the decomposition of ra(n, ) into positive and negative parts,
r2(n, q) = 4d1 4(n, q) — 4d3 4(n, q) (1.5)

holds;

(iv) 4d;y 4(n,q) and 4d3 4(n,q) are g-analogs of 4d; 4(n) and 4ds 4(n) respectively, i.e., 4d;4(n,1) =
4d174(n) and 4d374(n, 1) = 4d3,4(n).

Therefore, the identity (1.5) is a generalization of Jacobi’s two squares formula from integers to
polynomials. Considering that properties (i), (ii) and (iii) uniquely define the polynomials 4d; 4(n, q)
and 4d3 4(n, ¢), it is non-trivial that they should also satisfy property (iv). Furthermore, as applications
of this formula, we will determine when r3(n, ¢) has a negative coefficient by analyzing the prime factors
of n. Also, we will use 72(n, q) to characterize the integers which are the length of the hypotenuse of a
primitive Pythagorean triangle.

2. Generalization of Jacobi’s formula

In this section we will prove our main result.

Theorem 2.1. Let n be a positive integer. The polynomials

4d174(n7q) = (q + 1) Z (q(%ﬁrl)(dfl)/? + q( )(d+1)/2> ’ (26)

4d374(n7q) = (q + 1) Z (q(%ﬁrl)(dfl)/? + q( )(d+1)/2) ’ (27)

dln
d=3 (mod 4)

satisfy properties (1), (ii), (#i) and (iv).

Proof. Property (i) immediately follows from the explicit expressions (2.6) and (2.7). Property (iv) is
just the result of the evaluations of these expressions at ¢ = 1.

Property (iii) follows from the following formal manipulation. Take formula (0.100) from [Cool7],
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Replace t by gt in (2.8),
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where the restriction to only odd values of k is because of the identity
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2We consider that it is more elegant to work with 4d; 4(n,q) and 4ds 4(n, ¢) rather than di 4(n,q) and d3 4(n, q) because
of property (i).
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Replace ¢ by —¢ in (2.9),
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To prove property (ii), we proceed by reductio ad absurdum. Suppose that for some k, the coefficient
of ¢* is non-zero in both 4d; 4(n,q) and 4d3 4(n,q). We need to analyze 16 possible cases. We will use
the notations d and e for two arbitrary divisors of n satisfying d =1 (mod 4) and e = 3 (mod 4).

Let f(z) = (22 4 1) ;1. Notice that f(z), on the domain = > 0, is strictly increasing and satisfies
the inequality f(x 4+ 2) — f( ) > 1. Furthermore, f (22) = (2 — 1)z,

Notice that, k = f(d) = f(e) implies d = e. Nevertheless, this is impossible because d # e (mod 4).
In the same way, it is easy to prove that k = f (%”) =f (27") also implies an absurde. Similarly,
k=f(d)+1=f(e)+1land k= f (%) +1=f(Z)+1 are impossible.

Notice that k = f(d) = f (27”) implies d = 2—”. If this is the case, de = 2n, which is absurd, since
d and e are odd. In the same vein, k = f (—) = f(e) is also absurd. Similarly, we exclude the cases
k:f(d)+1:f(2?")+1andk:f(%")ﬂ_f( )+ 1.

Assume that k = f(d) +1 = f(e). It follows that e > d. Because e and d share the same parity
(both are odd), e > d + 2. Hence, f(e) — f(d) > f(d+ 2) — f(d) > 1, which contradicts our assumption.
In the same vein, it is easy prove that k = f (d) = f (e) + 1 implies an absurd conclusion. Similarly, we
exclude the cases, k = f (27") +1=f (2?") and k = f (27") =f (2?”) + 1 by considering that 27” and 2?”
share the same parity (both are even).

Assume that k = f (d)+1 = f (22). On the one hand, f(d) = (2 + 1) %5} is even, since 45! is even.
On the other hand f (2?") = (2?” — 1) e+l ig also even, since e+ is even. We derive the absurd conclusion
that 1 = f (27") — f (d) should be even. In the same vein, we can easily prove that k = f (d) = f (%n) +1
imples an absurd. Similarly, we can exclude the cases k = f (%”) +1=f(e)and k= f (%”) = f(e)+1.

3. Applications
In this section we derive some immediate consequences of our generalization of Jacobi’s formula.

Corollary 3.1. Let n be a positive integer. The polynomial ro (n,q) has a negative coefficient if and
only if some of the prime factors of n are congruent to 3 modulo 4.

Proof. Considering that d3 4(n,q) # 0 if and only if some of the prime factors of n are congruent to 3
modulo 4, the result immediately follows from Theorem 2.1 and the definition of d; 4(n, ¢) and d3 4(n, q).
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We recall that n is the hypotenuse of a primitive Pythagorean triangle if and only if for some pair of
positive integers u and v the equality u? + v?> = n? holds and u, v and n are relatively prime.

Corollary 3.2. An odd integer n larger than 1 is the length of the hypotenuse of a primitive Pythagorean
triangle if and only if all the coefficients of the polynomial v (n,q) are non-negative.

Proof. E. J. Eckert [Eck84] proved that an integer larger than 1 is the hypotenuse of a primitive
Pythagorean triangle if and only if all its prime factors are congruent to 1 modulo 4. Combining this
result with Corollary 3.1, the result follows.

4. Final remarks

In the spirit of the work of C. Kassel and C. Reutenauer [KR18b], the value of the polynomial r2(n, q),
when ¢ is a prime power, may have a combinatorial interpretation in the ring F,[X,Y, X1, Y 1.

Let r4(n) be the number of representations of n as the sum of 4 squares of integers. We suggest to
empirically study the g-analog of r4(n) obtained from the square

o0 2 o
L4+ ra(n)t" | =1+ ra(n,q)t" (4.17)
n=1 n=1

and check whether some of the classical results about r4(n) can be generalized to r4(n, q). The expansion
of the corresponding product can be found in equation (0.101) of [Cool7].
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