Hardy-Ramanujan Journal Vol.12 (1989) 29-30

AN Ω -RESULT RELATED TO $r_4(n)$ SUKUMAR DAS ADHIKARI*, R. BALASUBRAMANIAN*

and A. SANKARANARAYANAN**

§ 1. INTRODUCTION.

Let

$$g(n) = \sum_{d|n} h(d) \tag{1}$$

where h is a multiplicative function such that $\sum_{d=1}^{\infty} h(d)$ is convergent and $h(d) = O(\frac{1}{d})$. Let

$$M_0(x) = x \sum_{d=1}^{\infty} \frac{h(d)}{d}$$

$$M_1(x) = \frac{x^2}{2} \sum_{d=1}^{\infty} \frac{h(d)}{d}$$

$$R_0(\boldsymbol{x}) = \sum_{\boldsymbol{n} < \boldsymbol{x}} g(\boldsymbol{n}) - M_0(\boldsymbol{x})$$

and

$$R_1(x) = \sum_{n \leq x} ng(n) - M_1(x)$$
 (2)

Let $r_k(n)$ denote the number of representations of the positive integer n as a sum of k squares. If we put $h(d) = \frac{\alpha(d)}{d}$ where

$$\alpha(d) = -3 \text{ if } 4 \mid d$$

$$= +1 \text{ if } 4 \nmid d, \text{ then we have}$$

$$g(n) = \frac{r_4(n)}{8n}.$$

(See page 205, Hua [5] for an equivalent expression).

Let $P_k(x)$ be the error term defined by

$$\sum_{n\leq x} r_k(n) = \frac{(\pi x)^{\frac{k}{2}}}{\Gamma(\frac{k+1}{2})} + P_k(x). \tag{3}$$

Szego [7] showed that, if $k \equiv 2, 3, 4 \pmod{8}$, then

$$P_k(x) = \Omega_-((x \log x)^{\frac{(k-1)}{4}}) \tag{4}$$

and if $k \equiv 6, 7, 8 \pmod{8}$, then

$$P_k(x) = \Omega_+((x \log x)^{\frac{(k-1)}{4}}) \tag{5}$$

For the particular case k = 2, the result had been proved by Hardy [4] and the best Ω_{-} result to date is due to Hafner [3] which is

$$P_2(x) = \Omega_{-}((x \log x)^{\frac{1}{4}}(\log \log x)^{\frac{\log 2}{4}} exp(-B(\log \log x)^{\frac{1}{2}}))$$
 (6)

The best Ω_+ result to date is due to Corradi and Katai [1], namely

$$P_2(x) = \Omega_+(x^{\frac{1}{4}} exp(c(loglog \ x)^{\frac{1}{4}}(logloglog \ x)^{-\frac{3}{4}}))$$
 (7)

(for eg. see Grosswald page 21, [2]).

Our object of this paper is to consider the case k = 4 and we prove the following theorems.

THEOREM 1. We have

$$P_4(x) = \Omega_+(x \log \log x).$$

REMARK 1. Our treatment is inspired by a paper of Montgomery [6]. We also observe that an elementary proof of a theorem of Montgomery (Theorem

1 of [6]) follows from our treatment which we state as

THEOREM 2. If $g(n) = \frac{\varphi(n)}{n}$ where $\varphi(n)$ is the Euler's totient function, then we have

$$\frac{R_1(x)}{x} - R_0(x) \ll exp(-c\sqrt{\log x})$$

for some c > 0.

REMARK 2. We feel that the treatment can be applied to some other interesting arithmetic functions. We intend to take them up in a further work.

§ 2. NOTATION.

- 1) $\{x\}$ denotes the fractional part of x.
- 2) [x] denotes the integral part of x
- 3) (a, b) denotes the greatest common divisor of a and b.
- 4) f(x) = O(g(x)) or $f(x) \ll g(x)$ denotes that there exists a positive constant A such that |f(x)| < A g(x), where g(x) is real.

§ 3. SOME LEMMAS.

LEMMA 3.1. We have

$$R_0(x) = -x \sum_{d>x} \frac{h(d)}{d} - \sum_{d\leq x} h(d) \left\{ \frac{x}{d} \right\}$$

PROOF. We have,

$$R_0(x) = \sum_{\substack{n \leq x \\ n \leq x}} g(n) - M_0(x)$$

$$= \sum_{\substack{n \leq x \\ d \neq n}} h(d) - M_0(x)$$

$$= \sum_{\substack{d \leq x \\ d > x}} h(d) (\frac{x}{d} - \{\frac{x}{d}\}) - M_0(x)$$

$$= -x \sum_{\substack{d \geq x \\ d > x}} \frac{h(d)}{d} - \sum_{\substack{d \leq x \\ d \leq x}} h(d) \{\frac{x}{d}\}$$
(by the definition of $M_0(x)$)

which proves the lemma.

An Ω-result 23

LEMMA 3.2. If b,r(>0) are integers such that (b,r)=1 and β is a real number, then we have

$$\sum_{n=1}^{r} \left\{ \frac{bn}{r} + \beta \right\} = \frac{r-1}{2} + \left\{ r\beta \right\}$$
 (3.2.1)

PROOF. We note that both sides are periodic in β with period $\frac{1}{r}$. So we assume that $0 \le \beta < \frac{1}{r}$. We can also assume that b = 1. If $\beta = 0$, then the

left hand side of (3.2.1) = $\sum_{n=1}^{r-1} \frac{n}{r} = \frac{r-1}{2}$. If $0 < \beta < \frac{1}{r}$, then we have

$$\sum_{n=1}^{r} \left\{ \frac{n}{r} + \beta \right\} = \frac{1}{r} \cdot \frac{r(r-1)}{2} + r\beta$$
$$= \frac{r-1}{2} + \left\{ r\beta \right\}$$

which proves the lemma.

LEMMA 3.3. With notation as in Lemma 3.2, for any integer N, we have

$$\sum_{n=1}^{N} \left\{ \frac{nb}{r} + \beta \right\} = \frac{N}{r} \left\{ r\beta \right\} + \frac{N}{2} \left(\frac{r-1}{r} \right) + O(r).$$

PROOF. We have N = Qr + R for some $0 \le R < r$. Therefore from Lemma 3.2, we have

$$\sum_{n=1}^{N} \{\frac{nb}{r} + \beta\} = Q\{r\beta\} + Q(\frac{r-1}{2}) + \sum_{n=1}^{R} \{\frac{nb}{r} + \beta\}$$
$$= \frac{N}{r} \{r\beta\} + \frac{N(r-1)}{2r} + O(r).$$

which proves the lemma.

LEMMA 3.4. We have

$$\frac{R_1(x)}{x} - R_0(x) = \frac{x}{2} \sum_{d>x} \frac{h(d)}{d} + \frac{1}{2} \sum_{d\leq x} h(d) - \frac{1}{2x} \sum_{d\leq x} h(d) \cdot d(\left\{\frac{x}{d}\right\} - \left\{\frac{x}{d}\right\}^2).$$

PROOF. We have

$$R_{1}(x) = \sum_{\substack{n \leq x \\ d_{1}d_{2} \leq x \\ d_{1}h(d_{1}) \cdot d_{1}d_{2} - M_{1}(x)}} h(d_{1}) \cdot d_{1}d_{2} - M_{1}(x)$$

$$= \sum_{\substack{d_{1} \leq x \\ d_{1} \leq x \\ d_{2} \leq x \\ d_{1} \leq x \\ d_{1} \leq x \\ d_{2} \leq x \\ d_{1} \leq x \\ d_{1} \leq x \\ d_{2} \leq x \\ d_{1} \leq x \\ d_{2} \leq x \\ d_{1} \leq x \\ d_{1} \leq x \\ d_{2} \leq x \\ d_{2} \leq x \\ d_{3} \leq x \\ d_{3} \leq x \\ d_{1} \leq x \\ d_{2} \leq x \\ d_{3} \leq x \\ d$$

From Lemma 3.1, we have

$$-\sum_{d\leq x}h(d)\left\{\frac{x}{d}\right\}=R_0(x)+x\sum_{d>x}\frac{h(d)}{d}$$

and so we have

$$\frac{R_1(x)}{x} - R_0(x) = \frac{x}{2} \sum_{d>x} \frac{h(d)}{d} + \frac{1}{2} \sum_{d\leq x} h(d) - \frac{1}{2x} \sum_{d\leq x} h(d) d(\{\frac{x}{d}\} - \{\frac{x}{d}\}^2)$$

which completes the proof.

LEMMA 3.5. If there exists a function G(x) such that G(x) and $\frac{x}{G(x)}$ are increasing functions of x, then we have

$$R_0(x) = -\sum_{d \leq y} h(d) \left\{ \frac{x}{d} \right\} + O(1) \text{ for } y \geq \frac{x}{G(x)}.$$

PROOF. Since $\sum_{d>y} h(d)\{\frac{x}{d}\} = O(1)$ for $y \geq \frac{x}{G(x)}$, the lemma follows from Lemma 3.1.

LEMMA 3.6. For integers $q \approx G(N)$ with G(N) as in Lemma 3.5,

$$\beta = q$$
 and $y = \frac{(N+1)q}{G(N)}$, we have

$$\sum_{n=1}^{N} R_0(nq+\beta) = N \sum_{\substack{e \leq y \\ p|e \Rightarrow p|q}} h(e) \frac{(e,q)}{e} (\frac{1}{2} - \{\frac{\beta}{(e,q)}\}) \sum_{\substack{f \leq \frac{y}{e} \\ (f,q)=1}} \frac{h(f)}{f} + O(N)$$

PROOF. We have

$$\begin{split} &\sum_{n=1}^{N} R_{0}(nq+\beta) \\ &= -\sum_{n=1}^{N} \sum_{d \leq y} h(d) \{\frac{nq+\beta}{d}\} + O(N) \\ &(\text{Since } y = \frac{(N+1)q}{G(N)} > \frac{nq+\beta}{G(nq)}) \\ &= -\sum_{d \leq y} h(d) \sum_{n=1}^{N} \{\frac{nq+\beta}{d}\} + O(N) \\ &= -\sum_{d \leq y} h(d) \cdot \sum_{n=1}^{N} \{\frac{q/(d,q)}{d/(d,q)} \cdot n + \beta\} + O(N) \\ &= -\sum_{d \leq y} h(d) (\frac{N}{d}(d,q) \{\frac{\beta}{(d,q)}\} + \frac{N(d,q)}{d} (\frac{\frac{d}{(d,q)}-1}{2}) + O(\frac{d}{(d,q)})) + O(N) \\ &(\text{by Lemma 3.3}) \\ &= -\sum_{d \leq y} h(d) \frac{N(d,q)}{d} (\{\frac{\beta}{(d,q)}\} - \frac{1}{2}) + O(N) \\ &= -N \sum_{\substack{d \leq y \\ p|e \Rightarrow p|q}} h(e) \frac{(e,q)}{e} (\{\frac{\beta}{(e,q)}\} - \frac{1}{2}) \sum_{\substack{f \leq \frac{p}{d} \\ (f,q)=1}} \frac{h(f)}{f} + O(N) \\ &(\text{by writing } d = ef \text{ where } p \mid e \Rightarrow p \mid q \text{ and } (f,q) = 1) \end{split}$$

which proves the lemma.

LEMMA 3.7. We have

$$\sum_{n\leq x}\frac{\alpha(n)}{n}=2\log 2+O(\frac{1}{x})$$

where $\alpha(n)$ is as defined in § 1.

PROOF. We have

$$\sum_{n \le x} \frac{\alpha(n)}{n} = -\sum_{\substack{4n \le x \\ 1 \ n}} \frac{3}{4n} + \sum_{\substack{n \le x \\ 1 \ n}} \frac{1}{n} - \sum_{\substack{4n \le x \\ 1 \ n}} \frac{1}{4n}$$

$$= \sum_{\substack{n \le x \\ 1 \ n}} \sum_{\substack{n \le x \\ 1 \ n}} \frac{1}{n}$$

$$= 2 \log 2 + O(\frac{1}{x})$$

which proves the lemma.

LEMMA 3.8. If $h(n) = \frac{\alpha(n)}{n}$ and so $g(n) = \frac{r_1(n)}{8n}$, then we have $\frac{R_1(x)}{x} - R_0(x) = O(1).$

PROOF. Since $\sum_{d=1}^{\infty} \frac{\alpha(d)}{d}$ is convergent and $|\sum_{d\leq x} \alpha(d)| \leq 3$ for all x, the lemma follows from Lemmas 3.4 and 3.7.

LEMMA 3.9. If $h(n) = \frac{\alpha(n)}{n}$ and so $g(n) = \frac{r_1(n)}{n}$, then we have

$$R_0(x) = -\sum_{d \le u} \frac{\alpha(d)}{d} \left\{ \frac{x}{d} \right\} + O(1)$$

uniformly for $x \geq 2, y \geq \sqrt{x}$.

PROOF. From Lemma 3.1, we have

$$R_0(x) = -x \sum_{d>x} \frac{\alpha(d)}{d^d} - \sum_{d\leq x} \frac{\alpha(d)}{d} \left\{ \frac{x}{d} \right\}$$

$$= -\sum_{d\leq x} \frac{\alpha(d)}{d} \left\{ \frac{x}{d} \right\} + O(1)$$
(Since $\sum_{d>x} \frac{\alpha(d)}{d^2} = O(\frac{1}{x})$).

So it is enough to show that

$$\sum_{y < d < x} \frac{\alpha(d)}{d} \{ \frac{x}{d} \} = O(1) \text{ for } \sqrt{x} \le y \le x.$$

We choose k such that $1 \le k \le \frac{x}{y}$ and in $\frac{x}{k+1} < d \le \frac{x}{k}$, the function $\{\frac{x}{d}\}$ is monotone. Therefore we have

$$\sum_{\frac{x}{k+1} < d \le \frac{x}{k}} \frac{\alpha(d)}{d} \{ \frac{x}{d} \} = O(\frac{k}{x}) \text{ (by Lemma 3.7)}$$

Now summing up for k in $1 \le k \le \frac{x}{y}$, we get

$$\sum_{y \le d \le x} \frac{\alpha(d)}{d} \left\{ \frac{x}{d} \right\} = O\left(\frac{1}{x} \sum_{1 \le k \le \frac{x}{y}} k \right)$$

$$= O\left(\frac{1}{x} \cdot \frac{x^2}{y^2} \right)$$

$$= O(1) \text{ (since } y \ge \sqrt{x})$$

which proves the lemma.

§ 4. PROOF OF THEOREM 1.

We take $h(n) = \frac{\alpha(n)}{n}$. Therefore from Lemma 3.6 and 3.9 we have

$$\sum_{n=1}^{N} R_0(nq+\beta) = N \sum_{\substack{e \le y \\ p \mid e \Rightarrow p \mid q}} \frac{\alpha(e)}{e} \frac{(e,q)}{e} (\frac{1}{2} - \{\frac{\beta}{(e,q)}\}) \sum_{\substack{f \le y/e \\ (f,q)=1}} \frac{\alpha(f)}{f^2} + O(N)$$
 (4.1)

for $q \simeq \sqrt{N}, \beta \leq q$ and $y = \frac{(N+1)q}{\sqrt{N}} (= O(N))$. Since

$$\sum_{f \ge \frac{y}{e}} \frac{\alpha(f)}{f^2} = O(\sum_{f \ge \frac{y}{e}} \frac{1}{f^2}) = O(\frac{e}{y}),$$

we have

$$N \sum_{e \leq y} \frac{\alpha(e)}{e} \frac{(e,q)}{e} \left(\frac{1}{2} - \left\{ \frac{\beta}{(e,q)} \right\} \right) \sum_{f \geq \frac{1}{e}} \frac{\alpha(f)}{f^2}$$

$$\ll N \sum_{e \leq y} \frac{|\alpha(e)|}{e} \frac{(e,q)}{e} \left| \frac{e}{y} \right|$$

$$\ll \frac{N}{y} \sum_{e \leq y} \frac{(e,q)}{e}$$

$$= O(N). \tag{4.2}$$

Therefore from (4.1) and (4.2) we have

$$\sum_{n=1}^{N} R_0(nq+\beta) = N(\prod_{p|q} (1 + \frac{\alpha(p)}{p^2} + \frac{\alpha(p^2)}{p^4} + \cdots)) \sum_{\substack{e \leq y \\ p|e \Rightarrow p|q}} \frac{\alpha(e)}{e} (e,q) (\frac{1}{2} - \{\frac{\beta}{(e,q)}\}) + O(N)$$

Now, we assume $q = \prod_{p \le z} p, \beta = \prod_{2 where <math>z = [\frac{1}{2} \log N]$. Hence $q \simeq \sqrt{N}$. From (4.3), we have

$$\sum_{n=1}^{N} R_0(nq+\beta) = N(\prod_{p|q} (1-\frac{1}{p^2})^{-1})\zeta(2) \sum_{\substack{e \leq y \\ p|e \Rightarrow p|e}} \frac{\alpha(e)}{e^2} (e,q)(\frac{1}{2} - \{\frac{\beta}{(e,q)}\}) + O(N).$$
(4.4)

We note that, if $2 \mid e$, then $\frac{1}{2} - \{\frac{\beta}{(e,q)}\} = 0$. If $2 \nmid e$, then $\alpha(e) = 1$ and $\frac{1}{2} - \{\frac{\beta}{(e,q)}\} = \frac{1}{2}$. Therefore we have,

$$\sum_{\substack{e \leq y \\ p \mid e \Rightarrow p \mid q}} \frac{\alpha(e)}{e^{2}} (e, q) \left(\frac{1}{2} - \left\{\frac{\beta}{(e, q)}\right\}\right) \geq \sum_{\substack{e \leq y \\ p \mid e \Rightarrow p \mid q, 2 \nmid e}} \frac{\frac{1}{e^{2}} (e, q) \cdot \frac{1}{2}}{e^{2}}$$

$$\geq \frac{1}{2} \sum_{\substack{e \mid q \\ 2 \nmid e}} \frac{1}{e}$$

$$\approx \log z$$

$$\approx \log N \qquad (4.5)$$

From (4.4) and (4.5), we have

$$\sum_{n=1}^{N} R_0(nq+\beta) \geq N\zeta(2) \cdot \frac{1}{2} log log N + O(N)$$

which implies

$$R_0(x) = \Omega_+(log log x)$$

and hence from Lemma 3.8, we have

$$R_1(x) = \Omega_+(x \log \log x)$$

which completes the proof of Theorem 1.

§ 5. PROOF OF THEOREM 2.

We take $h(n) = \frac{\mu(n)}{n}$. From Lemma 3.4, we have

$$\frac{R_1(x)}{x} - R_0(x) = \frac{x}{2} \sum_{d>x} \frac{\mu(d)}{d^2} + \frac{1}{2} \sum_{d\leq x} \frac{\mu(d)}{d} - \frac{1}{2x} \sum_{d\leq x} \mu(d) (\{\frac{x}{d}\} - \{\frac{x}{d}\}^2)$$

We consider the sum $\sum_{d \le x} \mu(d) \{\frac{x}{d}\}$. For the range $d \le xe^{-c\sqrt{\log x}}$, we use trivial estimate and get

$$\sum_{d \leq xe^{-c\sqrt{\log x}}} \mu(d) \{\frac{x}{d}\} \ll xe^{-c\sqrt{\log x}}$$

For $x \ge d \ge xe^{-c\sqrt{\log x}}$, we notice that $\{\frac{x}{d}\}$ is monotonic in $\frac{x}{k+1} < d \le \frac{x}{k}$ for any k such that $1 \le k \le e^{c\sqrt{\log x}}$. Therefore we get

$$\sum_{\frac{x}{k+1} < d \le \frac{x}{k}} \mu(d) \{ \frac{x}{d} \} \quad \ll \quad \frac{x}{k} exp(-c\sqrt{\log \frac{x}{k}})$$

$$\ll \quad \frac{x}{k} exp(-c_1\sqrt{\log x})$$

Now summing up over all k's in $1 \le k \le exp(c\sqrt{\log x})$, we get

$$\sum_{x \ exp(-c\sqrt{\log x}) \le d \le x} \mu(d) \{\frac{x}{d}\} \ll exp(-c_2\sqrt{\log x}).$$

The sum $\sum_{d \le x} \mu(d) \{\frac{x}{d}\}^2$ can be treated similarly. Other sums are easy to deal with. Hence the Theorem 2 follows.

REFERENCES

- K. CORRADI and I. KATAI, A comment on K.S. Gangadharan's paper entitled "Two classical lattice point problems", Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967) 89-97.
- 2. EMIL GROSSWALD, Representations of integers as sums of squares, Springer-Verlag, 1985.
- 3. J. HAFNER, New Ω-theorems for two classical lattice point problems. Invent. Math. 63 (1981) 11-20.
- 4. G.H. HARDY, On Dirichlet's divisor problem, Proc. London Math. Soc. (2) 15(1916) 1-25.
- 5. L.K. HUA, Introduction to Number Theory, Springer-Verlag, 1982.
- 6. H.L. MONTGOMERY, Fluctuations in the mean of Euler's phi function, Proc. Indian Acad. Sci (Math. Sci.) 97 (1987) 239-245.
- 7. G. SZEGÖ, Beitrage zur Theorie der Laguerreshhen polynome, II. Zahlenthoretische Anwendungen, Math. Z. 25 (1926) 388-404.

ADDRESS OF THE AUTHORS

* PROFESSOR R. BALASUBRAMANIAN AND MR. S.D. ADHIKARI

THE INSTITUTE OF MATHEMATICAL SCIENCES, MADRAS - 600113 INDIA

** MR. A. SANKARANARAYANAN
SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
BOMBAY 400 005
INDIA