A REMARK ON GOLDBACH'S PROBLEM II

By

S. SRINIVASAN

For A > 0, even integer N(> 1), set

$$E_{A}(N) = \sum_{q \leq (\log N)^{A}} \frac{\mu^{2}(q) c_{q}(-N)}{\phi^{2}(q)}$$

Here, $c_{\alpha}(n)$ is the Ramanujan's sum ; one evaluation is

(1)
$$c_q(-N) = \frac{\mu(q/(q, N)) \phi(q)}{\phi(q/(q, N))}$$

R. Balasubramanian and C. J. Mozzochi proved (cf. \S 6 of [1]) the following theorem.

Theorem.

For any fixed A(>0), the relation

(2)
$$E_A(N) \sim E_{\infty}(N), N \to \infty$$
,

is false.

Now we give an alternative proof of this theorem based on (3) $E_{\infty}(N) - E_{A}(N) = O(E_{\infty}(N)/A), E_{\infty}(N) \approx N/\phi(N),$ proved in [2].

Remark.

In view of the above theorem, it is necessary to state the Theorem in [2] with the factor N/ϕ (N) in the hypothesis; i. e., the bound

$$\delta_{\rm B} \frac{N}{(\log N)^2}$$
 replaced by $\delta_{\rm B} \frac{N}{(\log N)^2} \frac{N}{\phi(N)}$.

This can be done with no change in the proof there.

We require also the following

Lemma.

Let $\alpha > 0$. Then, as $x \to \infty$,

 $|\{n < x : \mu(n) \neq 0, p \mid n \Rightarrow p < x^{\alpha}\}| > c_{\alpha} x,$ holds with some $c_{\alpha} > 0$.

Remark

Actually, the above number has a well-known asymptotic formula. However, we give here a direct simple proof of this Lemma, as it is sufficient for our present purpose.

Proof of the Lemma

Clearly, it suffices to prove the Lemma for a sequence $\alpha = \alpha_k \rightarrow 0$ (as $k \rightarrow \infty$). We choose $\alpha_k = 3/(5k+4)$; k = 1, 2, ... Consider $0 < \frac{2}{3} \alpha_k = \delta_0 < ... < \delta_R = \alpha_k$ with R = 2k+1; θ defined through $\delta_j = \delta_0 + \theta j$ (j = 0,1,...,R).

Note that

$$\delta_{1} + \dots + \delta_{R-1} = (R-1)\delta_{0} + \frac{R-1}{2}R_{\theta}$$
$$= \frac{R-1}{2}(2\delta_{0} + \delta_{R} - \delta_{0}),$$

and on inserting the values of R and \mathfrak{d}_R in terms of k we see that

(4)
$$1 - 2\delta_0 = \delta_1 + ... + \delta_{R-1} < 1 - (\delta_R + \delta)$$

with any fixed (0<) $\delta < \frac{1}{2} \delta_0$.

Let q^{*} denote a typical product $\underset{j=1}{\overset{R}{\pi}} p_{j}$ with primes p_{j}

satisfying $x^{j-1} < p_j < x^{j}$. Now, from (4), $x^{1-\delta} > q^* > x^{1-\delta_0}$. Letting $q' < x/q^*$ run through square-free values, we see that $q^*q' < x$ are distinct square-free numbers, and their number is

$$\gg \sum \frac{\mathbf{x}}{q^{\bullet}} = \mathbf{x} \frac{\mathbf{x}}{\mathbf{x}} \left(\sum \frac{1}{\mathbf{p}_{j}} \right) > \mathbf{c}_{k}' \mathbf{x}$$

with some $c'_k > 0$. This completes the proof of the Lemma.

Proof of the Theorem.

In view of (3), it is sufficient to consider a lower bound for

(3')
$$E_{A,A'}(N) = E_{A'}(N) - E_{A}(N)$$

with a suitably large A' (> 2A, say). Now, we restrict N to the sequence

(5)
$$N_m = \frac{\pi}{p < \log m} p$$
, $(\log N_m \sim \log m)$

and note that if a square-free $q \times N$, then $q / (q, N) \gg \log N$. Thus, by (1), we see the contribution of $q \times N$ to E_{AA} (N) is

$$O\left(\sum' \frac{\mu^2(q)}{\phi(q)} \frac{1}{\sqrt{\log N}}\right)$$
, say,

where 'denotes the restriction on q in (3'). So this contribution is

(6) $O_{\mathbf{A},\mathbf{A}'}(\log \log N / \sqrt{\log N}) = o(\mathbf{E}_{\infty} (\mathbf{N})), N \to \infty,$

since, for N in (5), E_{∞} (N) $\asymp \log \log N$, by (3). Next, the (remaining) contribution of q | N to (3') is

$$\sum_{\substack{q \mid N \\ (\log N)^{A} < q < (\log N)^{A'}}}^{\Sigma} \frac{\mu^{2}(q)}{\phi(q)} >$$

 $\begin{array}{c} \mathbf{x} \\ q \mid \mathbf{N} \\ \left(\log \mathbf{N}\right)^{\mathbf{A}} < q \leqslant \left(\log \mathbf{N}\right)^{2\mathbf{A}} \end{array}$

μ (q)

and this is easily seen (by (5) and Lemma) to be $> c_A^{\circ} \log \log N$. The proof is completed by a suitably large choice of A' (in terms of c_A°) via (3) and (6),

References

- [11 R. Balasubraminian and C. J. Mozzochi, Siegel zeros and the Goldbach Problem, J. Number Theory, 16 (1983), 311-332.
- [2] S. Srinivasan, A Remark on Goldbach Problem, J. Number Theory, 12 (1980), 116-121.

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400 005 (India)