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ON THE FREQUENCY OF TITCHMARSH’S PHENOMENON
FOR ((s)-IX
BY
K. RAMACHANDRA

§ 1. INTRODUCTION. In a previous paper [R], I proved the following
result on {(1 + ét).
THEOREM 1. Let 0 < 8 < 27,2 = ¢ and

SUH)=min | max | (C(1+it)) | (1)

Then -
J(H) > e"X(6)(loglog H — logloglog H) + O(1) (2)
where H > Ezp(e°), '
A(6) = [1(9),
2

A(8) = { (1 - 1) (\'/1 - %’;fﬁ - C‘;’ ”) o Ezp (sm 8 Sin~1 (5—’33)) } :

/4
(3)
In the present paper I prove that
J(H) < e"X(8)(loglog H + logloglog H) + O(1). (4)
This result together with Theorem 1 gives the following Theorem.
THEOREM 2. We have
| F(H)e™(A(8))~! ~ loglog H |< logloglog H + O(1), (5)

where H > Ezp(e®).

REMARK. It is interesting to prove (or disprove!) f(H)e=7(A\(8)) ! =



Titchmarsh’s phenomenon-IX 29

loglog H + O(1).
§ 2. PROOF OF (4). We begin by

LEMMA 1. LetT = Ezp((log H)?) where H ezceeds an absolute constant.
Then there ezists a sub-interval I of [T, 2T] of length H + 2(log H)'°, such
that the rectangle (0 > 3,t € I) does not contain any zero of ((s) and
moreover

maz | log ¢(o + it) |= O((log H)i(loglog H)‘%) (6)

the mazimum being taken over the rectangle referred to.

PROOF. Follows from [BR] and the result (due to A.E. Ingham [I], see
also [T] page 236 and p. 293-295 [AI]) that the number of zeros of {(s) in
(0 >3,T<t<2T)is O(T).

LEMMA 2. Let J be the interval obtained by removing from I intervals of
length (log H)'® from both ends. Then for t € J, we have,

log ((1+it)=)_ ) (mp™)'Ezp (—%}i) + O((loglog H)‘lv) (7

m21p
where X = log H loglog H and s =1 + it.

PROOF. The lemma follows from the fact that the double sum on the right
is
1 2400
—e log ¢(s + w)X¥I(w)dw (8)
27t J2-ico
where w = u+ 1v is a complex variable. Here we break off the portion | v [>
(log H)® with an error O((loglog H)~!) and move the line of integration to
u = —%. Using Lemma 1 it is easily seen that the horizontal portions and

the main integral contribute together O((loglog H)™!).
LEMMA 3. Denote the double sum in (7) by S. Then

S = log H (1-p7")"1 4+ O((loglog H)™). (9)
p<X .
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PROOF. We use the fact that Ezp(~p™"X-1) =14+ 0(p™X ) ifpm < X
and = O(Xp~™) if p™ > X. Using this it is easy to see that

s =3 Y (mpyteo (Z > X“l) +0 (Z 2, X(mp"">“)
pm<X p™<X 22X
= 3 Y (mp™)! + O((loglog H)™).
pm<X

Denoting the last double sum by Sp, we have,

So— Y log(1—p*)y'=0 (Z > (mzf")") = O((loglog H)™).

r<X pm2Xm>2
LEMMA 4. We have, fort € J,

log ¢(1 +it) = E log(1 — p~*)™ + O((loglog H)™), (10)
<X

where s = 1 + it.
PROOF. Follows from Lemmas 1,2 and 3.
LEMMA 5. Let 0 < r < 1,0 < ¢ < 2x. Then, we have,

log | (1-re**)~* |< ~Cos 8 log (\/1 —12 Sin?0 —r Cos 0)+Sin 6 Sin~!(r Sin ).

(11)
REMARK. Put
o 8 Sin 8
A(8) = (1-p7Y) (\/1 — p~28in?0 — p~1Cos o) Ezp (sm 9 Sin-1 (T)) .
(12)

In the lemma replace re*® by p~*. Lemmas 4 and 5 complete the proof

of (4) and hence that of Theorem 2 since Y log A,(f) = O(X~!) and
22X

[1 (-2 =€ log X + O(1). (See [P] page 81).

p<X

PROOF OF LEMMA 5. Denote the LHS of (11) by g(¢). Then
9(¢) = Y_n'r"Cos(ng +98)
n=1
7(¢) ~Y 1™ Sin(ne + 6)

n=1 )
= m{FEEE
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Hence ¢'(¢) = 0 if Sin(¢+6) =r Sin 6, ie. if

¢ = —0+ Sin~Y(r Sin 0). (13)

At this point g(¢) attains the maximum as we shall show in the end. Now

g(¢)=Re{_ew (l"g‘ﬁ“” Cos ¢+ 72 — i Sin™? r Sin ¢ )}

V1—=2rCos ¢ +r?

V1—-2rCos ¢+ r?
(14)

From (13) we have
Sin ¢ = r Sin 0 Cos § —/1—r% 5in%8 Sin 6
= —Sinﬂ( 1-r25in%d —r Cos 0),
V1= 125in%d Cos 0 + r Sin?9,
1 - 2r Cos 0v/1 — r2Sin20 — 2r2Sin?0 + r?
(\/1—_;7?%%7 —rCos 0)2 "

Cos ¢
1—-2r Cos ¢ + r?

il

i

I

since —r2Sin%0 + r2Cos%0 = —2r?Sin?0 + r2. Hence

9(8) < h(6) . (15)

where h(f) is the RHS of (11), provided g(¢) attains its maximum for the
value ¢ given by (13). We now show that

(a) If Cos @ > 0 then g(x) < h(6)
and
(b) If Cos 6 < 0 then g(0) < h(8).
Note that Sin 8 Sin~1(r Sin ) > 0. Hence it suffices to prove (in case (a))
g(r) = Relog{(1- re"“’)“}d’:w
= —~Cos 8 log(1+r) < —Cos 8 log(vV1—r25in%6 — r Cos 8)
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ie. log(1+1) > log(V1—125in?d — r Cos 8)

ie. (L4741 Cos 6)?>1-r25in?

ie. (1472 +2r(1+7)Cosd>1—12

ie. 1+ 7+ 2r Cos 6§ > 1~ r (true since Cos 8 > 0)

In case (b) it suffices to prove

i

9(0) Re log{(1 ~ re**)"*}4—0

= ~Cos 8 log(l-r1)< —Cos 0 log(v1 - r25in%d — r Cos 6)

ie. log(1 —r) < log(v/1 = r25inZ — r Cos 6)
ie. 1~r<V1-rI5in?0—r Cos @

ie. (1—r7+7cosf) <1-r28in%0

ie. (1-7)2+2r(1-r)Cos 0 <1—r%

ie.1-r+2rCos8 <1+ r (whichis true).
Thus Lemma 5 is completely proved and hence (4) and Theorem 2 are
completely proved.

REMARK 1. In the notation of [BR] our method gives » TK~F disjoint
sub-intervals I (of length K) of [T,2T] for which max ] (€1 + it))‘ | Lies
between e"A(0)(loglog K — logloglog K) + O(1) and e7A(8)(loglog K +
logloglog K) + O(1).

REMARK 2. By our method we can show that if {(s) # 0 in the open
half plane o > § then for ¢ > 100 we have :

[ (¢(1 + it))* |< 2e"A(8)loglog ¢ + O(1).
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