Hardy-Ramanujan Journal
Vol. 12 (1989) 22-30

AN Ω-RESULT RELATED TO $r_{4}(n)$

SUKUMAR DAS ADHIKARI*, R, BALASUBRAMANIAN*

 and
A. SANKARANARAYANAN**

§ 1. INTRODUCTION.

Let

$$
\begin{equation*}
g(n)=\sum_{d \mid n} h(d) \tag{1}
\end{equation*}
$$

where h is a multiplicative function such that $\sum_{d=1}^{\infty} h(d)$ is convergent and $h(d)=O\left(\frac{1}{d}\right)$ Let

$$
\begin{gathered}
M_{0}(x)=x \sum_{d=1}^{\infty} \frac{h(d)}{d} \\
M_{1}(x)=\frac{x^{2}}{2} \sum_{d=1}^{\infty} \frac{h(d)}{d} \\
R_{0}(x)=\sum_{n \leq x} g(n)-M_{0}(x)
\end{gathered}
$$

and

$$
\begin{equation*}
R_{1}(x)=\sum_{n \leq x} n g(n)-M_{1}(x) \tag{2}
\end{equation*}
$$

Let $r_{k}(n)$ denote the number of representations of the positive integer n as a sum of k squares. If we put $h(d)=\frac{\alpha(d)}{d}$ where

$$
\begin{aligned}
\alpha(d) & =-3 \text { if } 4 \mid d \\
& =+1 \text { if } 4 \nmid d, \text { then we have } \\
g(n) & =\frac{r_{4}(n)}{8 n} .
\end{aligned}
$$

(See page 205, Hua [5] for an equivalent expression).
Let $P_{k}(x)$ be the error term defined by

$$
\begin{equation*}
\sum_{n \leq x} r_{k}(n)=\frac{(\pi x)^{\frac{k}{2}}}{\Gamma\left(\frac{k+1}{2}\right)}+P_{k}(x) \tag{3}
\end{equation*}
$$

Szego [7] showed that, if $k \equiv 2,3,4$ (mod8), then

$$
\begin{equation*}
P_{k}(x)=\Omega_{-}\left((x \log x)^{\frac{(k-1)}{4}}\right) \tag{4}
\end{equation*}
$$

and if $k \equiv 6,7,8(\bmod 8)$, then

$$
\begin{equation*}
P_{k}(x)=\Omega_{+}\left((x \log x)^{\frac{(k-1)}{4}}\right) \tag{5}
\end{equation*}
$$

For the particular case $k=2$, the result had been proved by Hardy [4] and the best Ω_{-}result to date is due to Hafner [3] which is

$$
\begin{equation*}
P_{2}(x)=\Omega_{-}\left((x \log x)^{\frac{1}{2}}(\log \log x)^{\frac{\log 2}{4}} \exp \left(-B(\log \log \log x)^{\frac{1}{2}}\right)\right) \tag{6}
\end{equation*}
$$

The best Ω_{+}result to date is due to Corradi and Katai [1], namely

$$
\begin{equation*}
P_{2}(x)=\Omega_{+}\left(x^{\frac{1}{4}} \exp \left(c(\log \log x)^{\frac{1}{4}}(\log \log \log x)^{-\frac{3}{4}}\right)\right) \tag{7}
\end{equation*}
$$

(for eg. see Grosswald page 21, [2]).
Our object of this paper is to consider the case $k=4$ and we prove the following theorems.
THEOREM 1. We have

$$
P_{4}(x)=\Omega_{+}(x \log \log x)
$$

REMARK 1. Our treatment is inspired by a paper of Montgomery [6]. We also observe that an elementary proof of a theorem of Montgomery (Theorem

1 of [6]) follows from our treatment which we state as
THEOREM 2. If $g(n)=\frac{\varphi(n)}{n}$ where $\varphi(n)$ is the Euler's totient function, then we have

$$
\frac{R_{1}(x)}{x}-R_{0}(x) \ll \exp (-c \sqrt{\log x})
$$

for some $c>0$.
REMARK 2. We feel that the treatment can be applied to some other interesting arithmetic functions. We intend to take them up in a further work.

§ 2. NOTATION.

1) $\{x\}$ denotes the fractional part of x.
2) $[x]$ denotes the integral part of x
3) (a, b) denotes the greatest common divisor of a and b.
4) $f(x)=O(g(x))$ or $f(x) \ll g(x)$ denotes that there exists a positive constant A such that $|f(x)|<A g(x)$, where $g(x)$ is real.

§ 3. SOME LEMMAS.

LEMMA 3.1. We have

$$
R_{\complement}(x)=-x \sum_{d>x} \frac{h(d)}{d}-\sum_{d \leq x} h(d)\left\{\frac{x}{d}\right\}
$$

PROOF. We have,

$$
\begin{aligned}
R_{0}(x) & =\sum_{n \leq x} g(n)-M_{0}(x) \\
& =\sum_{n \leq x} \sum_{d \mid n} h(d)-M_{0}(x) \\
& =\sum_{d \leq x} h(d)\left(\frac{x}{d}-\left\{\frac{x}{d}\right\}\right)-M_{0}(x) \\
& =-x \sum_{d>x} \frac{h(d)}{d}-\sum_{d \leq x} h(d)\left\{\frac{x}{d}\right\}
\end{aligned}
$$

$$
\text { (by the definition of } M_{0}(x) \text {) }
$$

which proves the lemma.

LEMMA 3.2. If $b, r(>0)$ are integers such that $(b, r)=1$ and β is a real number, then we have

$$
\begin{equation*}
\sum_{n=1}^{r}\left\{\frac{b n}{r}+\beta\right\}=\frac{r-1}{2}+\{r \beta\} \tag{3.2.1}
\end{equation*}
$$

PROOF. We note that both sides are periodic in β with period $\frac{1}{r}$. So we assume that $0 \leq \beta<\frac{1}{r}$. We can also assume that $b=1$. If $\beta=0$, then the left hand side of (3.2.1) $=\sum_{n=1}^{r-1} \frac{n}{r}=\frac{r-1}{2}$. If $0<\beta<\frac{1}{r}$, then we have

$$
\begin{aligned}
\sum_{n=1}^{r}\left\{\frac{n}{r}+\beta\right\} & =\frac{1}{r} \cdot \frac{r(r-1)}{2}+r \beta \\
& =\frac{r-1}{2}+\{r \beta\}
\end{aligned}
$$

which proves the lemma.
LEMMA 3.3. With notation as in Lemma 3.2, for any integer N, we have

$$
\sum_{n=1}^{N}\left\{\frac{n b}{r}+\beta\right\}=\frac{N}{r}\{r \beta\}+\frac{N}{2}\left(\frac{r-1}{r}\right)+O(r)
$$

PROOF. We have $N=Q r+R$ for some $0 \leq R<r$. Therefore from Lemma 3.2, we have

$$
\begin{aligned}
\sum_{n=1}^{N}\left\{\frac{n b}{r}+\beta\right\} & =Q\{r \beta\}+Q\left(\frac{r-1}{2}\right)+\sum_{n=1}^{R}\left\{\frac{n b}{r}+\beta\right\} \\
& =\frac{N}{r}\{r \beta\}+\frac{N(r-1)}{2 r}+O(r)
\end{aligned}
$$

which proves the lemma.
LEMMA 3.4. We have

$$
\frac{R_{1}(x)}{x}-R_{0}(x)=\frac{x}{2} \sum_{d>x} \frac{h(d)}{d}++\frac{1}{2} \sum_{d \leq x} h(d)-\frac{1}{2 x} \sum_{d \leq x} h(d) \cdot d\left(\left\{\frac{x}{d}\right\}-\left\{\frac{x}{d}\right\}^{2}\right)
$$

PR.OOF. We have

$$
\begin{aligned}
R_{1}(x)= & \sum_{n \leq x} n g(n)-M_{1}(x) \\
= & \sum_{d_{1} d_{2} \leq x} h\left(d_{1}\right) \cdot d_{1} d_{2}-M_{1}(x) \\
= & \sum_{d_{1} \leq x} d_{1} h\left(d_{1}\right) \cdot \sum_{d_{2} \leq\left[\frac{x}{d_{1}}\right]} d_{2}-M_{1}(x) \\
= & \frac{1}{2} \sum_{d_{1} \leq x} h\left(d_{1}\right) \cdot d_{1}\left(\frac{x}{d_{1}}-\left\{\frac{x}{d_{1}}\right\}\right)\left(\frac{x}{d_{1}}+1-\left\{\frac{x}{d_{1}}\right\}\right)-M_{1}(x) \\
= & \frac{1}{2} \sum_{d \leq x} h(d) \cdot d\left(\frac{x^{2}}{d^{2}}+\frac{x}{d}-2 \frac{x}{d}\left\{\frac{x}{d}\right\}-\left\{\frac{x}{d}\right\}+\left\{\frac{x}{d}\right\}^{2}\right)-M_{1}(x) \\
= & -\frac{x^{2}}{2} \sum_{d>x} \frac{h(d)}{d}+\frac{x}{2} \sum_{d \leq x} h(d)-x \sum_{d \leq x} h(d)\left\{\frac{x}{d}\right\} \\
& -\frac{1}{2} \sum_{d \leq x} h(d) \cdot d\left\{\frac{x}{d}\right\}+\frac{1}{2} \sum_{d \leq x} h(d) d\left\{\frac{x}{d}\right\}^{2} .
\end{aligned}
$$

From Lemma 3.1, we have

$$
-\sum_{d \leq x} h(d)\left\{\frac{x}{d}\right\}=R_{0}(x)+x \sum_{d>x} \frac{h(d)}{d}
$$

and so we have

$$
\begin{aligned}
\frac{R_{1}(x)}{x}-R_{0}(x)= & \frac{x}{2} \sum_{d>x} \frac{h(d)}{d}+\frac{1}{2} \sum_{d \leq x} h(d) \\
& -\frac{1}{2 x} \sum_{d \leq x} h(d) d\left(\left\{\frac{x}{d}\right\}-\left\{\frac{x}{d}\right\}^{2}\right)
\end{aligned}
$$

which completes the proof.
LEMMA 3.5. If there exists a function $G(x)$ such that $G(x)$ and $\frac{x}{G(x)}$ are increasing functions of x, then we have

$$
R_{0}(x)=-\sum_{d \leq y} h(d)\left\{\frac{x}{d}\right\}+O(1) \text { for } y \geq \frac{x}{G(x)}
$$

PROOF. Since $\sum_{d>y} h(d)\left\{\frac{x}{d}\right\}=O(1)$ for $y \geq \frac{x}{G(x)}$, the lemma follows from Lemma 3.1.

LEMMA 3.6. For integers $q \approx G(N)$ with $G(N)$ as in Lemma 3.5,
$\beta=q$ and $y=\frac{(N+1) q}{G(N)}$, we have

$$
\sum_{n=1}^{N} R_{0}(n q+\beta)=N \sum_{\substack{c \leq y \\ p l e \ngtr p \mid q}} h(e) \frac{(e, q)}{e}\left(\frac{1}{2}-\left\{\frac{\beta}{(e, q)}\right\}\right) \sum_{\substack{f \leq \frac{y}{v} \\(f, q)=1}} \frac{h(f)}{f}+O(N)
$$

PROOF. We have

$$
\begin{aligned}
& \sum_{n=1}^{N} R_{0}(n q+\beta) \\
& =-\sum_{n=1}^{N} \sum_{d \leq y} h(d)\left\{\frac{n q+\beta}{d}\right\}+O(N) \\
& \text { (Since } \left.y=\frac{(N+1) q}{G(N)}>\frac{n q+\beta}{G(n q)}\right) \\
& =-\sum_{d \leq y} h(d) \sum_{n=1}^{N}\left\{\frac{n q+\beta}{d}\right\}+O(N) \\
& =-\sum_{d \leq y} h(d) \cdot \sum_{n=1}^{N}\left\{\frac{q /(d, q)}{d(d, q)} \cdot n+\beta\right\}+O(N) \\
& =-\sum_{d \leq y} h(d)\left(\frac{N}{d}(d, q)\left\{\frac{\beta}{(d, q)}\right\}+\frac{N(d, q)}{d}\left(\frac{(d, q)}{2}\right)+O\left(\frac{d}{(d, q)}\right)\right)+O(N)
\end{aligned}
$$

(by Lemma 3.3)

$$
\begin{aligned}
& =-\sum_{d \leq y} h(d) \frac{N(d, q)}{d}\left(\left\{\frac{\beta}{(d, q)}\right\}-\frac{1}{2}\right)+O(N) \\
& =-N \sum_{\substack{e \leq p \\
p \mid e \rightarrow p}} h(e) \frac{(e, q)}{e}\left(\left\{\frac{\beta}{(c, q)}\right\}-\frac{1}{2}\right) \sum_{\substack{f \leq \frac{y}{c} \\
(f, q)=1}} \frac{h(f)}{f}+O(N)
\end{aligned}
$$

$$
\text { (by writing } d=e f \text { where } p|e \Rightarrow p| q \text { and }(f, q)=1 \text {) }
$$

which proves the lemma.
LEMMA 3.7. We have

$$
\sum_{n \leq x} \frac{\alpha(n)}{n}=2 \log 2+O\left(\frac{1}{x}\right)
$$

where $\alpha(n)$ is as defined in $\S 1$.

PROOF. We have

$$
\begin{aligned}
\sum_{n \leq x} \frac{\alpha(n)}{n} & =-\sum_{4 n \leq x} \frac{3}{4 n}+\sum_{n \leq x} \frac{1}{n}-\sum_{4 n \leq x} \frac{1}{4 n} \\
& =\sum_{n \leq x}^{\frac{1}{n}}-\sum_{n \leq\left[\frac{5}{n}\right]}^{\frac{1}{n}} \\
& =2 \log 2+O\left(\frac{1}{x}\right)
\end{aligned}
$$

which proves the lemma.
LEMMA 3.8. If $h(n)=\frac{\alpha(n)}{n}$ and so $g(n)=\frac{r_{4}(n)}{8 n}$, then we have

$$
\frac{R_{1}(x)}{x}-R_{0}(x)=O(1)
$$

PROOF. Since $\sum_{d=1}^{\infty} \frac{\alpha(d)}{d}$ is convergent and $\left|\sum_{d \leq x} \alpha(d)\right| \leq 3$ for all x, the lemma follows from Lemmas 3.4 and 3.7.
LEMMA 3.9. If $h(n)=\frac{\alpha(n)}{n}$ and so $g(n)=\frac{r_{1}(n)}{n}$, then we have

$$
R_{0}(x)=-\sum_{d \leq y} \frac{\alpha(d)}{d}\left\{\frac{x}{d}\right\}+O(1)
$$

uniformly for $x \geq 2, y \geq \sqrt{x}$.
PROOF. From Lemma 3.1, we have

$$
\begin{aligned}
R_{0}(x)= & -x \sum_{d>x} \frac{\alpha(d)}{d^{2}}-\sum_{d \leq x} \frac{\alpha(d)}{d}\left\{\frac{x}{d}\right\} \\
= & -\sum_{d \leq x}^{\frac{\alpha(d)}{d}\left\{\frac{x}{d}\right\}+O(1)} \\
& \left(\text { Since } \sum_{d>x} \frac{\alpha(d)}{d^{2}}=O\left(\frac{1}{x}\right)\right) .
\end{aligned}
$$

So it is enough to show that

$$
\sum_{y \leq d \leq x} \frac{\alpha(d)}{d}\left\{\frac{x}{d}\right\}=O(1) \text { for } \sqrt{x} \leq y \leq x
$$

We choose k such that $1 \leq k \leq \frac{x}{y}$ and in $\frac{x}{k+1}<d \leq \frac{x}{k}$, the function $\left\{\frac{x}{d}\right\}$ is monotone. Therefore we have

$$
\sum_{\frac{x}{k+1}<d \leq \frac{\pi}{k}} \frac{\alpha(d)}{d}\left\{\frac{x}{d}\right\}=O\left(\frac{k}{x}\right) \text { (by Lemma 3.7) }
$$

Now summing up for k in $1 \leq k \leq \frac{x}{y}$, we get

$$
\begin{aligned}
\sum_{y \leq d \leq x} \frac{\alpha(d)}{d}\left\{\frac{x}{d}\right\} & =O\left(\frac{1}{x} \sum_{1 \leq k \leq \frac{z}{y}} k\right) \\
& =O\left(\frac{1}{x} \cdot \frac{x^{2}}{y^{2}}\right) \\
& =O(1)(\text { since } y \geq \sqrt{x})
\end{aligned}
$$

which proves the lemma.

§ 4. PROOF OF THEOREM 1.

We take $h(n)=\frac{\alpha(n)}{n}$. Therefore from Lemma 3.6 and 3.9 we have

$$
\begin{equation*}
\sum_{n=1}^{N} R_{0}(n q+\beta)=N \sum_{\substack{e \leq y \\ p|e \rightarrow p| q}} \frac{\alpha(e)}{e} \frac{(e, q)}{e}\left(\frac{1}{2}-\left\{\frac{\beta}{(e, q)}\right\}\right) \sum_{\substack{f \leq y / e \\(f, q)=1}} \frac{\alpha(f)}{f^{2}}+O(N) \tag{4.1}
\end{equation*}
$$

for $q \simeq \sqrt{N}, \beta \leq q$ and $y=\frac{(N+1) q}{\sqrt{N}}(=O(N))$. Since

$$
\sum_{f \geq \frac{k}{e}} \frac{\alpha(f)}{f^{2}}=O\left(\sum_{f \geq \frac{e}{e}} \frac{1}{f^{2}}\right)=O\left(\frac{e}{y}\right)
$$

we have

$$
\begin{align*}
& N \sum_{e \leq y} \frac{\alpha(e)}{e} \frac{(e, q)}{e}\left(\frac{1}{2}-\left\{\frac{\beta}{(e, q)}\right\}\right) \sum_{f \geq \frac{z}{e}} \frac{\alpha(f)}{f^{2}} \\
& \ll N \sum_{e \leq y} \frac{|\alpha(e)|}{e} \frac{(e, q)}{e}\left|\frac{e}{y}\right| \\
& \ll \frac{N}{y} \sum_{e \leq y} \frac{(e, q)}{e} \\
& =O(N) . \tag{4.2}
\end{align*}
$$

Therefore from (4.1) and (4.2) we have
$\sum_{n=1}^{N} R_{0}(n q+\beta)=N\left(\prod_{p \mid q}\left(1+\frac{\alpha(p)}{p^{2}}+\frac{\alpha\left(p^{2}\right)}{p^{4}}+\cdots\right)\right) \sum_{\substack{e \leq\{ \\p|e \neq p| q}} \frac{\alpha(e)}{e}(e, q)\left(\frac{1}{2}-\left\{\frac{\beta}{(e, q)}\right\}\right)+O(N)$
Now, we assume $q=\prod_{p \leq z} p, \beta=\prod_{2<p \leq z} p=\frac{q}{2}$ where $z=\left[\frac{1}{2} \log N\right]$. Hence $q \simeq \sqrt{N}$. From (4.3), we have
$\sum_{n=1}^{N} R_{0}(n q+\beta)=N\left(\prod_{p \mid q}\left(1-\frac{1}{p^{2}}\right)^{-1}\right) \zeta(2) \sum_{\substack{e \leq y \\ p|e \rightarrow p| e}} \frac{\alpha(e)}{e^{2}}(e, q)\left(\frac{1}{2}-\left\{\frac{\beta}{(e, q)}\right\}\right)+O(N)$.

We note that, if $2 \mid e$, then $\frac{1}{2}-\left\{\frac{\beta}{(e, q)}\right\}=0$. If $2 \nmid e$, then $\alpha(e)=1$ and $\frac{1}{2}-\left\{\frac{\beta}{(e, q)}\right\}=\frac{1}{2}$. Therefore we have,

From (4.4) and (4.5), we have

$$
\sum_{n=1}^{N} R_{0}(n q+\beta) \geq N \zeta(2) \cdot \frac{1}{2} \log \log N+O(N)
$$

which implies

$$
R_{0}(x)=\Omega_{+}(\log \log x)
$$

and hence from Lemma 3.8, we have

$$
R_{1}(x)=\Omega_{+}(x \log \log x)
$$

which completes the proof of Theorem 1.

§ 5. PROOF OF THEOREM 2.

We take $h(n)=\frac{\mu(n)}{n}$. From Lemma 3.4, we have

$$
\frac{R_{1}(x)}{x}-R_{0}(x)=\frac{x}{2} \sum_{d>x} \frac{\mu(d)}{d^{2}}+\frac{1}{2} \sum_{d \leq x} \frac{\mu(d)}{d}-\frac{1}{2 x} \sum_{d \leq x} \mu(d)\left(\left\{\frac{x}{d}\right\}-\left\{\frac{x}{d}\right\}^{2}\right)
$$

We consider the sum $\sum_{d \leq x} \mu(d)\left\{\frac{x}{d}\right\}$. For the range $d \leq x e^{-c \sqrt{\log x}}$, we use trivial estimate and get

$$
\sum_{d \leq x e^{-c \sqrt{\log x}}} \mu(d)\left\{\frac{x}{d}\right\}<x e^{-c \sqrt{\log x}}
$$

For $x \geq d \geq x e^{-c \sqrt{\log x}}$, we notice that $\left\{\frac{x}{d}\right\}$ is monotonic in $\frac{x}{k+1}<d \leq \frac{x}{k}$ for any k such that $1 \leq k \leq e^{c \sqrt{\log x}}$. Therefore we get

$$
\begin{aligned}
\sum_{\frac{x}{k+1}<d \leq \frac{x}{k}} \mu(d)\left\{\frac{x}{d}\right\} & \ll \frac{x}{k} \exp \left(-c \sqrt{\log \frac{x}{k}}\right) \\
& <\frac{x}{k} \exp \left(-c_{1} \sqrt{\log x}\right)
\end{aligned}
$$

Now summing up over all k^{\prime} in $1 \leq k \leq \exp (c \sqrt{\log x})$, we get

$$
\sum_{x \exp (-c \sqrt{\log x}) \leq d \leq x} \mu(d)\left\{\frac{x}{d}\right\} \ll \exp \left(-c_{2} \sqrt{\log x}\right) .
$$

The sum $\sum_{d \leq x} \mu(d)\left\{\frac{x}{d}\right\}^{2}$ can be treated similarly. Other sums are easy to deal with. Hence the Theorem 2 follows.

REFERENCES

1. K. CORRADI and I. KATAI, A comment on K.S. Gangadharan's paper entitled "Two classical lattice point problems", Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967) 89-97.
2. EMIL GROSSWALD, Representations of integers as sums of squares, Springer-Verlag, 1985.
3. J. HAFNER, New Ω-theorems for two classical lattice point problems. Invent. Math. 63 (1981) 11-20.
4. G.H. HARDY, On Dirichlet's divisor problem, Proc. London Math. Soc. (2) 15(1916) 1-25.
5. L.K. HUA, Introduction to Number Theory, Springer-Verlag, 1982.
6. H.L. MONTGOMERY, Fluctuations in the mean of Euler's phi function, Proc. Indian Acad. Sci (Math. Sci.) 97 (1987) 239-245.
7. G. SZEGÖ, Beitrage zur Theorie der Laguerreshhen polynome,II. Zahlenthoretische Anwendungen, Math. Z. 25 (1926) 388-404.

ADDRESS OF THE AUTHORS

[^0]
[^0]: * PROFESSOR R. BALASUBRAMANIAN AND MR.S.D. ADHIKARI

 THE INSTITUTE OF MATHEMATICAL SCIENCES, MADRAS - 600113
 INDIA
 ** MR. A. SANKARANARAYANAN
 SCHOOL OF MATHEMATICS
 TATA INSTITUTE OF FUNDAMENTAL RESEARCH BOMBAY 400005
 INDIA

