THE NUMBER OF FINITE NON-ISOMORPHIC ABELIAN GROUPS IN MEAN SQUARE

Aleksandar Ivic

ABSTRACT. Let $\Delta(x) = \sum_{n \le x} a(n) - \sum_{j=1}^{6} c_j x^{1/j}$ denote the error term in

the abelian group problem. Using zeta-function methods it is proved that

$$\int_{1}^{X} \Delta^{2}(x) dx \ll X^{39/29} \log^{2} X.$$

where the exponent 39/29 = 1.344827... is close to the best possible exponent 4/3 in this problem.

Let as usual a(n) denote the number of non-isomorphic abelian groups with n elements. This is a well-known multiplicative function, whose generating Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} a(n)n^{-s} = \zeta(s)\zeta(2s)\zeta(3s)\zeta(4s)...$$
 (Re s>1)

shows that methods from zeta-function theory may be used in various problems involving a(n). A classical problem, investigated first by P. Erdős and G. Szekeres [2], is to determine the order of the error term in the asymptotic formula for A(x) = $\sum_{n \le x} a(n)$.

Since F(s) has only simple poles for s = 1/j (j = 1, 2, ...), it is natural to expect that A(x) is well approximated by a finite sum of residues of $F(s)x^{S}s^{-1}$ at s=1/j. With this in mind we define

ALEKSANDAR IVIĆ

$$\Delta(x) = \sum_{n \le x} a(n) - \sum_{j=1}^{6} \operatorname{Res}_{s=1/j} F(s) x^{s} s^{-1} = \sum_{n \le x} a(n) - \sum_{j=1}^{6} c_{j} x^{1/j},$$

where $c_j = \prod_{k=1, k \neq j} \zeta(k/j)$. Upper bound estimates for $\Delta(x)$ have a

long history (see [6], [7], and Ch. 14 of [3]), and the best published result

$$\Delta(x) \ll x^{97/381} \log^{35} x$$

is due to G. Kolesnik [5]. This is far from the bound $\Delta(x) \ll x^{1/6+c}$, which one may conjecture in this problem. In the other direction, W. Schwarz[6] proved $\Delta(x) = \Omega(x^{1/6-\delta})$ for any $\delta > 0$ under the truth of the Riemann hypothesis. Here as usual, $f(x) = \Omega(g(x))$ means that f(x) = o(g(x)) does not hold as $x \longrightarrow \infty$. A simple unconditional proof of this result is given in Ch. 14 of [3], but a sharper result, namely $\Delta(x) = \Omega(x^{1/6}\log^{1/2}x)$, may be derived from the general method of R. Balasubramanian and K. Ramachandra [1]. It was kindly pointed to the author by K. Ramachandra that their methods lead to the slightly sharper

(1)
$$\int_{1}^{X} \Delta^{2}(x) dx = \Omega(X^{4/3} \log X),$$

which was independently proved in [4], where it was conjectured that the integral in (1) is asymptotic to $CX^{4/3}\log X$ (C>0,X $\longrightarrow \infty$). It was also stated in [1] without proof that

(2)
$$\int_{1}^{X} \Delta^{2}(x) dx < x^{4/3} \log^{2} X$$

holds. However, in correspondence with Professor K. Ramachandra it transpired that this claim is, unfortunately, unsubstantiated. It

THE NUMBER OF ABELIAN GROUPS

seems that, at present, it is not possible to obtain (2) even if one assumes the Riemann hypothesis. If one assumes the Lindelöf hypothesis ($\zeta(\frac{1}{2}+it) \ll t^c$; a well-known consequence of the Riemann hypothesis), then it is possible to obtain a result only a little weaker than (2), namely $\chi^{4/3}\log^3 \chi$ in place of $\chi^{4/3}\log^2 \chi$. The author is very grateful to Professor K. Ramachandra for this and other remarks concerning this topic.

The aim of this note is to prove a good, unconditional bound for the mean square of $\Delta(x)$. This is contained in the following Theorem.

(3)
$$\int_{1}^{X} \Delta^{2}(x) dx \propto x^{39/29} \log^{2} x.$$

The exponent $\frac{39}{29} = \frac{40-1}{30-1} = 1.34482758...$ is close to the best possible exponent $\frac{4}{3}$, and it could be still slightly decreased, but not beyond $\frac{67}{50} = 1.34$ by existing results concerning power moments of $\zeta(s)$.

<u>Proof of the Theorem.</u> We suppose $X/2 \le x \le X$, $1/6 < \sigma < 1/5$, $X^c \ll G \ll X^{1-c}$, $F(s) = \zeta(s)\zeta(2s)\zeta(3s)...$. An application of Perron's formula (see the Appendix of [3]) gives

(4)
$$\Delta(x) - c_6 x^{1/6} = O(GX^C) + O(G \int_{\sigma}^{\sigma} |F(\alpha + iXG^{-1})| x^{\alpha - 1} d\alpha)$$

$$+ (2\pi)^{-1} \int_{-X/G}^{\sigma} F(\alpha + it) \frac{x^{\sigma + it}}{\sigma + it} dt.$$

The first step in the proof is to show that

(5)
$$X^{c}_{G+G} = \int_{0}^{1+c} |F(\alpha+iXG^{-1})| X^{\alpha-1} d\alpha \ll X^{1/6}$$

ALEKSANDAR IVIĆ

for a suitable G, and the choice will be $G=X^{\mathbb{C}}$. To bound F it will be sufficient to use

(6)
$$\zeta(\sigma+it) \ll (1+t^{(1-\sigma)/3} \log t) \quad (\sigma \geq 1/2, t \geq t_0)$$
 and the functional equation $\zeta(s) = \chi(s)\zeta(1-s)$, where $t^{\frac{1}{2}-\sigma} \ll \chi(\sigma+it) \ll t^{\frac{1}{2}-\sigma}$ (see [3]). Since the exponent of t in (6) is a linear function of σ it is easily checked that $|F(\alpha+iXG^{-1})|$ is majorized by bounds valid for $\alpha=\sigma$ and $\alpha=1+c$, respectively. In the latter case the bound in question is trivially $\ll \chi^c$, while for

$$F(\sigma+iXG^{-1}) * \prod_{j=1}^{5} |\zeta(j\sigma+ijXG^{-1})|$$

$$* (XG^{-1})^{1-3\sigma} |\zeta(1-\sigma+iXG^{-1})\zeta(1-2\sigma+2iXG^{-1})| \prod_{j=2}^{5} |\zeta(j\sigma+ijXG^{-1})|$$

 $\alpha = \sigma$ we have

«
$$(XG^{-1})^{1-3\sigma+c}(XG^{-1})^{(\sigma+2\sigma+1-3\sigma+1-4\sigma+1-5\sigma)/3}$$
 « $X^{2-6\sigma+c}$

Therefore the left-hand side of (5) is « $X^{1-5\sigma+\epsilon}$ « $X^{1/6}$ for ϵ sufficiently small, since σ > 1/6. Thus from (4) with $G=X^c$ we obtain

$$\int\limits_{X/2}^{X} \Delta^2(x) dx \propto x^{4/3} + \int\limits_{-X^{1+\epsilon}}^{X^{1-\epsilon}} \int\limits_{-X^{1-\epsilon}}^{X^{1-\epsilon}} \frac{F(\sigma + it)F(\sigma - iu)}{(\sigma + it)(\sigma - iu)} \int\limits_{X/2}^{X} x^{2\sigma + it - iu} dx dt du$$

$$< x^{4/3} + x^{2\sigma+1} \int\limits_{-x^{1-\varepsilon}}^{x^{1-\varepsilon}} \int\limits_{-x^{1-\varepsilon}}^{x^{1-\varepsilon}} \left| \frac{\frac{F(\sigma+it)F(\sigma+iu)}{(\sigma+it)(\sigma+iu)}}{\frac{F(\sigma+it)F(\sigma+iu)}{(\sigma+it)(\sigma+iu)}} \right| \frac{dt\ du}{1+|t-u|}.$$

In view of $|ab| \le \frac{1}{2}(|a|^2 + |b|^2)$ the double integral does not exceed

$$\int\limits_{-X}^{X^{1-\varepsilon}} \left|F(\sigma+it)\right|^2 (\sigma^2+t^2)^{-1} \left(\int\limits_{-X}^{X^{1-\varepsilon}} \frac{\mathrm{d} u}{1+\left|t-u\right|}\right) \mathrm{d} t$$

$$< \log X \int_{-X^{1-\varepsilon}}^{X^{1-\varepsilon}} |F(\sigma \cdot it)|^2 (\sigma^2 \cdot t^2)^{-1} dt.$$

Using again the functional equation for $\zeta(s)$ we obtain then

where for brevity we have set

(8)
$$I_{M} = \int_{M/2}^{M} |\zeta(1-\sigma+it)\zeta(1-2\sigma+2it)\zeta(3\sigma+3it)\sigma(4\sigma+4it)\zeta(5\sigma+5it)|^{2} dt$$

To bound I_M we shall use Hölder's inequality and power moments for $\zeta(s)$. Namely, for $1/2 < \sigma < 1$ fixed we define $m(\sigma) (\ge 4)$ as the supremum of all numbers m such that

$$\int_{1}^{T} |\zeta(\sigma+it)|^{r_{i}} dt \ll T^{1+\epsilon}$$

holds for any c>0. We shall use the following bounds for $m(\sigma)$ (Th. 8.4 of [3]), which are hitherto the sharpest ones:

m(σ) ≥	4/(3-40)	for	1/2 <	σ	≤	5/8,
m(♂) ≥	10/(5-6σ)	for	5/8 ≤	σ	≤	35/54.
m(σ) ≥	19/(6-6σ)	for	35/54	<u> </u>	σ	≤ 41/60,
m(σ) ≥	2112/(859-948&)	for	41/60	≤	c	≤ 3/4,
m(σ) ≥	12408/(4537-48300)	for	3/4 ≤	σ	≤	5/6,
m(σ) ≥	4324/(1031-1044σ)	for	5/6 ≤	c	≾	7/8.

Now we choose $\sigma = 5/29 = 0.172413793...$ and we obtain

$$\begin{array}{lll} \sigma_1 &=& 3\sigma = 0.51724137\dots & & & & & & \\ m(\sigma_1) &\succeq 4.29629629\dots &=& p_1 \\ \sigma_2 &=& 1-2\sigma = 0.65517241\dots & & & & \\ m(\sigma_2) &\succeq 9.18333333\dots &=& p_2, \\ \sigma_3 &=& 4\sigma = 0.68965517\dots & & & & \\ m(\sigma_3) &\succeq 10.29205176\dots &=& p_3, \end{array}$$

ALEKSANDAR IVIC

$$\sigma_4 = 1 - \sigma = 0.82758620...$$
 $m(\sigma_4) \ge 25.31710406... = p_4.$ $\sigma_5 = 5\sigma = 0.86296896...$ $m(\sigma_5) \ge 33.00763359... = p_5.$

It follows then by Hölder's inequality for integrals that

$$I_{M} \leq \prod_{j=1}^{4} \left(\int_{M/2}^{M} |\zeta(\sigma_{j},...)|^{p_{j}} dt \right)^{2/p_{j}} \left(\int_{M/2}^{M} |\zeta(\sigma_{5} + 5it)|^{2A} dt \right)^{1/A},$$

where

$$\frac{1}{A}$$
 + $\frac{2}{p_1}$ + $\frac{2}{p_2}$ + $\frac{2}{p_3}$ + $\frac{2}{p_4}$ = 1,

hence A = 23.05516..., 2A = 46.11033..., $2A-p_5 = 13.10270...$

Therefore by the choice of p_1, \ldots, p_5 we have

$$I_{M} \ll M^{1+\epsilon} \max_{M/2 \le t \le M} |\zeta(\sigma_{S}^{+Sit})|^{(2A-p_{S}^{-})/A}$$

$$^{1+(2A-p_5)(1-\sigma_5)/(5A)+\epsilon}_{\text{« M}} = ^{1.01567...+\epsilon}_{\text{.}}$$

since $\zeta(\sigma+it) \ll t^{(1-\sigma)/5} \log t$ for $5/6 \le \sigma \le 1$, $t \ge t_0$. But $-6\sigma = -1.03448...$, hence (7) and (8) yield

$$\int_{X/2}^{X} \Delta^{2}(x) dx \propto x^{4/3} + x^{2\sigma+1} \log^{2} x \propto x^{2\sigma+1} \log^{2} x$$

for $\sigma = 5/29$. Replacing X by X/2, X/2²,... etc. and adding one easily obtains (3).

THE NUMBER OF ABELLAN GROUPS

References

- [1] R. Palasubramanian and K. Ramachandra, Some problems of analytic number theory III, Hardy-Ramanujan J. 4 (1981), 13-40.
- [2] P. Erdös and G. Szekeres, Über die Anzahl Abelscher Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged) 7(1935), 95-102.
- [3] A. Ivic, The Riemann zeta-function, John Wiley and Sons, New York, 1985.
- [4] A. Ivic, The general divisor problem, submitted to J. Number Theory.
- [5] G. Kolesnik, On the number of abelian groups of a given order, J. Reine Angew. Math. 329 (1981), 164-175.
- [6] W. Schwarz, Über die Anzahl Abelscher Gruppen gegebener Ordnung I, Math. Z. 92 (1966), 314-320, and II, J. Reine Angew. Math. 228 (1967), 133-138.
- [7] B.R. Srinivasan, On the number of abelian groups of a given order, Acta Arith. 23 (1973), 195-205.

A. Ivic Katedra Matematike RGF-a Universiteta u Beogradu Djusina 7, 11000 Beograd Jugoslavija