Let $r_4(n)$ be the number of ways of writing $n$ as the sum of four squares. Set $P_4(x)= \sum \limits_{n\le x} r_4(n)-\frac {1}{2}\pi^2 x^2$, the error term for the average order of this arithmetical function. In this paper, following the ideas of Erd\"os and Shapiro, a new elementary method is developed which yields the slightly stronger result $P_4(x)= \Omega_{+}(x \log \log x)$. We also apply our method to give an upper bound for a quantity involving the Euler $\varphi$-function. This second result gives an elementary proof of a theorem of H. L. Montgomery