A REMARK ON GOLOBACH'S PROBLEM II

By
S. SRINIVASAN

For $\mathbf{A}>0$, even integer $\mathrm{N}(>1)$, set

$$
E_{A}(N)=\sum_{q \leqslant(\log N)^{A}} \frac{\mu^{2}(q) c_{q}(-N)}{\phi^{2}(q ;}
$$

Here, $\mathrm{c}_{\mathrm{q}}(\mathrm{n})$ is the Ramanujan's sum ; one evaluation is

$$
\begin{equation*}
\mathrm{c}_{\mathrm{q}}(-\mathrm{N})=\frac{\mu(\mathrm{q} /(\mathrm{q}, \mathrm{~N})) \phi(\mathrm{q})}{\phi(\mathrm{q} /(\mathrm{q}, \mathrm{~N}))} \tag{1}
\end{equation*}
$$

R. Balasubramanian and C. J. Mozzochi proved (cf. § 6 of [1]) the following theorem.

Theorem.
For any fixed $\mathrm{A}(>0)$, the relation
(2)

$$
E_{A}(N) \sim E_{\infty}(N), N \rightarrow \infty,
$$

is false.
Now we give an alternative proof of this theorem based on
(3) $\mathrm{E}_{\infty}(\mathrm{N})-\mathrm{E}_{\mathrm{A}}(\mathrm{N})=O\left(\mathrm{E}_{\infty}(\mathrm{N}) / \mathrm{A}\right), \mathrm{E}_{\infty}(\mathrm{N}) \asymp \mathrm{N} / \phi(\mathrm{N})$, proved in [2].

Remark.

In view of the above theorem, it is necessary to state the Theorem in [2] with the factor $N / \phi(N)$ in the hypothesis; i. e., the bound

$$
\delta_{B} \frac{N}{(\log N)^{2}} \text { replaced by } \delta_{B} \frac{N}{(\log N)^{2}} \frac{N}{\phi(N)} .
$$

This can be done with no change in the proof there.
We require also the following

Lemma.

Lot $\alpha>0$. Then, as $x \rightarrow \infty$,
$\left|\left\{\mathrm{n}<\mathrm{x}: \mu(\mathrm{n}) \neq 0, \mathrm{p} \mid \mathrm{n} \Rightarrow \mathrm{p} \leqslant \mathrm{x}^{\alpha}\right\}\right|>\mathrm{c}_{\alpha} \mathrm{x}$, holds with some $c_{\alpha}>0$.

Remark

Actually, the above number has a well-known asymptotic formula. However, we give here a direct simple proof of this Lemma, as it is sufficient for our present purpose.

Proof of the Lemma

Clearly, it suffices to prove the Lemma for a sequence $\alpha=\alpha_{k} \rightarrow 0$ (as $k \rightarrow \infty$). We choose $\alpha_{k}=3 /(5 k+4)$; $\mathbf{k}=1,2, \ldots$ Consider $0<\frac{2}{3} \alpha_{k}=\delta_{0}<\ldots<\delta_{R}=\alpha_{k}$ with $\mathbf{R}=2 \mathrm{k}+1 ; \theta$ defined through $\delta_{j}=\delta_{0}+\theta j$ $(\mathrm{j}=0,1, \ldots, \mathrm{R})$.

Note that

$$
\begin{aligned}
\delta_{1}+\cdots+\delta_{R-1} & =(R-1) \delta_{0}+\frac{R-1}{2} R_{\theta} \\
& =\frac{R-1}{2}\left(2 \delta_{0}+\delta_{R}-\delta_{0}\right),
\end{aligned}
$$

and on inserting the values of R and δ_{R} in terms of k we see that

$$
\begin{equation*}
1-2 \delta_{0}=\delta_{1}+\ldots+\delta_{R}-1<1-\left(\delta_{R}+\delta\right) \tag{4}
\end{equation*}
$$

with any fised $(0<) \delta<\frac{1}{2} \delta_{0}$.

$$
\text { Let } q^{*} \text { denote a typical product } \underset{j=1}{\mathbb{R}} p_{j} \text { witi primes } p_{j}
$$

satisfying $x^{\delta_{j}-1}<p_{j}<x^{\delta} j$. Now, from (4), $\mathrm{x}^{1-\delta}>\mathrm{q}^{\star}>\mathrm{x}^{1-\delta} 0$. Letting $\mathrm{q}^{\prime}<\mathrm{x} / \mathrm{q}^{\star}$ run through square-free values, we see that $q^{*} q^{\prime}<x$ are distinct square-free numbers, and their number is

$$
\gg \sum \frac{x}{q^{*}}=x \underset{j=1}{\frac{R}{\pi}}\left(\sum \frac{1}{p_{j}}\right)>c_{k}^{\prime} x
$$

with some $c_{k}^{\prime}>0$. This completes the proof of the Lemma.

Proof of the Theorem.

In view of (3), it is sufficient to consider a lower bound for

$$
\mathrm{E}_{\mathrm{A}, \mathrm{~A}^{\prime}} \quad(\mathrm{N})=\mathrm{E}_{\mathrm{A}^{\prime}}(\mathrm{N})-\mathrm{E}_{A^{\prime}}(\mathrm{N})
$$

with a suitably large $\mathrm{A}^{\prime}(>2 \mathrm{~A}$, say $)$. Now, we restrict N to the sequence

$$
\begin{equation*}
N_{m}=\underset{p<\log m}{\pi} p, \quad\left(\log N_{m} \sim \log m\right) \tag{5}
\end{equation*}
$$

and note that if a square-free $q \times N$, then $q /(q, N) \gg \log N$. Thus, by (1), we see the contribution of $q \times N$ to $E_{A, A^{\prime}}(N)$ is

$$
o\left(\sum^{\prime} \frac{\mu^{2}(q)}{\phi(q)} \frac{1}{v \log N}\right), \text { say }
$$

where ' denotes the restriction on q in (3^{\prime}). So this contribution is
since, for N in (5), $E_{x}(N) \asymp \log \log N$, by (3). Next, the (íēuatiang) côntribution of $\mathrm{q} \mid \mathrm{N}$ to $\left(3^{\prime}\right)$ is

$$
(\log N)^{\mathbf{A}}<q \leqslant(\log N)^{2 A}
$$

and this is easily seen (by 15) and Lemma) to be $>$ ${ }^{*}{ }_{A} \log \log \mathrm{~N}$. The proof is completed by a suitably large choice of A^{\prime} (in terms of $c^{*} A$) via (3) and (6).

References

[11 R. Balasubramaiaian and C. J. Mozzochi, Siegel zeros and the Goldbach Problem, J. Number Theory, 16 (1983), 311-332.
[2] S. Srinivasan, A Remark on Goldbach Problem, J. Number Theory, 12 (1980), 116-121.

School of Mathematics
Tata Institute of Fundanental Research
Homi bhâuha Roád
Bombay 400005 (India)

