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§ 1. INTRODUCTION. One of the crowning achievements in the Theory 

of TITCHMARSH SERIES (introduced by the second of us [R]1 ) is the 

following theorem discovered by R. Balasubramanian and K. Ramachandra 

[BR]. 

THEOREM 1. Let {a,.}( n == 1, 2, 3, · · ·) be a sequence of complex numbers 

and {A,.}(n = 1,2,3,···) a sequence ofrealnumbers with a1 = A1 = 1 and 

f::::::; An+I- >.,.::::; C(n = 1,2,3,···) where Cis a positive constant. Let 

H 10 be a real parameter and I a,.. IS (nH)A where A is a positive integer 
00 

constant. Suppose that F(s) :-:-:: L:an).;;•,(s = u +it), can be continued 
n=l 

from u A+ 2 analytically in {u 2: 0, 0::::; t 5 II}. Assume that (for some 

K 2: 30} there exist Tt,T2 with 0 ::::; TI ::::; sf) H - sf 5 T2 5 H, S'U.Ch 

that I F(u + iT1) I + I F(u + iT2) IS K uniformly in u 0. Then for all 
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H 2: (4C) 9000A
1 + 520000A2loglog K there holds 

(a) J: I F(it) 1
2 

dt 

L (H- (3C)1000
Ani -130000A2loglog K -100C2n) 1 12, 

n5_aH 

where a= (200C2
)-

1 2-BA-20
• Also, there holds, 

(b) {HI F(it) I dt 1- - C2loglog K 
H Jo . HI H 

where C1 and C2 are effectively computable positive constants depending only 

on A a.nd C. 

REMARK 1. In (a) the case a1 = 1 and a..= 0 for n > 1 shows that it is 

not possible to replace the RHS by (1 + £) times its present form. Also the 

. , .. example. F(it) = ((u +it-+iT) where u is a large negative constant and H 

is a large constant times T, shows that in the most general case we cannot 

have a> and RHS replaced by {3 H L (1- air) I an 1
2 (where {3 > 0 

is any absolute constant). 

REMARK 2. (b) is our second main theorem and (a) our third main 

theorem in [BR]. This theorem covers every possible application to the Rie-

mann zeta-function on its mean square lower bounds and also to n theorems 

(except the 0 theorem for ((u +it)(! < u < 1) of H.L. Montgomery [M]). 

However another important result on TITCHMARSH SERIES is [RJa. (This 

covers some very important applications to ((1 + it) and so on). Having 

reached our goal thus, we now turn to the question "How much can we relax 

the conditions on TITCHMARSH SERIES F( s) and still prove worthwhile 

results?" Of course our results are of interest for their own sake and we do 

not envisage any fresh applications from the results of the present paper. 

(We have proved five main theorems on TITCHMARSH SERIES in [BR] by 

R. Balasubramanian and K. Ramachandra and [RJs by K. Ramachandra). 

Our sixth main theorem is 

SIXTH MAIN THEOREM. Let 0 e < l,C 1,D l,E = 1:_c,a1 = 

At = 1, f: An+l -An C (for n = 1, 2,3, .. ) and for n ;?: 2 let I an 
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00 

Ezp{( DHt: -lOOC -l)log An}, (H 10). Let F(s) = (convergent 
n=l 

absolutely in u DHt:) admit an analytic continuation in {u 0,0 $ t $ 

H}. Assume that there exist T1,T2 with 0$ T1 $lH,iH $ T2 H, such 

that I F(u +iTt) ! + I F(u + iT2) I$ K {where K 30 holds uniformly 

in u 0. Let finally H maz{(lOOD loglog K)E,lOOD(lOODE)3E}. Then 

there holds 

200 foH I F(it) I dt H. 

Our next main theorem is as follows 

SEVENTH MAIN THEOREM. LetO $£ < l,C l,D 2560C2 ,E = 
a1 = Al = 1, fJ $ An+l- An $ C (for n = 1, 2, 3, · ·) and for n 2 let 

I an I$ Exp{(DHt:- lOOC- 1)1og An}· We assume 

00 

where F(s) = has the proporties stated in the sixth main theorem 

n=l 

and with K defined exactly as in the sixth main theorem. Then there holds 

where M 1 = [(8000C6 D)- 1 H 1-t:J. 

§ 2. PROOF OF THE SIXTH MAIN THEOREM. We begin with 

some lemmas. We put B = DI!e. 

LEMMA 2.1. For u B, we have I F(s)-
1
bo -

PROOF. We observe that 1 + ¥ and hence, for u B, I 

( )

-lOOC-1 
1 + and so 

00 

I F(s)- 1 I $ L { cWOC+I(n + C)-lOOC-1} 

n=l 

< ClOOC+l .fooo(u + C)-lOOC-ldu = tbo· 
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LEMMA 2.2. Let z = :r: + iy be a complex variable with I :r: Then for 

ally we have, I E:r:p((Sin z)2
) ei 2. Moreover if I y 1;?: 2, we have, 

I Ezp((Sin z)2
) e! (EzpE:r:p I y 1)-1 2(E:r:pE:r:p I y 1)-1

. 

PROOF. See Lemma 2.2.1 of the previous paper I of this series by us [BR]. 

LEMMA 2.3. Let Bo > 0, k and u real with 0 <I u B 0 . Then, we have, 

!oo (. 2 (ik-u-iu1)) du1 Bo I E:r:p Ssn 
4

B .k _ _ . 12 + 4 log -
1 

-
1 
. 

• - oo 0 t U IUt U , 

PROOF. See Lerruna 2.2 .2 of the paper referred to in the proof of Lenuna 

2.2. 

LEMMA 2.4. Put so = B + ito where B = D lie. Then subject to H 

to 6 we have, 

1 j (. 2 (w-&o)) dw F(so) = 
2

1ri F(w)xw-•o Exp Ssn --m- w _so, (2.1) 

the contour being the (anti-clockwise) boundary of the rectangle bounded by 

the lines Re w = O,Re w = 2B,Im w = Tt,lm w = T2 . 

PROOF. Follows by Cauchy's theorem. 

LEMMA 2.5. Let h,l2 be the integrals over the horizontal boundaries in 

(2.1} and J1 that over the left vertical boundary and J2 that over the right 

vertical boundary. Then 

3H 

JJ (lit I + I I2 l)dto 
T 

:S 2 · If · { 21,.K(X8 + x-8 )k · 2 · ( EzpExp I!IJ) -
1 

· 2B} , (2.2) 

lli 

fd I h! dto 
• 

/ 1 {'HI F( " ) I r x-B IE (s· 2 ('v-B-ito)) II dtf};dv I} ·:: z,. Jo . m J (to) xp tn 4B lv- - ito I 

(IuH I F(iv) I dv) x-B · 12, (2.3) 
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and 
3H 

r• I J21 dto 
101

) X 8 - 12 < 2HX8
, (2.4) 

}!!. . - 21r 100 -
4 

provided H ::;:: 64B i.e. H::;:: 64DH£ holds for the validity of (2.2}. We have 

employed (to) to mean integmtion over -oo <to < oo. 

PROOF. Follows by Lemmas 2.2 and 2.3 . 

LEMMA 2.6. Let X be chosen by X 8 = xDH' =! and let H::;:: (64D)E. 

Then, we have, 

3H 

q. J;[ I F(so)! dto 
2f + 10 foH I F(iv) I dv 

4 

+30DHt:K (ExpExp (2.5) 

PROOF. Follows from Lemma 2.5 on observing that 

2 c
5

6
) (8)(2)(2) 30. 

We can now complete the proof of the sixth main theorem with the help 

of (2 .5). Let H ::;:: (64D)E so that H 1- '(32D)-1 
::;:: 2 and so ::;:: 

(ExpExp Let maz(K,30DH) 

E H1
-< 1 (H 1

-• )" i.e. H ::;:: (64D loglog K)' and since Exp 641J ::;:: ;:;-r 6W for all integers 

n::;:: 1, 

(
Hl-c) 2E 1 
-- ·--- >30DH 
64D (3E)3E -

would suffice to secure what we want. This requires 

H > 
30

D 3(64D)3 
( 

2 )3E 

- 1-£ , 

which is secured by 

H::;:: 30D(48DE)3E. 

Hence under the condition H:;:. max((64D loglog K)E,30D(48 DE)3E) we 

have 

f0
8 I F( iv) I dv > {t ( - - fo 

> /[2 if H ::> 20000. 
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The last condition is clearly satisfied by the condition H 300{ 48 D E)3E 

imposed already. So we get better constants in lower bounds for H. In the 

theorem we have rounded off these constants . 

The sixth main theorem is completely proved. 

§ 3. PROOF OF THE SEVENTH MAIN THEOREM. 

The proof of this theorem is more involved. It consists of four steps. 

Step III deals with a convexity question and we prove a convexity theorem 

of independent interest. In all there are ten lemmas and the tenth is essen-

tially the theorem with sharper constants than those in the theorem. In the 

theorem we have rounded off the constants. 

STEP I. We put B = DHt: ,so = z
09

4 n +ito, where :S to :S iH. Since 

F( s) converges absolutely in u B, we have, with Y = nZoulou H, 

00 

= (f,B,so), (3.1) 
n=l 

where 

(y ) 11 (y)w-•o ( . 2 (w-s0 )) dw L\ -.-,B,so =- - Ezp Sm --- ---. 
An 2'Ki Re w=2B An BB W - So 

For brevity we sometimes write L\ for L\ ( f, B, so) . Initially we set H 

100, D 2560C2 for some reasons to follow. We begin with 

LEMMA 3.1. We have, 

(a) I L\ I$ (ff
8 

·12, 

(b) I L\ -1 I$ ( )

28 

· 12. 

REMARK. We use (a) for Y and (b) for An :S Y, although both are 

valid whether An Y or not . 

PROOF. For (a) we move the line of integration toRe w = 2B + 
109

4 n . 

For (b) we move the line of integration to Re w = - 2B + 
109

4 
H. In both the 
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cases we use Lerrrma 2.3 with B0 = 2B. The only condition that we need is 

2B > 1 + ro1-Tr which is clearly satisfied. 

LEMMA 3.2. We have, ifY2 lOG, 

PROOF. By (a) ofLenrma 3.1 we have, since JX;" Y and so I:S: 

LHS < 2 "" Ia,. I < 2 "" >. -- lOOC - 1 
L..J Aff ·- L..J n 

A,.>Y2 n A,. >Y 2 

< ( 1 + =woc -- 1 ::; cWOC+l L (C + n- 1)-lOOC - 1 

-

< C100C+ 1 (100C)- 1 ([.f] -2 +c) -lOOC, since Y2 

< lOOC ty2 ) - lOOC 
C \ -r;- 2C . 

This proves the lemma completely. 

In the LHS of (3.1) we would like to cut off the portions lm w ::; 

T1 ,Im w T2 and move the line in the rest to Re w = 0. The 

horizontal bits contribute two terms the sum of whose absolute values is 

:S: 2 · · Y 28 
· 2B · 2 ( ExpExp -l · /i, if H (128D)E. 

Also the infinite vertical bits do not together exceed in absolute value 

2 . ....!_ . 101 y2B (ExpExp H ) - 1 X 
2,- 100 I281j 

flm(w - •o)?:.!f I Exp(Sin
2 

(tvs-:t?)) I& I I. Since for H (128 D)E, 

Exp I Sin
2 (w8-.8°) 1=1 Exp (t Sin

2 (wi.8°)) 12 

Exp(Sin2 ("'81?)) 1!1 Exp(Sin
2 ("'81?)) 1! and I Exp(Sin

2 ("'8ff)) 

/ I . H / ( . . ' . H )-1 . ..-.: ' 
:::: l._ExpExp 

648
) :::, \ ExpExp 12811 . Also pu. •w<g .J m w = v , 

I 

l Exp(Sin2 (w81? )) 
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Thus the contribution from the infinite vertical bits do riot exceed 

(since in Im(w- f,l w- so f) 
2 · 21_,. · Y 28 

( EzpEzp -l 16B · (by Lemma 2.1 ). Thus we have 

LEMMA 3.3. We have, with some 8 's not necessarily the same ones, with 

I o 1 

F(so) = L + &ctooc 2Crtooc 

+8 · 2 · /.i · K · Y
28

4B · 2 · (EzpEzp 1{s8r 1 

+l. jT1:5h• I F(w)Yw-•o I Ezp{Sin2 {w8:B0
)) II I 

IU .. =o 
provided H (256D)8

. 

PROOF. Follows since K 30 from the arguments preceeding the lemma. 

LEMMA 3.4. We have, 

I 'E 125 16 {I F(so) 12 2C) -
2ooc} 

' 

{+ y - r-ohT f I F(w) 121 Ezp(Sin2 (w8a0
)) I J} 

(2,.-)2 jT1 :51m w-•o 
Rc •=D 

where 

J = j I Ezp(Sin
2 (w- 80

)) 1-
-ao<Ina .. :5oc BB tl1 - SQ 

lfe w:O 

We have used H (256D)8 and Y2 lOG. Also since 109
4 n 2B we have 

J 5 12 + 4 log(2B log H) by Lemma 2.3, with Bo = 2B. In the last but one 

integral note that I w - so 10: H . 

PROOF. Follows from Lemma 3.3. 
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STEP II. In this step we obtain a lower bound for 

and Y = Hloglog H. Put u0 = r4tr and M 1 = [ D] and assume that 

H 1 -< 2:: 2400006 D. Also we put 

and assume H 2:: Exp(e") so that /oglog II 2:: e. To start with observe that 

I 6 j::; 3 and that 

I <p(so) 1
2

2::1 A(so) 1
2 

+2Re(A(so)B(so)). 

Hence by putting..\= u1 + u2 + · · · + Ur where 0::; Uj ::; U,j = 1, 2, 3,. ·., r 

and 2rU::; we have 

3H 

f;{ I <p(so) 1
2 dto > 

T 

U U 
311 

-Ur+>. 2 
u-r fo dttr · · · fo du1 J!!.•+>- I <p(so) I dto 

4 

> h + Re(2h), 

3 H-rU 
where h = Jlr+rU i A(so) 1

2 
dto and 

• 

ln
U loU 

h = u-r dur · · · du1 
4 

A(so)B(so)dto. 
0 0 If+>-. 

By a well-known theorem of H.L . Montgomery and R.C. Vaughan we have 

h 2:: L ( - 2rU- 1000
2
m) jam 1

2 >.;:0 I 6 1
2

• 

We now assume that lf 2:: 2rU + 10002 M1, so that we can replace the 

quantity in the common bracket here by the lower bound Note that for 

n M1 

16 I> 1 ·- 6 (..\n)2B > 1 - 6 (OMl)DH' > 1 - 6 (_:_)DH• 
I , _ y - H" - H 
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8 

(if H 12) i and that ,\;;2,. > (MtC)-10i11 > e-8
• Thus with M1 = 

[H1-t:(sooocan)-1] and H;:::: 12C, we have, 

H H - 8 I 12 
It ?:: 16 + 16e LJ a.. · 

2:5;n:5;Mt 

Now we turn to h. We have 

I /2 u-r +I {111m II a.. I -r-

1 

.6.m.6.n2r+l} 

J.,. !>1'2 

(where we ha,ve written .6.m and .6.n with an obvious meaning namely the 

.6. 's associated with Am and An) 

Here the m-sum is 

3 Ezp(DHt:) 
n=1 

by Lemma 2.1. Then-sum is 

3 2: I a.. I -r-l 
AMI <J.,.$Y2 

3 L I an I (log -r-

1 

AJU1 

+3 Ezp(DHt:) L >.;;lOOC-l(log 2)-r-l 

>.,.>2J.Afl 
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< 3 (2C)2r+2Ezp(DHe:) ( H(l-•) )(r+l) 
- Tii() SOOOC 4 D 

/ 

Here we have used Lemma 2.1. 

Thus 

I 212 I < 303 . 2. Ezp(2DHe:). 3 (8C2)r+lu-r ( Hl-• )r+l TOO roo soooc•D 
< E:ep(2DHt:) (soo6f.2D) · 

We have to satisfy If ? 2rU + 100C2 M1 and by the definition of M1 (viz. 

M1 = [H1-e:(8000C6Dt1
]) this is satisfied if U = = [4DHEJ and 

!f 7{J;2 + which is clearly satisfied. Thus 

I 212 I < 
400

6f.2DExp(2DHE - 3DHE) 

H 
< 32' 

Of course M1 ? 2 requires 1I ? (24000C6 D)E . Collecting we have the 

following result. 

Let <P( so) = L ( .t.) where y = ntoylog H and .t. is as explained in 

>.n<Y2 

Step I. Then -

where M 1 

2560C2
. 

STEP III. (CONVEXITY). We begin by stating a convexity theorem of 

R.M. Gabriel [G). Let z = x + iy be a complex variable. Let Do be a closed 

rectangle with sides parallel to the axes and let L be the closed line segment 

pamllel to the y-axis which divides Do into 2 equal parts. Let Dt and D2 

be the two congruent rectangles into which Do is divided by L. Let Kt and 

K2 be the boundaries of Dt and D 2 (with the line L excluded). Let f(z) be 
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analytic in the interior of Do and continuous on the boundary of D0 . Then, 

we ha·oe, 

where q > 0 is any real number. 

(See Theorem 2 in the appendix to [R]2 for a proof). We now slightly extend 

this as follows.Consider the rectangle 0::; x::; (2n + l)a (where n is a non-

negative integer and a is a positive number), and 0 ::; y R. Let I:r denote 

the integral foR I f(z) lq dy where as before z = z + iy. Let Qa denote the 

maximum of I f(z) lq on {0 :c o:,y = O,R}. Then we have as a first 

application of the theorem of Gabriel. 

We prove by induction that if bm =2m.+ 1, then 

Ia 
I I I l 

(lo + 22(m.+1laQat. ... r (l .. + 22(m+l)aQ .. (lab...+ 22(m+l)aQ .. &,.) 2m+1'. 

We have as a first application of Gabriel's theorem this result with m = 0. 

Assuming this to be true for m we prove it with m replaced by m + 1. 

We apply Gabriel's Theorem to give the bound for lab.,. in terms of la and 

lo.b.,.+ 1 • We have 

1 l 

lab .. S (Ia -;- 2b.,.+taQab .. +,)2 (I .. b .. +1 + 2abm+1Qab.,.+ 1 P 

since as we can easily check bm+l =b.,.+ bm -1. We add 22(m.+l} a Q .. &m t0 

both sides and use that for A > 0, B > 0, Q > 0 we have 

which on squaring both sides reduces to a consequence of 

(.;A - VB)2 2: 0. Thus 
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I + 22{m+llaQ < 
abm ahnr. -

! I 

(Ia +a (2bm+1 + 22(m+ll) Qab.,.tt) 2 (Iab,..+t +a (2bm+l + 22(m+tl) Qabmtt) 2 

Now 2brn+l + 22(m+l) :;::; 22(m+2) i.e. 2(2m+l + 1):;::; 3 · 22(=+1) which is true. 

S. 1 1 1 1 1 h . d t• . 1 . mce 2 - z.;;+T + = 2 - t e m uc 10n IS comp ete and the reqUired 

result is proved. We state it as a 

CONVEXITY THEOREM. Form = 0, 1, 2, · · ·, n we have 

STEP IV. (FINAL DEDUCTION). 

We now go back to Lemma 3.4. We have Y H
2

, and so if H 2': 10C2
, 

caooc (H2 ) -
2
ooc c2ooc, _200c (8)-2ooc 1 8-2oo 1 

--- - - - - 2C < --rBHC) < - < ----
10000 c -- 10000 \ ·- 10000 IJ2 -- 10000 If2, 

• Ff2 2C (H ) HC T smce c - . 2': H V" - 2C 2': 8 _, .• _,et 

(
128\ 2 

4B 2 ( , H ) ·- l 1 
--- ) Y B E1::pExp--- < --
211" 1 128B - 16 

and 
. ( JI ) -1 

K2 ExpExpl28B 1. 

The second is satisfied if (note B :=: D He) 

li 2': (256D loglog K)E. 

The first is satisfied if 

ExpExp (Hl-<) > 88BY2B = 88DH< ]{ 2DH"loglog H 
256D - . 
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i.e. if Ezp :;::: H 4
• This is satisfied if Ezp :;::: H which is implied 

by ( [aE} 2:: H which is implied by H 2:: (3072D E)3E. Thus by 

Lemma 4 and Lemma 2.3 we obtain 

Now 
16

(
1(;7r:)-s (12 + 16 log H)2 H)-6 (28)2 1 

if (log H)3 2:: (281(6) i.e. if H 2:: 6. Also if 2:: fr i.e .. if H 2:: sy'33 then 

the result in question becomes 

H f:£2 
I F(iv) 1

2 
dv 2:: + ( L I a.. 1

2
) it follows that 

f0H \ F(iv) 12 
dv 2:: (H L I a,. 12) • Otherwise it follows that 

n$Ml 

311 ( ) T 2 H H a 2 j!!. I F(so) I dto 2:: 
33 

x 
17 

+ 
16 

x 
17

e- L I a,. I . 
4 

Starting from this we now deduce a lower bound for J0H I F(iv) 1
2 dv. We 

do this in a. series of Lemmas. 

LEMMA 3.5. Let I u 2B,O T1 f, 7: T2 H,H:;::: 64B. Then, 

we have, 

•u 

f:f I F(u +it) 1
2 dt 

• 

iJ fi2 
dv (1:{ I F(u + iv) II Ezp ( Sin2 

( I dto) 
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PROOF. Consider the contribution of the RHS from If S v S 3.r The 

integral with respect to t0 is 

lli lf I!.f Ezp(-sinh2 (vSSO)) dto = Ezp(-&inh2 fg} du 

H 

Jl Ezp(-sinh2 Jffi) du (since"- 3f S 0 and v -!J 0 and their 

difference is !H) 

H 

= SB J0illi Ezp( -sinh2 u)du 8B Ezp( -&inh2 1} B 

(since &inh2 1 s e
2

-
2r-2 s 9-i±l = 2 and e-2 > A>· The lemma is 

completely proved. 

We now apply the convexity theorem with q = 2, /(z) = F 2(z)Ezp (Sin2 ( z8:8°)) 

(where so = a+ ito, a = lou4 H) to the rectangle bounded by the lines :1: = 
O, :c = (2n + 1)a,y = T1,y = T2 and choose n such that B S z S 2B,(B = 

D He), i.e. -1 S 2n S -1 (observe that 2
,;:' -1 > 2{ -1)). We need an 

upper bound for 22(n+l)a which is plainly a·4·( 2,;") 
2 
·s 4(log H)D2 H2e ·s H4 

(if H 4D2
). 

Also Qo.b. S K 2maz I Ezp(Sin2 (z§:B0
)) I, where the maximum is taken 

over 0 S z S 2B, y = T1 ; y = T2 and hence (with the condition lJ S to S 
3f, f ·1fB 2 i.e. H (16 D)E) we have 

22(mtl)aQ < K2 H4 (EzpEzp Hl-e) -1 < 
o.b,.- 64D - H 2 

under the conditions imposed a.t the beginning of this step. Hence by our 

convexity theorem we obtain 

Ia S (Io+ (la.+ (r+ 
where r is the integral over z = (2n + l)a fixed already. All the integrals 

contain a parameter to. Now we integrate with respect to to in lf S t0 S 3f 
and get by Holder's inequality, 

LEMMA 3.6 We have, 

if'¥ I.dto (!If'¥ ( Io + dlo) l (!If'¥ ( 1.+ dto t""" 
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( lli( 1\ 
X Jlf t I* + H2 ) dto 

LEMMA 3.7. We have, 

3H 

!!!. 
4 

I*dt0 100BH . 

• 

PROOF. LHS does not exceed (by Lemmas 2.1 and 2.2) 

[

3

fd (fT2(101)iE (s· 2 (a*+iy-a-ito))id) 
l!f to lr

1 
100 zp zn 88 y 

(where a*= (2n + 

I Exp ( Sin2 ( a•+i\sa-ito)) I dto) dy 

< f.T2 101 (64B + 32B) < lOOB II 
- Tt 100 - ' 

by breaking the last but one integral into I y- to 16B (from which the 

contribution is 64B) and using over the remaining portion 

j · · · 4 koo ( EzpExp -l du 32B. 

This proves the lemma completely. 

LEMMA 3.8. We have, 

and 
lli lli BH r 4 r 4 

2 }!!. Iadto 2 B }JJ. I F(u +ito) I dto 2 
561 

· 

• • 
PROOF. The first part of the second inequality follows from Lemma 3.5. 

Its second part follows from our assumption preceeding Lemma 3.5. By 
ill 

.Lemma 3.7, LHS of the first part is 100BH 56100 J u• Iadto. This 
T 

completes the proof of the lemma. 
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3/l ' 3ff( ) 
Now J;[ (r + Jtr) dto S 56100 fd Ia + 7P dt as is shown by Lemma 

4 

3.8 and so by Lemma 3.6 

Also by the second part of Lemma 3.8, we have 

I l 

under the conditions imposed on H. Note that (56100)2"+T S (56100)75 < 

2t since D 2560. Thus since (1 + S .;2 we obtain 

LEMMA 3.9. We have, 

j!.f-
3

:

1 

Iadt0 S 2 (;;:

1 

Iodto + S 192B foH I F(iv) 1
2 

dv + 

PROOF. The second part of the inequality follows exactly as in the proof 

of Lemma 3.7. 

From Lemma 3.8 it follows that 

Thus by Lemma 3.9 we obtain 

provided 96H 2 192 X 17 X 33 X 34 i.e . H 2 2 X 17 X 33 X 34. This is 

satisfied if H ;:: 34 x 6 which is clearly satisfied by the conditions imposed 

on H . 

Collecting we obtain 
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LEMMA 3.10. Under the conditioru on H,e and D imposed already, we 

have, 

h M I' HI-t ] AT .,-8 -8 All h . d d " .· 
w ere 1 = ,soooc&b . note l6xl7xl!l2 > 10 . t e requzre con tttons 

on H,e,C,D are satisfied by 

D 2560C2
, H maz { (256D log log K)E, (24000 C6 DE)3E} . 

This proves the seventh main theorem completely. 
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FINAL REMARK. 

PROVE OR DISPROVE THE FOLLOWING CONJECTURE 

For all N -tuples of complex numbers a1, a2, · · · , aN with a1 = 1 and for all 

N H 10000, 

lH I I: annit 1
2 

dt (log H)-10000 :E I an 1
2 

. 

0 ns_N ns_Htrr 
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