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THE NUMBER OF FINITE HON-ISOMORPHIC ABELIAN GROUPS IN MEAN SQUARE
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6
ABSTRACT. Let a(x) = z a(n)- X chl/J denote the error term in
J=1

nsx

T
i3

the abelian group problem. Using zeta-function methods it

proved that

X
J a2(x)ax « X232 10g%,
1
where the exponent 38/29 = 1.344827... 1is close to the best

possible exponent 4/3 in this problen.

Let as usual a{n) denote the number of non-isomorphic abellzn
groups with n elements. This is a well—known multiplicative
function, whose generating Dirichlet series

w
F(s) = Za(n)n"s = o{s)g(2s)C(3s)¢(4s). .. (Re s»1)
n=1

shows that methods from zeta-function theory may be used in
various problems involving a(n). A classical problem, investigated
first by P. Erdés and G. Szekeres {2], Is to determine the order

of the error term in the asymptotic formula for A(x) = Z aln}).
nsx

Since F(s) has only simple poles fer s = 173 (J = 1,2,...), it is
natural to expect that A(x) is well approximated by a finite sua

of residues of F(s)xss.1 at s=1/J. With this in mind we define
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& s_-1 = 1/
&(x) = Xa(n)- z Res F(slx's " = Xa(n)- Z c.x ‘J,
31 s=1/ =Y
n=x nsx
where ¢, = n  &(k/3). Upper bound estimates for A(x) have a
J k=1,k#j

long history (see (6], (7], and Ch. 14 of (31}, and the best
published result

a(x) « x97/38110g35x

is due to G. Kolesnik [S5]. This is far from the bound A(x)«x1/6+c,
which one may conjecture in this problem. In the other direction,

Y. Schwarz[6] proved A(x) = Q(xlls“&

) for any &>0 under the truth
of the Riemann hypothesis. Here as usual, f{x) = Q(g{(x}) means
that f(x) = o{g{x)) does not hold as x —> «o. A simple
unconditional proof of this result is given in Ch. 14 of {3], but
2 sharper result, namely A(x) = =Q(x1/alogl/2x). may be derived
from the general method of R. Balasubramanian and K. Ramachandra
{1]. It was kindly pointed to the author by K. Ramachandra that
their methods lead to the slightly sharper
X 2 4/3
(1) ’ j a%(x)ax = ax 10g X,
1

which was independently proved in [4], where it was cenjectured
asn
that the integral in (1) is asymptotic to CX*/Jlog X (C>0,X —).
It was also stated in {1} without proof that
X
(2) f 82(x)dx « X% 10g%x
1

holds. However, in correspondence with Professor K. Ramachandra it

transpired that this claim is, unfortunately, unsubstantiated. It
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seems that, at present, it is not possible to obtain (2) even if
one Assumes the Riemann hypothesis. If one assumes the Lindeldf
hypothesis (c(%+it) « tc; a well-known consequence of the Riemann
hypothesis), then it is possible to obtain a result only a little
weaker than (2), namely X4/3log3x in place of X4/3log2X.k The
author is very grateful to Professor K. Ramachandra for this and
other remarks concerning this topic.

The aim of this note is to prove a good, unconditional bound

for the mean square of A(x). This is contained in the following

Theorem.
% 2 39729 2
(3) [P0 < x 1og®X.
1
The exponent %g = %g;% = 1.34482758... is close to the best
possible exponent 5.and it could be still slightly decreased, but

3

not beyond g% = 1.34 by existing results concerning power moments

of ¢(s).

Proof of the Theorem. We suppose X/2 = x = X, 1/6 < o < 1/5,

¥« G« Xl-c, F(s) = ¢(s)¢(2s)¢{3s)... . An application of

Perron’s formula (see the Appendix of [3]) gives
1+¢

) A(X)'Csxl/s = oy e0le l‘ IFlarine™ ) [« Taa)
-1 X6 xO'*lt
+(2n) I Fla+it) T dt.
-X/G

The first step in the proof is to show that
1+¢

(s) x5+ l [Fla+iXG™ .

Hx* e « XV
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for a suitable G, and the choice will be G = x%. To bound F it

will be sufficient to use

(s) ctevit) « (1973 10g 1) (e21/2,t2t )

and the functional equation ¢ls) = x(s)¢(1-s), where
1 1

= 50

tz « xlo+it) « LZ (see {3]). Since the exponent of t in (6) is

a linear function of ¢ it is easily checked that jF(a*iXG‘l)l is
majorized by bounds valid for a=o and a=l+g, respectively. In the
latter case the bound in question is trivially « X%, while for
a = ¢ we have
=1 = #1
Flo+iXG 7)) « 1 [¢lJo+1jXC )|
J=1

,.Alua'

5
[gl1-o+1XG™ )c(1—2a+21xc’1)[ n IC(jc*inG_1)|
J=3

« (Y5

)1-3:7*1: 1, (c+20¢1-30+1-4¢+1-50)/3 2-Bo+c

(xc™ ") « X

Therefore the left-hand side of (5) is « (l b « )'{1/O for €

-
« (X °

sufficiently small, since o > 1/6. Thus from (4) with G=x% we

obtain
X Xl-c Xl-c X
f Az(x)dx <« )(‘;/3 + ‘( j E‘—":M x20+lt_ludxdtdu
Lie 1e (oriti{o-iu)
X2 -X =X X/2
g Xl-c
< ¥273 4 y2ort J‘ J’ F(a-nt)F‘vHu)[ dt du
) S eanIrom T+t-u]’
X
In viewof lab|s %([ a| *[bl ) the double 1ntegral does not exceed
xl-c XI-C
-1 du
[ oo Py [J’ T ]dt
-Xl € _Xl-c T+
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Xl-c
« log X j [Fleeit) 2%+t lat,
_Xl-c

Using again the functional equation for {(s) we obtain then

7 jx K2t e B0D xz‘r'llogzx[l * Z H_GG-IIJ,
x/2 Tapsx! € ‘
where for brevity we have set
M
(8) IM = J [((1~mit)((l-2cr*2i&)(,{30‘+31t)ou’luw:‘.ii)q(&r*fxit)|2<i‘.
M2

To bound I,, we shall use Hilder’s inequality and power moments for

M

¢(s). Namely, for 1/2<c<l fixed we define m(c)(21) as the supremum

of all numbers m such that
T
J [Clerit)] dt «T
1

holds for any ¢>0. We shall use the following btounds for m(c)

l+e

(Th.8.4 of [3]), which are hitherto the sharpest ones:

n{o) = 4/(3-4¢) for 1/2 < ¢ s 5/8,
n(o) =z 10/(S-6¢) for 5/8 = ¢ = 3553,
m(o)} = 19/(6-6¢) for 35/54 = ¢ = 41/860,
n{e) =2 2112/(€53-848¢) for 41/60 = ¢ = 3/3,
m(o) = 12408/({4537-4830¢) for 3/4 £ ¢ & 5/6
mlo) 2z 4324/(1031-1044¢) for 5/6 = ¢ = 7/8.
Now we choose ¢ = 5/29 = 0.172413753... and we obtain
71 = 30 = 0.51724137. .. n(cl) > 4..28628628. i« = pl
¢2 = 1-2¢ = 0.B65517241. .. m(az) 2 9., 1838338B. = Py
T4 = 40 = 0.68985517. .. m(cg) = 10 29208178: wa B Py
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¢, = 1-0 = 0.827S8620. .. mlo,) > 25.31710406. .. = p,
4 4 4
c5 = 5o = 0.86206895. .. n(og) = 33.00763359... = p.

It fellows then by Holder's inequality for integrals that

4 M p. +2/p M 1/A
LE T [ | lete). 0| Jdt] J[ J }c(cs+51t):2Aat] ,
= e M2
where
1.2 2 2 2
K‘* —_—t —— 4t =+ = ],
Py Py P3Py
herce A = 23.08516..., 2A = 45.11033..., 2k-pg = 13.10270. ..
Therefore by the chaice of pl,...,ps we have
(2A-p. )74
T« M7 v [elagesit) ] 3
Mr22t <M

l+{2A—p5)(l—w5)/(SA)+c

« M =M .
since  Zle+it) « 500t for  ssBso1, tzt,. But
-8c = -1.03448..., hence {7) and (8) yield

X
¥ 2 2
J £Fenbin @ 0B 0P & T ree®y
X2
2

for ¢ = 5/23. Replacing X by X/2, X/27,... etc. and adding one

easily obtains (23).
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