Hardy-Ramanujan Journal
Vol. 13 (1990) 1-20

PROOF OF SOME CONJECTURES ON THE
 MEAN-VALUE OF TITCHMARSH SERIES-I BY

R. BALASUBRAMANIAN AND K. RAMACHANDRA

§ 1. INTRODUCTION. When we are integrating a function related to a series which we call TITCHMARSH SERIES, (a function of a real variable $t)|F(i t)|$, or $|F(i t)|^{2}$ from $t=0$ to $t=H(H \geq 10)$ we encounter the following situation. Let $a_{1}=\lambda_{1}=1$ and $\left\{a_{n}\right\}(n=1,2,3, \cdots)$ be a sequence of complex numbers and $\left\{\lambda_{n}\right\}$ ($n=1,2,3, \cdots$) an increasing sequence of real numbers with $\frac{1}{C} \leq \lambda_{n+1}-\lambda_{n} \leq C$ for $n \geq 1$, where C is a positive constant. We suppose a_{n} to depend on n and H such that $\left|a_{n}\right| \leq(n H)^{A}$ for $n \geq 2$ and more generally we suppose that $\left|a_{n}\right| n^{-A}$ is bounded above by a suitable big function (of A and) H, where A is a positive integer constant. (Also in the paper that follows K. Ramachandra $[R]_{2}$ considers the case where instead of these conditions $\sum_{n \leq X}\left|a_{n}\right|$ is bounded above by suitable functions of X and H for all $X \geq 2$). We refer to all such series $\left(F(s)=\sum_{n=1}^{\infty}\left(a_{n} \lambda_{n}^{-s}\right), s=\sigma+i t, \sigma \geq A+2\right)$ as TITCHMARSH SERIES. Trivially $F(s)$ is analytic in $\sigma \geq A+2$ and we suppose that $F(s)$ can be continued analytically in ($\sigma \geq 0,0 \leq t \leq H$) some times with some "growth conditions on certain lines". We put $B=A+2$. We prove in all five main theorems (the last two are in $[R]_{2}$, the paper that follows) on Titchmarsh series. Theorems 2 and 3 are sharper versions of two conjectures (stated by K. Ramachandra $[R]_{1}$ in Durham Conference held in 1979). The last two
main theorems essentially due to K. Ramachandra $[R]_{2}$ are published in the next paper. The first three are jointly due to R. Balasubramanian and K. Ramachandra and are published in the present paper. We begin by stating a main lemma.
§ 2. MAIN LEMMA. Let r be a positive integer $H \geq(r+5) U, U \geq$ $2^{70}(16 B)^{2}$ and N and M positive integers subject to $N>M \geq 1$. Let $b_{m}(m \leq M)$ and $c_{n}(n \geq N)$ be complex numbers and $A(s)=\sum_{m \leq M} b_{m} \lambda_{m}^{-s}$. Let $B(s)=\sum_{n \geq N} c_{n} \lambda_{n}^{-2}$ be absolutely convergent in $\sigma \geq A+2$ and continuable analytically in $\sigma \geq 0$. Write $g(s)=A(-s) B(s)$,

$$
G(s)=U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1}(g(s+i \lambda))
$$

(here and elsewhere $\lambda=u_{1}+u_{2}+\cdots+u_{r}$). Assume that there exist real numbers T_{1} and T_{2} with $0 \leq T_{1} \leq U, H-U \leq T_{2} \leq H$, such that

$$
\left|g\left(\sigma+i T_{1}\right)\right|+\left|g\left(\sigma+i T_{2}\right)\right| \leq \operatorname{Exp} \operatorname{Exp}\left(\frac{U}{16 B}\right)
$$

uniformly in $0 \leq \sigma \leq B$. (As stated already $B=A+2$). Let

$$
S_{1}=\sum_{m \leq M, n \geq N}\left|b_{m} c_{n}\right|\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{B} 2^{r}\left(U \log \frac{\lambda_{n}}{\lambda_{m}}\right)^{-r},
$$

and

$$
S_{2}=\sum_{m \leq M, n \geq N}\left|b_{m} c_{n}\right|\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{B} .
$$

Then

$$
\begin{aligned}
\left|\int_{2 U}^{H-(r+3) U} G(i t) d t\right| \leq & \left|U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{2 U+\lambda}^{H-(r+3) U+\lambda} g(i t) d t\right| \\
\leq & 2 B^{2} U^{-10}+54 B U^{-1} \int_{0}^{H}|g(i t)| d t \\
& +\left(H+64 B^{2}\right) S_{1}+16 B^{2} E x p\left(-\frac{U}{8 B}\right) S_{2} .
\end{aligned}
$$

To prove this main lemma we need five lemmas. After proving these we complete the proof of the main lemma.
LEMMA 2.1. Let $z=x+i y$ be a complex variable with $|x| \leq \frac{1}{4}$. Then,
we have,
(a) $\left|\operatorname{Exp}\left((\operatorname{Sin} z)^{2}\right)\right| \leq e^{\frac{1}{2}}<2$ for all y
and
(b) If $|y| \geq 2$,

$$
\left|\operatorname{Exp}\left((\operatorname{Sin} z)^{2}\right)\right| \leq e^{\frac{1}{2}}(\operatorname{Exp} \operatorname{Exp}|y|)^{-1}<2(\operatorname{Exp} \operatorname{Exp}|y|)^{-1} .
$$

PROOF. We have

$$
\begin{aligned}
\operatorname{Re}(\operatorname{Sin} z)^{2} & =-\frac{1}{4} \operatorname{Re}\left\{\left(e^{i(x+i y)}-e^{-i(x+i y)}\right)^{2}\right\} \\
& =-\frac{1}{4} \operatorname{Re}\left\{e^{2 i x-2 y}+e^{-2 i x+2 y}-2\right\} \\
& =\frac{1}{2}-\frac{1}{4}\left\{\left(e^{-2 y}+e^{2 y}\right) \cos (2 x)\right\}
\end{aligned}
$$

But in $|x| \leq \frac{1}{4}$, we have $\cos (2 x)=\cos (|2 x|) \geq \cos \frac{1}{2} \geq \cos \frac{\pi}{6} \geq \frac{\sqrt{3}}{2}$. The rest of the proof is trivial since (i) $\cosh y$ is an increasing function of $|\boldsymbol{y}|$ and (ii) for $|y| \geq 2$

$$
\operatorname{Exp}\left(-\frac{\sqrt{3}}{8} e^{2|y|}\right) \leq(\operatorname{Exp} \operatorname{Exp}|y|)^{-1}
$$

since $e^{2}>(2.7)^{2}$ and $\frac{8}{\sqrt{3}}<\frac{8 \times 1.8}{3}=4.8$ and so $e^{2}>\frac{8}{\sqrt{3}}$. The lemma is completely proved.

LEMMA 2.2. For any two real numbers k and σ with $0<|\sigma| \leq 2 B$, we have,

$$
\int_{-\infty}^{\infty}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{i k-\sigma-i u_{1}}{8 B}\right)\right) \frac{d u_{1}}{i k-\sigma-i u_{1}}\right| \leq 12+4 \log \left|\frac{2 B}{\sigma}\right| .
$$

PROOF. Split the integral into three parts J_{1}, J_{2} and J_{3} corresponding to $\left|u_{1}-k\right| \geq 2 B,|\sigma| \leq\left|u_{1}-k\right| \leq 2 B$ and $\left|u_{1}-k\right| \leq \sigma$. The contribution to J_{1} from $\left|u_{1}-k\right| \geq 16 B$ is (by (b) of Lemma 2.1)

$$
\begin{aligned}
& \leq \frac{2 \frac{1}{2}}{16 B} \int_{16 B}^{\infty} \operatorname{Exp}\left(-\frac{u}{8 B}\right) d u_{1} \\
& =e^{\frac{1}{2}} \int_{2}^{\infty} \operatorname{Exp}\left(-u_{1}\right) d u_{1}=\operatorname{Exp}\left(-\frac{3}{2}\right)
\end{aligned}
$$

The contribution to J_{1} from $2 B \leq\left|u_{1}-k\right| \leq 16 B$ is (by (a) of Lemma 2.1)

$$
\leq e^{\frac{1}{2}} \int_{2 B \leq\left|u_{1}-k\right| \leq 16 B}\left|u_{1}-k\right|^{-1} d u_{1}=2 e^{\frac{1}{2}} \log 8=6 e^{\frac{1}{2}} \log 2
$$

Now

$$
\begin{gathered}
6 e^{\frac{1}{2}} \log 2+E x p\left(-\frac{3}{2}\right)<6\left(1+\frac{1}{2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{6 \cdot 2^{2}}\right)\left(\frac{1}{2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{2}}\right) \\
+\left(\frac{1}{2 \cdot 7}\right)^{3 / 2}<8
\end{gathered}
$$

Thus $\left|J_{1}\right| \leq 8$. Using (a) of Lemma 2.1 we have $\left|J_{2}\right| \leq 4 \log \left|\frac{2 B}{\sigma}\right|$. In J_{3} the integrand is at most $e^{\frac{1}{2}} \sigma^{-1}$ in absolute value and $30\left|J_{3}\right| \leq 2 e^{\frac{1}{2}} \leq 4$. Hence the lemma is completely proved.

LEMMA 2.3. If $n>m$, we have, for all real k,

$$
\left|\int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1}\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{i(k+\lambda)}\right| \leq 2^{r}\left(\log \frac{\lambda_{n}}{\lambda_{m}}\right)^{-}
$$

PROOF. Trivial.
LEMMA 2.4. For all real t and all $D \geq B$, we have,

$$
|G(D+i t)| \leq S_{1} \text { and }|g(D+i t)| \leq S_{2} .
$$

PROOF. We have, trivially,

$$
|g(D+i t)| \leq \sum_{m \leq M, n \geq N}\left|b_{m} c_{n}\right|\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{D}
$$

and the second result follows on observing that $\frac{\lambda_{m}}{\lambda_{n}}<1$ and so $\left(\frac{\lambda_{n}}{\lambda_{n}}\right)^{D} \leq$ $\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{B}$.

Next

$$
\begin{gathered}
G(D+i t)=U^{-r} \int_{0}^{U} d u_{\tau} \cdots \int_{0}^{U} d u_{1}(g(D+i t+i \lambda)) \\
=U^{-r} \sum_{m \leq M, n \geq N} b_{m} c_{n}\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{D} \int_{0}^{U} d u_{\tau} \cdots \int_{0}^{U} d u_{1}\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{i(t+\lambda)} .
\end{gathered}
$$

Using Lemma 2.3 and observing $\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{D} \leq\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{B}$ the first result follows.
LEMMA 2.5 Let $0<\sigma \leq B$ and $2 U \leq t \leq H-(r+3) U$. Then, for $H \geq(r+5) U$ and $U \geq(20)!(16 B)^{2}$, we have,

$$
\begin{gathered}
|G(\sigma+i t)| \leq B U^{-10}+U^{-1}\left(2+4 \log \frac{2 B}{\sigma}\right) \int_{0}^{H}|g(i t)| d t \\
+16 S_{1} \log (2 B)+8 B S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right)
\end{gathered}
$$

REMARK. (20)! < 2^{70}.
PROOF. We note, by Cauchy's theorem, that

$$
\begin{aligned}
& 2 \pi i g(\sigma+i t+i \lambda)=\int_{i T_{1}}^{B+1+i T_{1}}+\int_{B+1+i T_{1}}^{B+1+i T_{2}}-\int_{i T_{2}}^{B+1+i T_{2}}-\int_{i T_{1}}^{i T_{2}} \\
& \left\{g(w) \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-\sigma-i t-i \lambda}{8 B}\right)\right)\right\}_{w-\sigma-i t-i \lambda} \frac{d w}{} \\
& J_{1}+J_{2}-J_{3}-J_{4} \text { say. }
\end{aligned}
$$

We write

$$
\begin{aligned}
2 \pi i G(\sigma+i t) & =2 \pi i U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1}(g(\sigma+i t+i \lambda)) \\
& =U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1}\left(J_{1}+J_{2}-J_{3}-J_{4}\right) \\
& =J_{5}+J_{B}-J_{7}-J_{8} \text { say. }
\end{aligned}
$$

Let us look at J_{5}. In J_{1} (also in $\left.J_{3}\right)|g(w)| \leq \operatorname{Exp} \operatorname{Exp}\left(\frac{U}{16 B}\right)$ (by the definition of T_{1} and T_{2}). Also by using Lemma 2.1 (b) (since $|\operatorname{Re} w-\sigma| \leq B+1 \leq 2 B$, and $\left.|I m(w-i t-i \lambda)| \geq U \geq(20)!(16 B)^{2}\right)$, we have,

$$
\left|\operatorname{Exp}\left(\left(\frac{w-\sigma-i t-i \lambda}{8 B}\right)\right)\right| \leq 2 \operatorname{Exp}\left(-\frac{U}{8 B}\right) .
$$

Hence

$$
\begin{aligned}
\left|J_{1}\right| & \leq \frac{2(B+1)}{U} \operatorname{Exp}\left(\operatorname{Exp} \frac{U}{16 B}-\operatorname{Exp} \frac{U}{8 B}\right) \\
& \leq \frac{2(B+1)}{U} \operatorname{Exp}\left(-\left(\operatorname{Exp} \frac{U}{16 B}\right)\left(\operatorname{Exp} \frac{U}{16 B}-1\right)\right) \\
& \leq \frac{B}{2} U^{-10},
\end{aligned}
$$

since $U \geq(20)!(16 B)^{2}$ and so $\operatorname{Exp} \frac{U}{16 B}-1 \geq 1$ and $\operatorname{Exp}\left(-E x p \frac{U}{16 B}\right) \leq$ $\operatorname{Exp}\left(-\operatorname{Exp} U^{\frac{1}{2}}\right) \leq \operatorname{Exp}\left(-U^{\frac{1}{2}}\right) \leq(20)!U^{-10}$. Thus $\left|J_{5}\right| \leq \frac{1}{2} B U^{-10}$. Similarly, $\left|J_{7}\right| \leq \frac{1}{2} B U^{-10}$. Next

$$
\begin{gathered}
J_{8}=U^{-r} \int_{i T_{1}}^{i T_{2}} g(w) d w \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{2} \int_{0}^{U} \\
\operatorname{Exp}\left(\sin ^{2}\left(\frac{w-\sigma-i t-i \lambda}{8 B}\right)\right) \frac{d u_{1}}{w-\sigma-i t-i \lambda}
\end{gathered}
$$

We note that $w-\sigma-i t-i \lambda=i k-\sigma-i u_{1}$ where $k=I m w-t-u_{2} \cdots-u_{r}$. Hence the u_{1}-integral is in absolute value (by Lemma 2.2)

$$
\leq 12+4 \log \frac{2 B}{\sigma}
$$

This shows that

$$
\begin{aligned}
\left|J_{8}\right| & \leq U^{-r} \int_{i T_{1}}^{i T_{2}}|g(w) d w|\left\{U^{r-1}\left(12+4 \log \frac{2 B}{\sigma}\right)\right\} \\
& \leq U^{-1}\left(12+4 \log \frac{2 B}{\sigma}\right) \int_{0}^{H}|g(i t)| d t
\end{aligned}
$$

Finally we consider J_{6}.

$$
\begin{aligned}
J_{0}= & U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{B+1+i T_{1}}^{B+1+i T_{2}} g(w) \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-\sigma-i t-i \lambda}{8 B}\right)\right) \frac{d w}{w-\sigma-i t-} \\
= & U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{B+1-\sigma+i T_{1}-i t-i \lambda}^{B+1-\sigma+i T_{2-i t-i \lambda}} g(w+\sigma+i t+i \lambda) \\
& E x p\left(\operatorname{Sin}^{2}\left(\frac{w}{8 B}\right)\right) \frac{d w}{w} .
\end{aligned}
$$

Using Lemma 2.1 (b) we extend the range of integration of w to $(B+1-$ $\sigma-i \infty, B+1-\sigma+i \infty)$ and this gives an error which is at most

$$
\begin{gathered}
U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{|I m w| \geq U, R e w=B+1-\sigma} \mid g(w+\sigma+i t+i \lambda) \\
\left.E \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w}{8 B}\right)\right) \frac{d w}{w} \right\rvert\,
\end{gathered}
$$

By Lemma 2.4 this is

$$
\leq S_{2} U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{|I m w| \geq U, R e w=B+1-\sigma}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2} \frac{w}{8 B}\right) \frac{d w}{w}\right|
$$

Here the innermost integral is (by Lemma 2.1(b))

$$
\leq \frac{4}{U} \int_{U}^{\infty} E x p\left(-\frac{u}{8 B}\right) d u \leq \int_{U}^{\infty} E x p\left(-\frac{u}{8 B}\right) d u=8 B \operatorname{Exp}\left(-\frac{U}{8 B}\right)
$$

Thus the error does not exceed $8 B S_{2} E x p\left(-\frac{U}{8 B}\right)$ and so

$$
\begin{aligned}
& \left|J_{6}\right| \leq\left|U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{B+1-\sigma-i \infty}^{B+i-\sigma+i \infty} g(w+\sigma+i t+i \lambda) \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w}{8 B}\right)\right) \frac{d w}{w}\right| \\
& +8 B S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right) \\
& =\left\lvert\, U^{-r} \int_{B+1-\sigma-i \infty}^{B+1-\sigma+i \infty} \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w}{8 B}\right)\right) \frac{d w}{w} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} g(w+\sigma+i t+\right. \\
& i \lambda) \left\lvert\,+8 B S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right)\right. \\
& =\left|\int_{B+1-\sigma-i \infty}^{B+1-\sigma+i \infty} G(w+\sigma+i t) \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w}{8 B}\right)\right) \frac{d w}{w}\right|+8 B S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right) .
\end{aligned}
$$

Using the first part of Lemma 2.4 we obtain

$$
\begin{aligned}
\left|J_{6}\right| & \leq S_{1} \int_{B+1-\sigma-i \infty}^{B+1-\sigma+i \infty}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w}{8 B}\right)\right) \frac{d w}{w}\right|+8 B S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right) \\
& \leq S_{1}\left(12+4 \log \frac{2 B}{B+1-\sigma}\right)+8 B S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right)
\end{aligned}
$$

by using Lemma 2.2. Thus

$$
\left|J_{8}\right| \leq 16 S_{1} \log (2 B)+8 B S_{2} E x p E x p\left(-\frac{U}{8 B}\right) .
$$

This completes the proof of the lemma.
We are now in a position to complete the proof of the main lemma. We first remark that

$$
\begin{aligned}
& 4 \int_{0}^{B} \log \frac{2 B}{\sigma} d \sigma=4 B \log 2+4 \sqrt{2} \int_{0}^{B}\left(\frac{B}{\sigma}\right)^{\frac{1}{2}} d \sigma \\
& <4\left(\frac{1}{2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{2}}\right) B+(8 \times 1.415) B<15 B .
\end{aligned}
$$

By Cauchy's theorem, we have,

$$
\begin{aligned}
\int_{2 U}^{H-(r+3) U} G(i t) i d t= & \int_{i(2 U)}^{i(H-(r+3) U)} G(s) d s \\
= & \int_{i(2 U)}^{B+i(2 U)} G(s) d s+\int_{B+i(2 U)}^{B+i(H-(r+3) U)} G(s) d s- \\
& -\int_{i(H-(r+3) U)}^{B+i(H-(r+3) U)} G(s) d s \\
= & J_{1}+J_{2}-J_{3} \text { say. }
\end{aligned}
$$

Using the estimate given in Lemma 2.5, we see that

$$
\begin{aligned}
\left|J_{1}\right| \leq & \int_{0}^{B}\left(B U^{-10}+\frac{\left(12+4 \log \frac{2 B}{\sigma}\right)}{U} \int_{0}^{H}|g(i t)| d t\right. \\
& \left.+16(\log (2 B)) S_{1}+8 B S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right)\right) d \sigma \\
\leq & \left.B^{2} U^{-10}+\frac{12 B+15 B}{U} \int_{0}^{H} \right\rvert\,\left(g(i t) \mid d t+16 B S_{1} \log (2 B)\right. \\
& +8 B^{2} S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right) .
\end{aligned}
$$

The same estimate holds for $\left|J_{3}\right|$ also. For $\left|J_{2}\right|$ we use the estimate given in Lemma 2.4 to get

$$
\left|J_{2}\right| \leq H S_{1} .
$$

This completes the proof of the main lemma.
§ 3. FIRST MAIN THEOREM. Let A, B, C be as before $0<\varepsilon \leq \frac{1}{2}, r \geq$ $\left[(200 A+200) \varepsilon^{-1}\right],\left|a_{n}\right| \leq n^{A} H^{\frac{\pi x}{8}}$. Then $F(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{-\infty}$ is analytic in $\sigma \geq A+2$. Let $K \geq 30, U=H^{1-\frac{5}{2}}+50 B \log \log K_{1}$. Assume that

$$
H \geq\left(120 B^{2} C^{2 A+4}\left(4 r C^{2}\right)^{r}\right)^{\frac{400}{e}}+(100 r B)^{20} \log \log K_{1}
$$

and that there exist T_{1}, T_{2} with $0 \leq T_{1} \leq U, H-U \leq T_{2} \leq H$ such that

$$
\left|F\left(\sigma+i T_{1}\right)\right|+\left|F\left(\sigma+i T_{2}\right)\right| \leq K
$$

uniformly in $0 \leq \sigma \leq B$ where $F(s)$ is assumed to be analytically continuable in $\sigma \geq 0$. Then

$$
\int_{0}^{H}|F(i t)|^{2} d t \geq\left(\bar{H}-10 r C^{2} H^{1-\frac{5}{4}}-100 r B \log \log K_{1}\right) \sum_{n \leq H^{1-\varepsilon}}\left|a_{n}\right|^{2},
$$

where

$$
K_{1}=\left(\sum_{n \leq H^{1-\varepsilon}}\left|a_{n}\right| \lambda_{n}^{B}\right) K+\left(\sum_{n \leq H^{1-\varepsilon}}\left|a_{n}\right| \lambda_{n}^{B}\right)^{2} .
$$

REMARK 1. We need the conditions $H \geq(r+5) U, U \geq 2^{70}(16 B)^{2}$ in the application of the main lemma. All such conditions are satisfied by our lower bound choice for H. We have not attempted to obtain economical
lower bounds.
REMARK 2. Taking $F(s)=\left(\zeta\left(\frac{1}{2}+i t+i T\right)\right)^{k}$ in the first main theorem we obtain the following as an immediate corollary. Let $C(\varepsilon, k) \log \log T \leq$ $H \leq T$. Then for all integers $k \geq 1$
$\frac{1}{H} \int_{T}^{T+H}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \geq(1-\varepsilon) \sum_{n \leq H^{1-\varepsilon}}\left(d_{k}(n)\right)^{2} n^{-1} \geq\left(C_{k}^{\prime}-2 \varepsilon\right)(\log H)^{k^{2}}$,
where

$$
C_{k}^{\prime}=\left(\Gamma\left(k^{2}+1\right)\right)^{-1} \prod_{p}\left\{\left(1-p^{-1}\right)^{k^{2}} \sum_{m=0}^{\infty}\left(\frac{\Gamma(k+m)}{\Gamma(k) m!}\right)^{2} p^{-m}\right\} .
$$

(This is because it is well-known that

$$
\left.\sum_{n \leq X}\left(d_{k}(n)\right)^{2} n^{-1}=\left\{C_{k}^{\prime}+O\left(\frac{1}{\log X}\right)\right\}(\log X)^{k^{2}}\right)
$$

Our third main theorem gives a sharpening of this. The third main theorem is sharper than the conjecture (stated by K. Ramachandra $[\mathrm{R}]_{i}$ in Durham conference 1979). The conjecture (as also the weaker form of the conjecture proved by him in the conference) would only give

$$
\frac{1}{H} \int_{T}^{T+H}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \gg_{k}(\log H)^{k^{2}} \text { in } C(k) \log \log T \leq H \leq T .
$$

But the third main Theorem gives
$\frac{1}{H} \int_{T}^{T+H}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \geq C_{k}^{\prime}(\log H)^{k^{2}}+O\left(\frac{\log \log T}{H}(\log H)^{k^{2}}\right)+O\left((\log H)^{k^{2}-1}\right)$
where the O-constants depend only on k.
REMARK 3. The first main theorem gives a lower bound for $\frac{1}{H} \int_{T}^{T+H}$ | $\left.\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t$ uniformly in $1 \leq k \leq \log H, T \geq H \geq 30$ and $C \log \log T \leq$ $H \leq T$. From this it follows (as was shown in $[\mathrm{B}]_{1}$) that for $C \operatorname{loglog} T \leq$ $H \leq T$ we have uniformly

$$
\max _{T \leq i \leq T+H} \left\lvert\, \zeta\left(\frac{1}{2}+i t\right)>E x p\left(\frac{3}{4} \sqrt{\frac{\log H}{\log \log H}}\right)\right.
$$

if C is choosen to be a large positive constant. On Riemann hypothesis we can deduce from the first main theorem the following more general result. Let θ be fixed and $0 \leq \theta<2 \pi$. Put $z=e^{i \theta}$. Then (on Riemann hypothesis), we have,

$$
\max _{T \leq i \leq T+H}\left|\left(\zeta\left(\frac{1}{2}+i t\right)\right)^{2}\right|>\operatorname{Exp}\left(\frac{3}{4} \sqrt{\frac{\log H}{\log \log H}}\right)
$$

where the LHS is interpreted as $\lim _{\sigma \rightarrow \frac{1}{2}+0}$ of the same expression with $\frac{1}{2}+i t$ replaced by $\sigma+i t$. This result with $\theta=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ gives a quantitative improvement of some results of J.H. Mueller [M].
PROOF. Write $M=\left[H^{1-\varepsilon}\right], N=M+1, A(s)=\sum_{m \leq M} \bar{a}_{m} \lambda_{m}^{-2}, \bar{A}(s)=$ $\sum_{m \leq M} a_{m} \lambda_{m}^{-s}, B(s)=\sum_{n \geq N} a_{n} \lambda_{n}^{-2}$. Then we have, in $\sigma \geq A+2$,

$$
F(s)=\bar{A}(s)+B(s) .
$$

Also,

$$
\begin{aligned}
|F(i t)|^{2} & =|\bar{A}(i t)|^{2}+2 \operatorname{Re}(A(-i t) B(i t))+|B(i t)|^{2} \\
& \geq|\bar{A}(i t)|^{2}+2 \operatorname{Re}(g(i t))
\end{aligned}
$$

where $g(s)=A(-s) B(s)$. Hence

$$
\begin{aligned}
\int_{0}^{H}|F(i t)|^{2} d t & \geq U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{2 U+\lambda}^{H-(r+3) U+\lambda}|F(i t)|^{2} d t \\
& \geq U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{2 U+\lambda}^{H-(r+3) U+\lambda}\left(|\bar{A}(i t)|^{2}+2 \operatorname{Re} g(i t)\right) d t \\
& =J_{1}+2 J_{2} \text { say. }
\end{aligned}
$$

Now $\log \left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)=-\log \left(1-\left(1-\frac{\lambda_{n}}{\lambda_{n+1}}\right)\right) \geq \frac{\lambda_{n+1}-\lambda_{n}}{\lambda_{n}+1} \geq\left(2 n C^{2}\right)^{-1}$. Hence by Montgomery-Vaughan theorem,

$$
\begin{aligned}
J_{1} & \geq \int_{2 U}^{H-(r+3) U}|\bar{A}(i t)|^{2} d t \\
& \geq \sum_{n \leq M}\left(H-(r+5) U-100 C^{2} n\right)\left|a_{n}\right|^{2}
\end{aligned}
$$

We have

$$
\begin{aligned}
& |g(s)|=|A(-s) B(s)|=|A(-s)(F(s)-A(s))| \\
& \leq\left(\sum_{n \leq H^{1-\varepsilon}}\left|a_{n}\right| \lambda_{n}^{B}\right) K+\left(\sum_{n \leq H^{1-\varepsilon}}\left|a_{n}\right| \lambda_{n}^{B}\right)^{2} \\
& =K_{1} .
\end{aligned}
$$

By the main lemma, we have,

$$
\begin{align*}
\left|J_{2}\right| & \leq\left|U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{2 U+\lambda}^{H-(r+3) U+\lambda} g(i t) d t\right| \\
& \leq \frac{2 B^{2}}{W^{T}}+\frac{54 B}{U} \int_{0}^{H}|g(i t)| d t+\left(H+64 B^{2}\right) S_{1}+16 B^{2} S_{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right) . \tag{3.1}
\end{align*}
$$

We simplify the last expression in (3.1). We can assume that $\int_{0}^{H}\left|F^{\prime}(i t)\right|^{2}$ $d t \leq H \sum_{n \leq H^{1-\epsilon}}\left|a_{n}\right|^{2}$ (otherwise the result is trivially true). Hence

$$
\begin{aligned}
& \int_{0}^{H}|g(i t)| d t=\int_{0}^{H}|A(-i t) B(i t)| d t \\
& \leq \int_{0}^{H}|A(-i t)|^{2} d t+\int_{0}^{H}|B(i t)|^{2} d t \\
& \leq \int_{0}^{H}|A(-i t)|^{2} d t+\int_{0}^{H}|F(i t)-\bar{A}(i t)|^{2} d t \\
& \leq 3 \int_{0}^{H}|A(-i t)|^{2} d t+2 \int_{0}^{H}|F(i t)|^{2} d t \\
& \leq 3 \sum_{n \leq M}\left(H+100 C^{2} n\right)\left|a_{n}\right|^{2}+2 H \sum_{n \leq M}\left|a_{n}\right|^{2} \\
& \leq\left(300 C^{2}+5\right) H \sum_{n \leq M}\left|a_{n}\right|^{2} .
\end{aligned}
$$

$$
\begin{aligned}
S_{2} & \leq \sum_{m \leq M, n \geq N}\left|b_{m} c_{n}\right|\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{A+2} \\
& \leq \sum_{m \leq M, n \geq N}\left|a_{m} a_{n}\right|\left(\frac{\lambda_{m}}{\lambda_{n}}\right)^{A+2} \\
& \leq \sum_{m \leq M, n \geq N} m^{A} H^{\frac{\pi}{8}} n^{A} H^{\frac{\pi}{8}}\left(C^{2} m n^{-1}\right)^{A+2} \\
& \leq H^{\frac{r \pi}{4}} C^{2 A+4} \sum_{m \leq M} m^{2 A+2} \sum_{n \geq N} n^{-2} \\
& \leq H^{\frac{\pi r}{4}+2 A+3} C^{2 A+4} \text { since } \frac{\pi^{2}}{6}-1<1
\end{aligned}
$$

Now

$$
S_{1} \leq\left(U \log \frac{\lambda_{N}}{\lambda_{M}}\right)^{-r} 2^{r} S_{2}
$$

and

$$
\begin{gathered}
\log \frac{\lambda_{N}}{\lambda_{M}} \geq \frac{1}{2} \frac{\lambda_{N}-\lambda_{M}}{\lambda_{M}} \geq\left(2 C^{2} M\right)^{-1} \\
U \log \left(\frac{\lambda_{N}}{\lambda_{M}}\right) \geq\left(2 C^{2}\right)^{-1} H^{\frac{e}{2}}
\end{gathered}
$$

Thus

$$
\begin{aligned}
\left|J_{2}\right| \leq & \frac{2 B^{2}}{U^{10}}+54 B\left(300 C^{2}+5\right) H U^{-1} \sum_{n \leq M}\left|a_{n}\right|^{2} \\
& +\left(H+64 B^{2}\right) H^{-\frac{r e}{4}+2 A+3} 2^{r}\left(2 C^{2}\right)^{r} C^{2 A+4} \\
& +16 B^{2} E x p\left(-\frac{U}{8 B}\right) H^{\frac{r e}{4}+2 A+3} C^{2 A+4} .\left(\text { Note } a_{1}=\lambda_{1}=1\right)
\end{aligned}
$$

So

$$
\begin{aligned}
& (r+5) U+100 C^{2} H^{1-\varepsilon}+2\left|J_{2}\right|\left(\sum_{n \leq M}\left|a_{n}\right|^{2}\right)^{-1} \\
& \leq(r+5) H^{1--\frac{e}{2}}+100 C^{2} H^{1-\varepsilon}+100 B r \log \log K_{1} \\
& +\frac{4 B^{2}}{H^{5}}+108 B\left(300 C^{2}+5\right) H^{\frac{\varepsilon}{2}}+128\left(2^{r}\right)\left(2 C^{2}\right)^{r} B^{2} H^{2 A+4-50 A} C^{2 A+4} \\
& +32 B^{2} C^{2 A+4} r!(8 B)^{r} H^{2 A+3+\frac{\pi}{2}-\frac{r}{2}} \\
& \leq 100 B r \log \log K_{1}+r C^{2} H^{1-\frac{\varepsilon}{4}}\left\{\frac{r+5}{r C^{2} H^{\frac{T}{4}}}+\frac{100 C^{2}}{H^{\frac{1}{4}}}\right. \\
& \left.+\frac{4 B^{2}}{H^{5}}+\frac{108 B\left(300 C^{2}+5\right)}{H^{1-\frac{4}{4}}}+128\left(2^{r}\right)\left(2 C^{2}\right)^{r} B^{2} H^{-1} C^{2 A+4}+32 B^{2} C^{2 A+4} r!(8 B)^{r} H^{-1}\right\} \\
& \leq 100 B r \log \log K_{1}+10 C^{2} r H^{1-\frac{2}{4}} .
\end{aligned}
$$

This completes the proof of the theorem.
§ 4. SECOND MAIN THEOREM. We assume the same conditions as in the first main theorem except that we change the definition of U to $U=H^{\frac{7}{8}}+50 B \log \log K_{2}$. Then there holds

$$
\int_{0}^{H}|F(i t)| d t \geq H-10 r H^{\frac{7}{8}}-100 r B \log \log K_{2}
$$

where $K_{2}=K+1$.
REMARK. Conditions like $H \geq(r+5) U, U \geq 2^{70}(16 B)^{2}$ are taken care of by the inequality for H.
PROOF. We have,

$$
\begin{aligned}
& \int_{0}^{H}|F(i t)| d t \geq U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{2 U+\lambda}^{H-(r+3) U+\lambda}|F(i t)| d t \\
& \geq U^{-r} \operatorname{Re}\left(\int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{2 U+\lambda}^{H-(r+3) U+\lambda} F(i t) d t\right) \\
& =U^{-r} \operatorname{Re}\left\{\int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{2 U+\lambda}^{H-(r+3) U+\lambda}(1+A(-i t) B(i t)) d t\right\}
\end{aligned}
$$

(where $A(s) \equiv 1$ (i.e. $a_{1}=1=M$) and $\left.B(s)=F(s)-1\right)=J_{1}+\operatorname{Re} J_{2}$ say. Clearly $J_{1} \geq H-(r+5) U$. For J_{2} we use the main lemma.

$$
\begin{equation*}
\left|J_{2}\right| \leq \frac{2 B^{2}}{U^{10}}+\frac{54 B}{U} \int_{0}^{H}|g(i t)| d t+\left(H+64 B^{2}\right) S_{1}+16 B^{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right) S_{2} \tag{4.1}
\end{equation*}
$$

As in the proof of the first main theorem we can assume $\int_{0}^{H}|F(i t)| d t \leq H$ and so $\int_{0}^{H}|g(i t)| d t \leq 2 H$. We have $|g(s)| \leq K+1=K_{2}$. Now

$$
S_{2} \leq H^{\frac{r \varepsilon}{4}+2 A+3} C^{2 A+4}
$$

and $U \log \left(\frac{\lambda_{N}}{\lambda_{M}}\right)=U \log \lambda_{2} \geq(2 C)^{-1} U$,

$$
S_{1} \leq 2^{r} S_{2}\left(U \log \lambda_{2}\right)^{-r} \leq 2^{r} S_{2}\left((2 C)^{-1} U\right)^{-r} .
$$

This shows that

$$
\begin{aligned}
& (r+5) U+\left|J_{2}\right| \\
& \leq(r+5) U+\frac{2 B^{2}}{U^{10}}+\frac{54 B}{U} 2 H+\frac{\left(H+64 B^{2}\right)}{(2 C-1)^{r}} 2^{r} C^{2 A+4} H^{\frac{r e}{4}+2 A+3} \\
& +16 B^{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right) H^{\frac{r e}{4}+2 A+3} C^{2 A+4} \\
& \leq 100 r B \log \log K_{2}+r H^{\frac{7}{8}}\left\{\frac{r+5}{r}+\frac{2 B^{2}}{r H^{\frac{60}{8}}}+\frac{108 B}{H^{\frac{2}{4}}}\right. \\
& +\left(H+64 B^{2}\right) 2^{r} C^{2 A+4} H^{\frac{r}{4}}+2 A+3+\frac{r}{16}-(r+1)^{\frac{7}{8}}
\end{aligned}
$$

$$
\begin{aligned}
& +16 B^{2} C^{2 A+4}(8 B)^{r} r!H^{\frac{\text { 年 }}{4}+2 A+3-\frac{7 r}{8}} \\
& \leq 10 r H^{\frac{2}{8}}+100 r B \log \log K_{2},
\end{aligned}
$$

when H satisfies the inequality of the theorem.
§ 5. THIRD MAIN THEOREM. Let $\left\{a_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be as in the introduction and $\left|a_{n}\right| \leq(n H)^{A}$ where $A \geq 1$ is an integer constant. Then $F(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{-s}$ is analytic in $\sigma \geq A+2$. Suppose $F(s)$ is analytically continuable in $\sigma \geq 0$. Assume that (for some $K \geq 30$) there exist T_{1} and T_{2} with $0 \leq T_{1} \leq H^{\frac{7}{8}}, H-H^{\frac{7}{8}} \leq T_{2} \leq H$ such that $\left|F\left(\sigma+i T_{1}\right)\right|+\left|F\left(\sigma+i T_{2}\right)\right| \leq K$ uniformly in $0 \leq \sigma \leq A+2$. Let

$$
H \geq(4 C)^{9000 A^{2}}+520000 A^{2} \log \log K_{3} .
$$

Then
$\int_{0}^{H}|F(i t)|^{2} d t \geq \sum_{n \leq \alpha H}\left(H-(3 C)^{1000 A} H^{\frac{7}{8}}-130000 A^{2} \log \log K_{3}-100 C^{2} n\right)\left|a_{n}\right|^{2}$,
where $\alpha=\left(200 C^{2}\right)^{-1} 2^{-8 A-20}$ and

$$
K_{3}=\left(\sum_{n \leq H}\left|a_{n}\right| \lambda_{n}^{B}\right) K+\left(\sum_{n \leq H}\left|a_{n}\right| \lambda_{n}^{B}\right)^{2} .
$$

To prove this theorem we need the following two lemmas.
LEMMA 5.1. In the interval $\left[\alpha H,\left(1600 C^{2}\right)^{-1} H\right]$ there exists an X such that

$$
\sum_{x \leq n \leq x+H^{\frac{1}{4}}}\left|a_{n}\right|^{2} \leq H^{-\frac{1}{4}} \sum_{n \leq X}\left|a_{n}\right|^{2}
$$

provided $H \geq 2^{1000 A^{2}} C^{50 A}$.
PROOF. Assume that such an X does not exist. Then for all X in $\left[\alpha H,\left(1600 C^{2}\right)^{-1} H\right]$,

$$
\begin{equation*}
\sum_{x \leq n \leq X+H^{\frac{1}{2}}}\left|a_{n}\right|^{2}>H^{-\frac{1}{4}} \sum_{n \leq X}\left|a_{n}\right|^{2} \tag{5.1}
\end{equation*}
$$

Let $L=\alpha H, I_{j}=\left[2^{j-1} L, 2^{j} L\right]$ for $j=1,2, \cdots, 8 A+17$. Also let $I_{0}=[1, L]$. Put $S_{j}=\sum_{n \in I_{j}}\left|a_{n}\right|^{2}(j=0,1,2, \cdots, 8 A+17)$. For $j \geq 1$ divide the interval I_{j} into maximum number of disjoint sub-intervals each of length $H^{\frac{1}{4}}$ (discarding the bit at one end). Since the lemma is assumed to be false the sum over each sub-interval is $\geq H^{-\frac{1}{4}} S_{j-1}$. The number of sub-intervals is $\geq\left[2^{j-1} L H^{-\frac{1}{4}}\right]-1 \geq 2^{j-2} L H^{-\frac{1}{4}}$ (provided $2^{j-1} L H^{-\frac{1}{4}}-2 \geq 2^{j-2} L H^{-\frac{1}{4}}$, i.e. $2^{j-2} L H^{-\frac{1}{4}} \geq 2$ i.e. $\alpha H^{\frac{3}{3}} \geq 4$ i.e. $\left.H \geq\left(4 \alpha^{-1}\right)^{\frac{4}{3}}\right)$. It follows that $S_{j} \geq 2^{j-2} L H^{-\frac{1}{2}} S_{j-1}$. By induction $S_{j} \geq\left(\frac{1}{2} L H^{-\frac{1}{2}}\right)^{j} S_{0}$. Since $S_{0} \geq 1$ we have in particular

$$
S_{8 A+17} \geq\left(\frac{1}{2} \alpha H^{\frac{1}{2}}\right)^{8 A+17} \geq\left(\frac{1}{2} \alpha\right)^{8 A+17} H^{4 A+\frac{1}{2} \cdot 17}
$$

On the other hand

$$
S_{8 A+17}=\sum_{\alpha_{1} H \leq n \leq \alpha_{2} H}\left|a_{n}\right|^{2} \leq \sum_{n \leq \alpha_{2} H}(n H)^{2 A},
$$

where $\alpha_{1}=16^{-1}\left(200 C^{2}\right)^{-1}$ and $\alpha_{2}=8^{-1}\left(200 C^{2}\right)^{-1}$. Thus $\dot{S}_{8 A+17} \leq H^{4 A+1}$. Combining the upper and lower bounds we are led to

$$
\begin{equation*}
H^{\frac{1}{2} \cdot 15} \leq\left(2 \alpha^{-1}\right)^{8 A+17} \tag{5.2}
\end{equation*}
$$

provided $H \geq\left(4 \alpha^{-1}\right)^{\frac{4}{3}}$ (the latter condition is satisfied by the inequality for H prescribed by the Lemma). But (5.2) contradicts the inequality prescribed for H by the lemma. This contradiction proves the Lemma.

From now on we assume that X is as given by Lemma 5.1.
LEMMA 5.2. Let $\bar{A}(s)=\sum_{n \leq X} a_{n} \lambda_{n}^{-s}, E(s)=\sum_{X \leq n \leq X+H^{\frac{1}{t}}} a_{n} \lambda_{n}^{-s}$ and $B(s)=$ $F(s)-\bar{A}(s)-E(s)$. Clearly in $\sigma \geq A+2$ we have $B(s)=\sum a_{n} \lambda_{n}^{-s}$. Let $n \geq x+H$
$H \geq 2^{1000 A^{2}} C^{50 A}, U=H^{\frac{7}{8}}+100 B \operatorname{loglog} K_{3}, K_{3} \geq 30$ and $H \geq(2 r+5) U$. Then we have the following five inequalities.
(a) $\int_{0}^{H}|\bar{A}(i t)|^{2} d t \leq 100 C^{2} H \sum_{n \leq X}\left|a_{n}\right|^{2}$,
(b) $\int_{2 U+r U}^{H-(r+3) U}|\bar{A}(i t)|^{2} d t \geq \sum_{n \leq X}\left(H-(2 r+5) U-100 C^{2} n\right)\left|a_{n}\right|^{2}$,
(c) $\int_{0}^{H}|E(i t)|^{2} d t \leq 100 C^{2} H^{\frac{3}{4}} \sum_{n \leq X}\left|a_{n}\right|^{2}$,
(d) $\int_{0}^{H}|B(i t)|^{2} d t \leq 1000 C^{2} H \sum_{n \leq X}\left|a_{n}\right|^{2}$,
and firally
(e) $\int_{0}^{H}|A(-i t) B(i t)| d t \leq 400 C^{2} H \sum_{n \leq X}\left|a_{n}\right|^{2}$,
where (d) and (e) are true provided

$$
\int_{0}^{H}|F(i t)|^{2} d t \leq H \sum_{n \leq X}\left|a_{n}\right|^{2}
$$

PROOF. The inequalities (a) and (b) follow from the Montgomery-Vaughan theorem. From the same theorem

$$
\begin{aligned}
\int_{0}^{H}|E(i t)|^{2} d t & \leq \sum_{\substack{X \leq n \leq X+H^{\frac{1}{4}}}}\left(H+100 C^{2} n\right)\left|a_{n}\right|^{2} \\
& \leq 100 C^{2} H \sum_{x \leq n \leq X+H^{\frac{1}{4}}}\left|a_{n}\right|^{2}
\end{aligned}
$$

and hence (c) follows from Lemma 5.1. Since

$$
|B(i t)|^{2} \leq 9\left(|F(i t)|^{2}+|\bar{A}(i t)|^{2}+|E(i t)|^{2}\right)
$$

the inequality (d) follows from (a) and (c). Lastly (e) follows from (a) and (d). Thus the lemma is completely proved.

We are now in a position to prove the theorem. We write (with $\lambda=$ $u_{1}+u_{2}+\cdots+u_{r}$ as usual)

$$
\int_{0}^{H}|F(i t)|^{2} d t \geq U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{2 U+\lambda}^{H-(r+3) U+\lambda}|F(i t)|^{2} d t
$$

(where $(r+5) U \leq H$ and $0 \leq u_{i} \leq U$. In fact we assume $(2 r+5) U \leq H$).

Now
$|F(i t)|^{2} \geq|\bar{A}(i t)|^{2}+2 \operatorname{Re}(A(-i t) B(i t))+2 \operatorname{Re}(A(-i t) E(i t))+2 \operatorname{Re}(\bar{B}(-i t) E(i t))$,
where $\bar{B}(s)$ is the analytic continuation of $\sum a_{n} \lambda_{n}^{-s}$. Accordingly $n \geq X+H^{\frac{1}{2}}$

$$
\begin{equation*}
\int_{0}^{H}|F(i t)|^{2} d t \geq J_{1}+J_{2}+J_{3}+J_{4} \tag{5.3}
\end{equation*}
$$

where

$$
\begin{gathered}
J_{1}=\int_{0}^{H}|\bar{A}(i t)|^{2} d t, J_{2}=2 R e \int_{0}^{H}(A(-i t) B(i t)) d t \\
J_{3}=2 R e \int_{0}^{H}(A(-i t) E(i t)) d t \text { and } J_{4}=2 R e \int_{0}^{H}(\bar{B}(-i t) E(i t)) d t .
\end{gathered}
$$

By Lemma 5.2(b), we have,

$$
J_{1} \geq \sum_{n \leq X}\left(H-(2 r+5) U-100 C^{2} n\right)\left|a_{n}\right|^{2}
$$

Also by Lemma 5.2 ((a) and (c)), we have,

$$
\left|J_{3}\right| \leq 2 \int_{0}^{H}|A(-i t) E(i t)| d t \leq 200 C^{2} H^{\frac{7}{8}} \sum_{n \leq X}\left|a_{n}\right|^{2}
$$

Similarly by Lemma 5.2 ((c) and (d)),

$$
\left|J_{4}\right| \leq 800 C^{2} H^{\frac{7}{8}} \sum_{n \leq X}\left|a_{n}\right|^{2}
$$

For J_{2} we use the main lemma. We choose $U=H^{\frac{7}{8}}+100 B \log \log K_{3}$. We have $g(s)=A(-s) B(s)$. We have

$$
|g(s)| \leq\left(\sum_{n \leq H}\left|a_{n}\right| \lambda_{n}^{B}\right) K+\left(\sum_{n \leq H}\left|a_{n}\right| \lambda_{n}^{B}\right)^{2}=K_{3}
$$

By Lemma 5.2 ((e)) we have

$$
\int_{0}^{H}|g(i t)| d t \leq 400 C^{2} H \sum_{n \leq X}\left|a_{n}\right|^{2}
$$

Again

$$
\begin{aligned}
S_{2} & \leq \sum_{m \leq X, n \geq X+H^{\frac{1}{4}}}\left|a_{m}\right|\left|a_{n}\right|\left(\frac{\lambda_{m}}{\lambda_{m}}\right)^{A+2} \\
& \leq \sum_{m H)^{A}(n H)^{A}\left(C^{2} m n^{-1}\right)^{A+2}}\left(m H \leq n^{m}\right. \\
& \leq C^{2 A+4} H^{4 A+3} .
\end{aligned}
$$

Put $x=\frac{\lambda_{N}}{\lambda_{M}}-1$ where $N=\left[X+H^{\frac{1}{4}}\right], M=[X]$. Then $0<x<\frac{2 C(N-M)}{C^{-1} M}<$ $\frac{3 C^{2} H^{\frac{1}{4}}}{\alpha H}<\frac{1}{2}$ under the conditions on H imposed in the theorem. Hence $U \log \left(\frac{\lambda_{N}}{\lambda_{M}}\right) \geq \frac{U}{2}\left(\frac{\lambda_{N}-\lambda_{M}}{\lambda_{M}}\right) \geq \frac{U}{2}\left(\frac{N-M-3}{C^{2} M}\right) \geq \frac{1}{2} H^{\frac{7}{8}}\left(\frac{H^{\frac{1}{4}}-3}{C^{2} H}\right) \geq \frac{H^{\frac{1}{8}}}{3 C^{2}}$, (under the conditions on H imposed in the theorem). Thus

$$
S_{1} \leq 2^{r} S_{2} H^{-\frac{r}{8}}\left(3 C^{2}\right)^{r} .
$$

We choose $r=100 A+100$ and check that $U \geq 2^{70}(16 B)^{2}$, and that $H \geq$ $(2 r+5) U$. Thus by applying the main Lemma we obtain

$$
\begin{aligned}
\left|\frac{1}{2} J_{2}\right| \leq & \left\{\frac{2 B^{2}}{U^{10}}+\frac{54 B}{U}\left(400 C^{2} H\right)+\frac{\left(H+64 B^{2}\right) 2^{r} C^{2 A+4} H^{4 A+3}}{\left(\left(3 C^{2}\right)^{-1} H^{\frac{1}{8}}\right)^{r}}\right. \\
& \left.+16 B^{2} E x p\left(-\frac{U}{8 B}\right) C^{2 A+4} H^{4 A+3}\right\} \sum_{n \leq X}\left|a_{n}\right|^{2} .
\end{aligned}
$$

Hence

$$
\int_{0}^{H}|F(i t)|^{2} \geq \sum_{n \leq \alpha H}\left(H-D-100 C^{2} n\right)\left|a_{n}\right|^{2}
$$

where

$$
\begin{aligned}
& D=(2 r+5) U+1000 C^{2} H^{\frac{1}{8}}+\frac{4 B^{2}}{V^{10}}+\frac{43200 C^{2} B H}{U} \\
& +\left(H+64 B^{2}\right) 2^{r+1} C^{2 A+4}\left(3 C^{2}\right)^{r} H^{4 A+3-\frac{7}{8}} \\
& +32 B^{2} \operatorname{Exp}\left(-\frac{U}{8 B}\right) C^{2 A+4} H^{4 A+3} \\
& <130000 A^{2} \log \log K_{3}+405 A H^{\frac{7}{8}}+1000 C^{2} H^{\frac{7}{8}}+36 A^{2} H^{\frac{7}{8}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof of some conjectures } \\
& \\
& \quad+43200 C^{2}(3 A) H^{\frac{7}{8}} \\
& +600 A^{2} H\left(2^{100 A+101}\right) C^{2 A+4} 3^{100 A+100} C^{200 A+200} H^{4 A+3-12 A-12} \\
& +300 A^{2} C^{2 A+4}(720)(56)(24 A)^{8} H^{\frac{7}{8}} \\
& \\
& \leq 130000 A^{2} \log \log K_{3}+H^{\frac{7}{8}}\left\{405 A+1000 C^{2}+36 A^{2}+129600 A C^{2}\right. \\
& \left.+600 A^{2} C^{406 A} 3^{401 A}+3^{58} A^{10} C^{6 A}\right\} \\
& \\
& \leq 130000 A^{2} \log \log K_{3}+(3 C)^{1000 A}
\end{aligned}
$$

This proves the theorem completely.
The next two theorems due to K. Ramachandra belong to a different class in the sense that restrictions of bounds like those involving K do not appear. His paper follows ours.

REFERENCES

$[B]_{1}$ R. BALASUBRAMANIAN, On the frequency of Titchmarsh's phenomenon for $\zeta(s)$-IV, Hardy-Ramanujan J., 9 (1986), 1-10.
[M] J.H. MUELLER, On the Riemann zeta-function $\zeta(s)$-gaps between sign changes of $S(t)$, Mathematika, 29 (1983), 264-269.
$[\mathrm{R}]_{1}$ K. RAMACHANDRA, Progress towards a conjecture on the meanvalue of Titchmarsh series, Recent progress in Analytic Number Theory, ed. H. HALBERSTAM and C. HOOLEY, F.R.S., Academic Press, London, New York, Toronto, Sydney, San Franscisco (1981), 303-318.
$\left[\mathrm{R}_{2}\right.$ K. RAMACHANDRA, Proof of a conjecture on the mean-value of Titchmarsh series with applications to Titchmarsh's phenomenon, HardyRamanujan J., 13 (1990), 21-27.

ADDRESS OF THE AUTHORS

PROFESSOR R. BALASUBRAMANIAN
MATSCIENCE
THARAMANI P.O.
MADRAS 600113
INDIA
PROFESSOR K. RAMACHANDRA
SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
HOMI BHABHA ROAD
BOMBAY 400005
INDIA
MANUSCRIPT COMPLETED ON 1 OCTOBER 1990.

