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ON THE FREQUENCY OF TITCHMARSH'S PHENOMENON FOR ((s)-1V

By R. BALASUBRAMANIAN

§ 1. INTRODUCTION. The object of this paper is to prove the
following

Theorem 1 : The following lower bound holds :
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i 3 log H
e[ > oo Bfrittig )
T<t=T+H 2 4i{log log H

where 100 log log T=H=T, z_x_rlg TZTO.
Remark 1. In [BR1) we proved a weaker version of this Theoren
where % was replaced by a small constant. The constant % s a

substantial improvement. It can be improved slightly and this

seems to be the limit of our method (see Theorem 4 below).
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g 1 log T .
*11] j>[xp{§o[————log e T] ] was

obtained by Montgomery [M] on the assumption of Riemann

Rerark 2. The result max ]C[
o<t<T

(7™

Hypothesis. Our result is independent of any hypothesis.

Remark 3.A similar result can be proved for zeta function of
number fields etc. one can refer, for example to Remark 3 of
{BR1].

§ 2. TITCHMARSH SERIES. In this section, we state some results on

the mean square of Titchmarsh series and these results are

essenllally due to Ramachandra.
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Let A{>1) be a constant. Let (an} be a sequence of complex

numbers, possibly depending on a parameter H(>10) such that a1=l;

® a
and [a | < (ni)*. Let F(s)= § — be analytically continuable in
n=1 N

the rectangle R(T,H)={c20;T<tsT+H} and maximum of |F(s)| within
the rectangle be bounded by exp exp [ﬁ%ﬁ. Also assume that
TEHZHQ. a large constant. Then we have

Theorem 2. There exists a constant ¢=c(A)>0 such that

T+H
1 i 2(, log n 1
ﬁ%‘ [F(it)|“dtzc, ZH la, | [1 g m].
Wiad.
& 3. MAIN THEOREM. In this section, we state the main theorem:
@ =X
For 1>0, let 1(1)=J S;- dx

21
B = 2(1(1)+e2)V2T ! and 1et
B = max D{1), the maximum belng over all real 1>0. Then we have,

£ >1
dz(n)

-1/2
Theorem 3. Max l—[——EﬂilL—} log[ T
n

tends to B as X—x
K>1 2kllog log X <X ] _ —

where the maximum is taken over all natural numbers k.

Having defined B, we can slightly strengthen Theorem 1 as

( 172

Theoren 4. Max IC(% +it}|>£xp{ﬁ|f—lg%—5—?J ] i, vhere
T<L<T+H Hrgiieg oy

100 log log T<H<T provided 81<B and T is sufficiently large.

§ 4. PROOFS OF THEOREMS 1,2 AND 4.

The proof of Theorem 2, either in slightly weaker form (but
sufficient for our purpose) or slightly stronger form can be found
in [B] (Theorem 4), [BR1] [BR2] [R1] and (R2]. The proof of

Theorem 3 will be given in the next few sections. To deduce
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Theorem 4 from Theorems 2 and 3, we choose F(s)=[§ [%,H}}k
Theorems 2 and 3, we have, for a suitable choice of k, and for any
€>0,

T+H 2k Y12k
1., 1 ol ]
Max |§[—+1t]{z{- I —«14 | dt !
Tct<T+H @ oy 2 /

dz(n) 1/2k
k log n 1
Gl n " TogH ' Tog log K
n<H/100 g g g

Too H 172 y
2 and hence Theorem 4.
log log H

(
)Expi(B-C){
Even though the expressicn for B is unwieldy, it is possible to
get an approximate value numerically and this gives that B>§:— and

this proves Theorem 1. (In fact B=0.75... .)

§ 5. SOME PRELIMINARY LEMMAS.In this section, we prove sonme

preliminary lemmas.

Let s=a(a) =

log k

100 so that

We assume that a is less than

szs% and H2k1‘g.

DY e

Lemma 1. We have




R. BALASUBRAMANIAN

4 2
k -
(b) % ‘53—5=0[1°gk 15a]
pzi p
2 2
k 2 K -18a
ol T = rommk +o[ , ]
pzM p26 log k
L 1-e
Proof. Since | - (4] E§~—— , {a) follows.
—_— © log M
p<M p
4 4 1-4o )
L EZS = O[E—Tg-jfi and hence (b) follows.
p=i p &

To prove (c), we use prime number theorem in the form

s(u) = Y logp= u*O[———Ji——ﬁﬂ.
p=u (log u)

Hence
2 @
kz—e = k2 5 76—1———~ d{sfu))
pzM p M ulog u
© o
- k2 5 291 du*sz d(9{u)-u)
Mu log u M uTlog u
= Sl+52‘ say
in Sl’ we mzxe a change of variable
_ _10a .
ol vu- log u to get
2 T 100a° | 10a log 10
S, = kK° J £—%Y Uhere A = 208 - o2 4 X2 108
1 A v log k leg k
o -V 20a -v
Thus 5 =i° 5 &2, o[sz E_v_dl}
2Ca A
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20a _, 2.2 A
Since Az13a, the O-term is O[sz e lgadv] = O[‘,i £ e ._:a].
A

15a k2

log k

Thus S1 = I(lOa)k2+0{e- ] By Integrating by parts, we

" 15ak2

check that 52 = 0[ ] and this completes the proof.

log k

2 ce
Lemma 2. We have log G(a) = I(IOa)k2+O[ K e-‘:"‘}.
_ log k

Proof. Since G{a) = ﬂpAp(a). it follows that

log G(a) = Z log A (a).
P

o d (pl") 2
Since A s[ kr‘e } = “_p—e)-Zk, log A.') = O";} and by
p r=0 P F ka.
k2 ~-15a k 1
Lemm; = i SR s >M
enma 1{a), Z log Ap 0[10& = ] Since 55 = 15 for p=M.
pSH P
2 4
A =1+ k + 0[k ] for pzM
o} 20 45
P P
2 4
, ok K
Hence log A = =5t [ 40]
P ¥
k2 qu
1 = o ;N r \ o5 s
] log A oSt O[Z 4O] and the result follows
p=M pzM P p=y P

from Lemmas 1(b) and 1(c).

Lemma 3. I_f‘ a is bounded above and below and

lo e-20a
_.g_)_,_ > + (1og k)

k210g K i0a

-1/8
, then
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di(n) -
)og[z ;m] < 1{10a)k" -

K%

viog k

Proof. Let b = 2(log ¥) %, Then

2
dk(n)
n26(a—b)
-.nzY nzY

10b

log k

s Y G{a-b)

di(n) 10b
log[ Z —EETET] =< log G(a-b) - 58 F log Y
nzY

2
2 k 10b
1(10a-10b) ¥ *O[TSE—E} — log Y

"

(1(10a)-10b1" (10a)+0(b%) Jk°-

log k

-20a
e 2 195 3.2
ot o(b™) 5 log \]n

k" log k

#

[1 (102) +( 10b)

and hence the result.

§6. The upper bound in Theorea 3.

Py Tog X = B + ¢ for

dz(n) 172
k log log X -
2k

V¥e now prove that L log[ Z
n=X

any k;X sufficlently large. Suppose k =z Viog X (log log X)2. Then

Qn) 2log n

dk(n) =k =k so that
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Glog n
4
Z = Z : <k 108 X(1°8 X+0(1)). Hence
n n
<

d2(n)
116 k . 2(log ¥)(log k)+log log X
2k °8 n ) C 2K
n=X
vViog X
which is o[m]

Hence the result is true in this case. If k=Vlog X (log log X)Z.

define a by

-20a

log X e log k
—_—= . Then a = 5
k2 log k 10a 100

) 10a l log X
Further k = v20a e Tog(10a Tog X)°

2 10a 2 10a
Z dk(n) . xl % f dk(nl } X!og ¥ ola)
n 2o(a) ’
n=l n
n=X
2
d (n)
1 k - 10a log Gla)
éE’°8[Z n]‘zklogk”gx’ 2%
n=X
e~20a I(lOa)k2 k e—lSa
= k + + 0
2 2k log k
-15a
1 -20a k e
=5 k{e *I(l&.)hO{m].

Substituting the values of k, the O-term is easily seen to be

log X

0 J~—12§—§—— and the main term is atmost (B+C)J——————————.
log log X

log log X

§7. The lower bound in Theorem 3.

In this section, we prove that for a suitable choice of k,
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2

d (n) R
1 k . log X
ﬁ“g[z n ] = (B E)Jlog Tog X °

n=X

Choose a tc be a real number such that D(!) takes its maximum at
1 = 10a; then a is bounded above and below. Choose the largest

integer k such that

1 X e-ZOa -1/8
i Toa~ * (log ¥
k™ log k
2 d2(n) 0 ()2
Now C{a) = Z ST~ Exp[I(IOa)x +0(log ‘{” By Lemma 3,
n=l n
(n)
z Sala) is small. Hence
n=X
¢ (n) ) 2
X T C Exp[x(ma)k + o{m”.
nsX
2
¢ {n} 2
k 5 h2orT) o 2 K
Hence Z s X Exp[l(lOa)k + O{_——log k]]
n=X
2
10a 2 I
= EXp[log 7 log X+1(102)k *O[Eg_i'ﬂ

Substituting the value of k, the result follows.
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expression for B and getting the lover bound g for B.

A REMARK. The author had proved this result immediately after the
results of [BR1] were discovered. But due to various reasons the

result of the present paper could not be published earlier.
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