Hardy-Ramanujan Journal Vol. 13 (1990), 28-33

ON THE FREQUENCY OF TITCHMARSH'S PHENOMENON FOR $\zeta(s)$ -IX BY

K. RAMACHANDRA

§ 1. INTRODUCTION. In a previous paper [R], I proved the following result on $\zeta(1+it)$.

THEOREM 1. Let $0 \le \theta < 2\pi, z = e^{i\theta}$ and

$$f(H) = \min_{T \ge 1} \max_{T \le t \le T+H} |(\zeta(1+it))^{x}|$$
(1)

Then

$$f(H) \ge e^{\gamma} \lambda(\theta) (\log \log H - \log \log \log H) + O(1)$$
(2)

where $H \geq Exp(e^{e})$,

$$\lambda(\theta) = \prod_{p} \lambda_{p}(\theta),$$

$$\lambda_{p}(\theta) = \left\{ \left(1 - \frac{1}{p}\right) \left(\sqrt{1 - \frac{\sin^{2}\theta}{p^{2}}} - \frac{\cos\theta}{p}\right)^{-\cos\theta} Exp\left(\sin\theta \sin^{-1}\left(\frac{\sin\theta}{p}\right)\right) \right\}.$$
(3)

In the present paper I prove that

$$f(H) \leq e^{\gamma} \lambda(\theta) (\log \log H + \log \log \log H) + O(1).$$
(4)

This result together with Theorem 1 gives the following Theorem.

THEOREM 2. We have

$$| f(H)e^{-\gamma}(\lambda(\theta))^{-1} - \log\log H | \leq \log\log\log H + O(1),$$
 (5)

where $H \geq Exp(e^e)$.

REMARK. It is interesting to prove (or disprove!) $f(H)e^{-\gamma}(\lambda(\theta))^{-1} =$

loglog H + O(1).

§ 2. PROOF OF (4). We begin by

LEMMA 1. Let $T = Exp((\log H)^2)$ where H exceeds an absolute constant. Then there exists a sub-interval I of [T, 2T] of length $H + 2(\log H)^{10}$, such that the rectangle ($\sigma \geq \frac{3}{4}, t \in I$) does not contain any zero of $\zeta(s)$ and moreover

$$max \mid log \ \zeta(\sigma + it) \mid = O((log \ H)^{\frac{1}{4}}(log log \ H)^{-\frac{4}{4}}) \tag{6}$$

the maximum being taken over the rectangle referred to.

PROOF. Follows from [BR] and the result (due to A.E. Ingham [I], see also [T] page 236 and p. 293-295 [AI]) that the number of zeros of $\zeta(s)$ in $(\sigma \geq \frac{3}{4}, T \leq t \leq 2T)$ is $O(T^{\frac{3}{4}})$.

LEMMA 2. Let J be the interval obtained by removing from I intervals of length $(\log H)^{10}$ from both ends. Then for $t \in J$, we have,

$$\log \zeta(1+it) = \sum \sum_{m \ge 1, p} (mp^{ms})^{-1} Exp\left(-\frac{p^m}{X}\right) + O((\log \log H)^{-1}) \quad (7)$$

where $X = \log H \log \log H$ and s = 1 + it.

PROOF. The lemma follows from the fact that the double sum on the right is

$$\frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \log \zeta(s+w) X^w \Gamma(w) dw \tag{8}$$

where w = u + iv is a complex variable. Here we break off the portion $|v| \ge (\log H)^9$ with an error $O((\log \log H)^{-1})$ and move the line of integration to $u = -\frac{1}{4}$. Using Lemma 1 it is easily seen that the horizontal portions and the main integral contribute together $O((\log \log H)^{-1})$.

LEMMA 3. Denote the double sum in (7) by S. Then

$$S = \log \prod_{p \leq X} (1 - p^{-s})^{-1} + O((\log \log H)^{-1}).$$
(9)

PROOF. We use the fact that $Exp(-p^mX^{-1}) = 1 + O(p^mX^{-1})$ if $p^m \le X$ and $= O(Xp^{-m})$ if $p^m \ge X$. Using this it is easy to see that

$$S = \sum_{\substack{p^m \leq X \\ p^m \leq X}} (mp^{m_{\theta}})^{-1} + O\left(\sum_{\substack{p^m \leq X \\ p^m \leq X}} X^{-1}\right) + O\left(\sum_{\substack{p^m \geq X \\ p^m \geq X}} X(mp^{2m})^{-1}\right)$$

=
$$\sum_{\substack{p^m \leq X \\ p^m \leq X}} (mp^{m_{\theta}})^{-1} + O((\log \log H)^{-1}).$$

Denoting the last double sum by S_0 , we have,

$$S_0 - \sum_{p \leq X} \log(1 - p^{-s})^{-1} = O\left(\sum_{p^m \geq X, m \geq 2} (mp^m)^{-1}\right) = O((\log \log H)^{-1}).$$

LEMMA 4. We have, for $t \in J$,

$$\log \zeta(1+it) = \sum_{p \leq X} \log(1-p^{-s})^{-1} + O((\log\log H)^{-1}), \qquad (10)$$

where s = 1 + it.

PROOF. Follows from Lemmas 1,2 and 3.

LEMMA 5. Let
$$0 \le r < 1, 0 \le \phi < 2\pi$$
. Then, we have,
 $\log |(1-re^{i\phi})^{-z}| \le -\cos\theta \log \left(\sqrt{1-r^2 \sin^2\theta} - r \cos\theta\right) + \sin\theta \sin^{-1}(r \sin\theta).$
(11)

REMARK. Put

$$\lambda_p(\theta) = (1-p^{-1}) \left(\sqrt{1-p^{-2}Sin^2\theta} - p^{-1}Cos \theta \right)^{-Cos \theta} Exp\left(Sin \theta Sin^{-1} \left(\frac{Sin \theta}{p}\right)\right).$$
(12)

In the lemma replace $re^{i\phi}$ by p^{-s} . Lemmas 4 and 5 complete the proof of (4) and hence that of Theorem 2 since $\sum_{p \ge X} \log \lambda_p(\theta) = O(X^{-1})$ and $\prod_{p \le X} (1 - p^{-1})^{-1} = e^{\gamma} \log X + O(1)$. (See [P] page 81).

PROOF OF LEMMA 5. Denote the LHS of (11) by $g(\phi)$. Then

$$g(\phi) = \sum_{n=1}^{\infty} n^{-1} r^n Cos(n\phi + \theta)$$

$$g'(\phi) = -\sum_{n=1}^{\infty} r^n Sin(n\phi + \theta)$$

$$= Im \left\{ \frac{-re^{i(\phi+\theta)}(1-re^{-i\phi})}{(1-re^{i\phi})(1-re^{-i\phi})} \right\}.$$

Hence $g'(\phi) = 0$ if $Sin(\phi + \theta) = r Sin \theta$, i.e. if

$$\phi = -\theta + \sin^{-1}(r \sin \theta). \tag{13}$$

At this point $g(\phi)$ attains the maximum as we shall show in the end. Now

$$g(\phi) = Re\left\{-e^{i\theta}\left(\log\sqrt{1-2r\,\cos\phi+r^2}-i\,\sin^{-1}\,\frac{r\,\sin\phi}{\sqrt{1-2r\,\cos\phi+r^2}}\right)\right\}$$
$$= -\cos\,\theta\,\log\sqrt{1-2r\,\cos\phi+r^2}-\sin\,\theta\sin^{-1}\left(\frac{r\,\sin\phi}{\sqrt{1-2r\,\cos\phi+r^2}}\right)$$
(14)

From (13) we have

$$\begin{aligned} \sin \phi &= r \sin \theta \cos \theta - \sqrt{1 - r^2 \sin^2 \theta} \sin \theta \\ &= -Sin \theta \left(\sqrt{1 - r^2 Sin^2 \theta} - r \cos \theta \right), \\ Cos \phi &= \sqrt{1 - r^2 Sin^2 \theta} \cos \theta + r Sin^2 \theta, \\ 1 - 2r \cos \phi + r^2 &= 1 - 2r \cos \theta \sqrt{1 - r^2 Sin^2 \theta} - 2r^2 Sin^2 \theta + r^2 \\ &= \left(\sqrt{1 - r^2 Sin^2 \theta} - r \cos \theta \right)^2, \end{aligned}$$

since $-r^2 Sin^2\theta + r^2 Cos^2\theta = -2r^2 Sin^2\theta + r^2$. Hence

$$g(\phi) \le h(\theta) \tag{15}$$

where $h(\theta)$ is the RHS of (11), provided $g(\phi)$ attains its maximum for the value ϕ given by (13). We now show that

(a) If $Cos \theta \ge 0$ then $g(\pi) < h(\theta)$

and

(b) If
$$Cos \theta < 0$$
 then $g(0) < h(\theta)$.

Note that $\sin \theta \sin^{-1}(r \sin \theta) \ge 0$. Hence it suffices to prove (in case (a))

$$g(\pi) = \operatorname{Re} \log \left\{ (1 - re^{i\phi})^{-z} \right\}_{\phi=\pi}$$

= $-\operatorname{Cos} \theta \log(1 + r) < -\operatorname{Cos} \theta \log(\sqrt{1 - r^2 \operatorname{Sin}^2 \theta} - r \operatorname{Cos} \theta)$

i.e.
$$log(1+r) > log(\sqrt{1-r^2Sin^2\theta} - r \cos \theta)$$

i.e. $(1+r+r \cos \theta)^2 > 1-r^2Sin^2\theta$
i.e. $(1+r)^2 + 2r(1+r)Cos \theta > 1-r^2$
i.e. $1+r+2r \cos \theta > 1-r$ (true since $Cos \theta \ge 0$)
In case (b) it suffices to prove

$$g(0) = Re \log\{(1 - re^{i\phi})^{-z}\}_{\phi=0}$$

$$= -Cos \theta \log(1 - r) < -Cos \theta \log(\sqrt{1 - r^2 Sin^2\theta} - r Cos \theta)$$
i.e. $\log(1 - r) < \log(\sqrt{1 - r^2 Sin^2\theta} - r Cos \theta)$
i.e. $1 - r < \sqrt{1 - r^2 Sin^2\theta} - r Cos \theta$
i.e. $(1 - r + r \cos \theta)^2 < 1 - r^2 Sin^2\theta$
i.e. $(1 - r)^2 + 2r(1 - r)Cos \theta < 1 - r^2$

i.e. $1 - r + 2r \cos \theta < 1 + r$ (which is true).

Thus Lemma 5 is completely proved and hence (4) and Theorem 2 are completely proved.

REMARK 1. In the notation of [BR] our method gives $\gg TK^{-E}$ disjoint sub-intervals I (of length K) of [T,2T] for which $\max_{t\in I} | (\zeta(1+it))^z |$ lies between $e^{\gamma}\lambda(\theta)(\log\log K - \log\log\log K) + O(1)$ and $e^{\gamma}\lambda(\theta)(\log\log K + \log\log\log K) + O(1)$.

REMARK 2. By our method we can show that if $\zeta(s) \neq 0$ in the open half plane $\sigma > \frac{1}{2}$ then for $t \ge 100$ we have

$$|(\zeta(1+it))^{z}| \leq 2e^{\gamma}\lambda(\theta) \log\log t + O(1).$$

REFERENCES

- [BR] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the frequency of Titchmarsh's phenomenon for ζ(s)-V, Arkiv för Math., Vol. 26 No.1 (1988), 13-20.
 - [I] A.E. INGHAM, On the estimation of $N(\sigma, T)$, Quart J. Oxford, 11 (1940), 291-292.
- [AI] A. IVIĆ, The Riemann zeta-function, John Wiley and Sons, New York (1985).
 - [P] K. PRACHAR, Primzahlverteilung, Springer-Verlag (1957).
 - [R] K. RAMACHANDRA, Proof of some conjectures on the mean-value of Titchmarsh series with applications to Titchmarsh's phenomenon, Hardy-Ramanujan J., vol. 13 (1990),21-27.
 - [T] E.C. TITCHMARSH, The theory of the Riemann zeta-function, Second edition, Revised by D.R. Heath-Brown, Oxford University Press, (1986).

ADDRESS OF THE AUTHOR

PROFESSOR K. RAMACHANDRA SCHOOL OF MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD BOMBAY 400 005 INDIA

MANUSCRIPT COMPLETED ON 19 NOVEMBER 1990.