Hardy-Ramanujan Journal

Vol. 14 (1991) 1-20

PROOF OF SOME CONJECTURES ON THE MEAN-VALUE OF TITCHMARSH SERIES-II

BY

R. BALASUBRAMANIAN AND K. RAMACHANDRA

§ 1. INTRODUCTION. One of the crowning achievements in the Theory of TITCHMARSH SERIES (introduced by the second of us $[R]_{1}$) is the following theorem discovered by R. Balasubramanian and K. Ramachandra [BR].

THEOREM 1. Let $\left\{a_{n}\right\}(n=1,2,3, \cdots)$ be a sequence of complex numbers and $\left\{\lambda_{n}\right\}(n=1,2,3, \cdots)$ a sequence of real numbers with $a_{1}=\lambda_{1}=1$ and $\frac{1}{C} \leq \lambda_{n+1}-\lambda_{n} \leq C(n=1,2,3, \cdots)$ where C is a positive constant. Let $H \geq 10$ be a real parameter and $\left|a_{n}\right| \leq(n H)^{A}$ where A is a positive integer constant. Suppose that $F(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{-s},(s=\sigma+i t)$, can be continued from $\sigma \geq A+2$ analytically in $\{\sigma \geq 0,0 \leq t \leq H\}$. Assume that (for some $K \geq 30$) there exist T_{1}, T_{2} with $0 \leq T_{1} \leq H^{\frac{7}{8}}, H-H^{\frac{7}{8}} \leq T_{2} \leq H$, such that $\left|F\left(\sigma+i T_{1}\right)\right|+\left|F\left(\sigma+i T_{2}\right)\right| \leq K$ uniformly in $\sigma \geq 0$. Then for all

$$
H \geq(4 C)^{9000 A^{2}}+520000 A^{2} \log \log K \text { there holds }
$$

(a) $\int_{0}^{H}|F(i t)|^{2} d t$
$\geq \sum_{n \leq \alpha H}\left(H-(3 C)^{1000 A} H^{\frac{7}{8}}-130000 A^{2} \log \log K-100 C^{2} n\right)\left|a_{n}^{\prime}\right|^{2}$,
where $\alpha=\left(200 C^{2}\right)^{-1} 2^{-8 A-20}$. Also, there holds,

$$
\begin{equation*}
\frac{1}{H} \int_{0}^{H}|F(i t)| d t \geq 1-\frac{C_{1}}{H^{\frac{1}{8}}}-\frac{C_{2} \log \log K}{H} \tag{b}
\end{equation*}
$$

where C_{1} and C_{2} are effectively computable positive constants depending only on A and C.

REMARK 1. In (a) the case $a_{1}=1$ and $a_{n}=0$ for $n>1$ shows that it is not possible to replace the RHS by $(1+\varepsilon)$ times its present form. Also the example $F(i t)=\zeta(\sigma+i t+i T)$ where σ is a large negative constant and H is a large constant times T, shows that in the most general case we cannot have $\alpha>\frac{1}{2 \pi}$ and RHS replaced by $\beta H \sum_{n \leq \alpha H}\left(1-\frac{n}{\alpha H}\right)\left|a_{n}\right|^{2}$ (where $\beta>0$ is any absolute constant).

REMARK 2. (b) is our second main theorem and (a) our third main theorem in [BR]. This theorem covers every possible application to the Riemann zeta-function on its mean square lower bounds and also to Ω theorems (except the Ω theorem for $\zeta(\sigma+i t)\left(\frac{1}{2}<\sigma<1\right)$ of H.L. Montgomery [M]). However another important result on TITCHMARSH SERIES is $[R]_{3}$. (This covers some very important applications to $\zeta(1+i t)$ and so on $)$. Having reached our goal thus, we now turn to the question "How much can we relax the conditions on TITCHMARSH SERIES $F(s)$ and still prove worthwhile results?" Of course our results are of interest for their own sake and we do not envisage any fresh applications from the results of the present paper. (We have proved five main theorems on TITCHMARSH SERIES in [BR] by R. Balasubramanian and K. Ramachandra and $[R]_{3}$ by K. Ramachandra). Our sixth main theorem is

SIXTH MAIN THEOREM. Let $0 \leq \varepsilon<1, C \geq 1, D \geq 1, E=\frac{1}{1-\varepsilon}, a_{1}=$ $\lambda_{1}=1, \frac{1}{C} \leq \lambda_{n+1}-\lambda_{n} \leq C$ (for $n=1,2,3, \cdots$) and for $n \geq 2$ let $\left|a_{n}\right| \leq$
$\operatorname{Exp}\left\{\left(D H^{\varepsilon}-100 C-1\right) \log \lambda_{n}\right\},(H \geq 10)$. Let $F(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{-s}$ (convergent absolutely in $\sigma \geq D H^{\varepsilon}$) admit an analytic continuation in $\{\sigma \geq 0,0 \leq t \leq$ $H\}$. Assume that there exist T_{1}, T_{2} with $0 \leq T_{1} \leq \frac{1}{8} H, \frac{7}{8} H \leq T_{2} \leq H$, such that $\left|F\left(\sigma+i T_{1}\right)\right|+\left|F\left(\sigma+i T_{2}\right)\right| \leq K$ (where $K \geq 30$ holds uniformly in $\sigma \geq 0$. Let finally $H \geq \max \left\{(100 D \log \log K)^{E}, 100 D(100 D E)^{3 E}\right\}$. Then there holds

$$
200 \int_{0}^{H}|F(i t)| d t \geq H
$$

Our next main theorem is as follows
SEVENTH MAIN THEOREM. Let $0 \leq \varepsilon<1, C \geq 1, D \geq 2560 C^{2}, E=$ $\frac{1}{1-\varepsilon}, a_{1}=\lambda_{1}=1, \frac{1}{C} \leq \lambda_{n+1}-\lambda_{n} \leq C$ (for $n=1,2,3, \cdots$) and for $n \geq 2$ let $\left|a_{n}\right| \leq \operatorname{Exp}\left\{\left(D H^{\epsilon}-100 C-1\right) \log \lambda_{n}\right\}$. We assume

$$
H \geq \max \left\{(256 D \log \log K)^{E},\left(24000 C^{6} D E\right)^{3 E}\right\}
$$

where $F(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{-s}$ has the proporties stated in the sixth main theorem and with K defined exactly as in the sixth main theorem. Then there holds

$$
\frac{10^{8}}{H} \int_{0}^{H}|F(i t)|^{2} d t \geq \sum_{n \leq M_{1}}\left|a_{n}\right|^{2}
$$

where $M_{1}=\left[\left(8000 C^{6} D\right)^{-1} H^{1-\varepsilon}\right]$.
§ 2. PROOF OF THE SIXTH MAIN THEOREM. We begin with some lemmas. We put $B=D H^{\varepsilon}$.

LEMMA 2.1. For $\sigma \geq B$, we have $|F(s)-1| \leq \frac{1}{100}$.
PROOF. We observe that $\lambda_{n} \geq 1+\frac{n-1}{C}$ and hence, for $\sigma \geq B,\left|a_{n} \lambda_{n}^{-s}\right| \leq$ $\left(1+\frac{n-1}{C}\right)^{-100 C-1}$ and so

$$
\begin{aligned}
|F(s)-1| & \leq \sum_{n=1}^{\infty}\left\{C^{100 C+1}(n+C)^{-100 C-1}\right\} \\
& \leq C^{100 C+1} \int_{0}^{\infty}(u+C)^{-100 C-1} d u=\frac{1}{100}
\end{aligned}
$$

LEMMA 2.2. Let $z=x+i y$ be a complex variable with $|x| \leq \frac{1}{4}$. Then for all y we have, $\left|\operatorname{Exp}\left((\operatorname{Sin} z)^{2}\right)\right| \leq e^{\frac{1}{2}} \leq 2$. Moreover if $|y| \geq 2$, we have,

$$
\left|\operatorname{Exp}\left((\operatorname{Sin} z)^{2}\right)\right| \leq e^{\frac{1}{2}}(\operatorname{Exp} \operatorname{Exp}|y|)^{-1} \leq 2(\operatorname{Exp} E x p|y|)^{-1} .
$$

PROOF. See Lemma 2.2 .1 of the previous paper I of this series by us [BR].

LEMMA 2.3. Let $B_{0}>0, k$ and σ real with $0<|\sigma| \leq B_{0}$. Then, we have,

$$
\int_{-\infty}^{\infty}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{i k-\sigma-i u_{1}}{4 B_{0}}\right)\right) \frac{d u_{1}}{i k-\sigma-i u_{1}}\right| \leq 12+4 \log \frac{B_{0}}{|\sigma|} .
$$

PROOF. See Lemma 2.2.2 of the paper referred to in the proof of Lemma 2.2 .

LEMMA 2.4. Put $s_{0}=B+i t_{0}$ where $B=D H^{\varepsilon}$. Then subject to $\frac{1}{4} H \leq$ $t_{0} \leq \frac{3}{4} H$, we have,

$$
\begin{equation*}
F\left(s_{0}\right)=\frac{1}{2 \pi i} \int F(w) X^{w-s_{0}} \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{4 B}\right)\right) \frac{d w}{w-s_{0}} \tag{2.1}
\end{equation*}
$$

the contour being the (anti-clockwise) boundary of the rectangle bounded by the lines Re $w=0$, Re $w=2 B, \operatorname{Im} w=T_{1}, \operatorname{Im} w=T_{2}$.

PROOF. Follows by Cauchy's theorem.
LEMMA 2.5. Let I_{1}, I_{2} be the integrals over the horizontal boundaries in (2.1) and J_{1} that over the left vertical boundary and J_{2} that over the right vertical boundary. Then

$$
\begin{align*}
& \int_{\frac{H}{4}}^{\frac{3 H}{4}}\left(\left|I_{1}\right|+\left|I_{2}\right|\right) d t_{0} \\
& \leq 2 \cdot \frac{H}{2} \cdot\left\{\frac{1}{2 \pi} K\left(X^{B}+X^{-B}\right) \frac{8}{H} \cdot 2 \cdot\left(\operatorname{Exp} \operatorname{Exp} \frac{H}{32 B}\right)^{-1} \cdot 2 B\right\}, \tag{2.2}\\
& \int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|J_{1}\right| d t_{0} \\
& \leq \frac{1}{2 \pi}\left\{\int_{0}^{H}|F(i v)| \int_{\left(t_{0}\right)} X^{-B}\left|E x p\left(\operatorname{Sin}^{2}\left(\frac{i v-B-i t_{0}}{4 B}\right)\right)\right|\left|\frac{d t_{0} d v}{i v-B-i t_{0}}\right|\right\} \\
& \leq \frac{1}{2 \pi}\left(\int_{0}^{H}|F(i v)| d v\right) X^{-B} \cdot 12, \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|J_{2}\right| d t_{0} \leq \frac{1}{2 \pi}\left(H \cdot \frac{101}{100}\right) X^{B} \cdot 12 \leq 2 H X^{B} \tag{2.4}
\end{equation*}
$$

provided $H \geq 64 B$ i.e. $H \geq 64 D H^{\varepsilon}$ holds for the validity of (2.2). We have employed $\left(t_{0}\right)$ to mean integration over $-\infty<t_{0}<\infty$.

PROOF. Follows by Lemmas 2.2 and 2.3 .
LEMMA 2.6. Let X be chosen by $X^{B}=X^{D H^{e}}=\frac{1}{5}$ and let $H \geq(64 D)^{E}$. Then, we have,

$$
\begin{gather*}
\frac{H}{2}\left(\frac{99}{100}\right) \leq \int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|F\left(s_{0}\right)\right| d t_{0} \leq \frac{2 H}{5}+10 \int_{0}^{H}|F(i v)| d v \\
+30 D H^{\varepsilon} K\left(E x p E x p \frac{H^{1-s}}{32 D}\right)^{-1} \tag{2.5}
\end{gather*}
$$

PROOF. Follows from Lemma 2.5 on observing that

$$
2\left(\frac{1}{2}\right)\left(\frac{1}{2 \pi}\right)\left(\frac{26}{5}\right)(8)(2)(2) \leq 30
$$

We can now complete the proof of the sixth main theorem with the help of (2.5). Let $H \geq(64 D)^{E}$ so that $H^{1-\varepsilon}(32 D)^{-1} \geq 2$ and so ExpExp $\frac{H^{1-\varepsilon}}{32 D} \geq$ $\left(\operatorname{Exp} \operatorname{Exp} \frac{H^{1^{-\varepsilon}}}{64 D^{-}}\right)^{2}$. Let $\operatorname{Exp} \operatorname{Exp} \frac{H^{1-\varepsilon}}{64 D} \geq \max (K, 30 D H)$
i.e. $H \geq(64 D \log \log K)^{E}$ and since $\operatorname{Exp} \frac{H^{1-\varepsilon}}{64 D} \geq \frac{1}{n!}\left(\frac{H^{1-\varepsilon}}{64 D}\right)^{n}$ for all integers $n \geq 1$,

$$
\left(\frac{H^{1-\varepsilon}}{64 D}\right)^{2 E} \cdot \frac{1}{(3 E)^{3 E}} \geq 30 D H
$$

would suffice to secure what we want. This requires

$$
H \geq 30 D\left(\frac{3(64 D)^{\frac{2}{3}}}{1-\varepsilon}\right)^{3 E}
$$

which is secured by

$$
H \geq 30 D(48 D E)^{3 E}
$$

Hence under the condition $H \geq \max \left((64 D \log \log K)^{E}, 30 D(48 D E)^{3 E}\right)$ we have

$$
\begin{aligned}
\int_{0}^{H}|F(i v)| d v & \geq \frac{H}{10}\left(\frac{99}{200}-\frac{2}{5}\right)-\frac{1}{10} \\
& \geq \frac{H}{112} \text { if } H \geq 20000 .
\end{aligned}
$$

The last condition is clearly satisfied by the condition $H \geq 300(48 D E)^{3 E}$ imposed already. So we get better constants in lower bounds for H. In the theorem we have rounded off these constants.

The sixth main theorem is completely proved.

§ 3. PROOF OF THE SEVENTH MAIN THEOREM.

The proof of this theorem is more involved. It consists of four steps. Step III deals with a convexity question and we prove a convexity theorem of independent interest. In all there are ten lemmas and the tenth is essentially the theorem with sharper constants than those in the theorem. In the theorem we have rounded off the constants.

STEP I. We put $B=D H^{\varepsilon}, s_{0}=\frac{4}{\log H}+i t_{0}$, where $\frac{1}{4} H \leq t_{0} \leq \frac{3}{4} H$. Since $F(s)$ converges absolutely in $\sigma \geq B$, we have, with $Y=H^{\log \log H}$,

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{R e} w=2 B \\
& =\sum_{n=1}^{\infty} \frac{a_{n}}{\lambda_{n}^{\lambda_{0}}} \Delta(w) Y^{w-s_{0}} \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{\lambda_{n}}, B, s_{0}\right)\right) \frac{d w}{w-s_{0}} \tag{3.1}
\end{align*}
$$

where

$$
\Delta\left(\frac{Y}{\lambda_{n}}, B, s_{0}\right)=\frac{1}{2 \pi i} \int_{R e w=2 B}\left(\frac{Y}{\lambda_{n}}\right)^{w-s_{0}} \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right) \frac{d w}{w-s_{0}}
$$

For brevity we sometimes write Δ for $\Delta\left(\frac{Y}{\lambda_{n}}, B, s_{0}\right)$. Initially we set $H \geq$ $100, D \geq 2560 C^{2}$ for some reasons to follow. We begin with

LEMMA 3.1. We have,
(a) $|\Delta| \leq \frac{1}{2 \pi}\left(\frac{Y}{\lambda_{n}}\right)^{2 B} \cdot 12$,
(b) $|\Delta-1| \leq \frac{1}{2 \pi}\left(\frac{\lambda_{\pi}}{Y}\right)^{2 B} \cdot 12$.

REMARK. We use (a) for $\lambda_{n} \geq Y$ and (b) for $\lambda_{n} \leq Y$, although both are valid whether $\lambda_{n} \geq Y$ or not.

PROOF. For (a) we move the line of integration to $R e w=2 B+\frac{4}{\log H}$. For (b) we move the line of integration to Re $w=-2 B+\frac{4}{\log H}$. In both the
cases we use Lemma 2.3 with $B_{0}=2 B$. The only condition that we need is $2 B>1+\frac{4}{\log H}$ which is clearly satisfied.

LEMMA 3.2. We have, if $Y^{2} \geq 10 C$,

$$
\left|\sum_{\lambda_{n} \geq Y^{2}} \frac{a_{n}}{\lambda_{n}^{\lambda_{n}^{0}}} \Delta\right| \leq \frac{1}{100} C^{100 C}\left(\frac{Y^{2}}{C}-2 C\right)^{-100 C}
$$

PROOF. By (a) of Lemma 3.1 we have, since $\sqrt{\lambda_{n}} \geq Y$ and so $|\Delta| \leq 2 \lambda_{n}^{-B}$,

$$
\begin{aligned}
\text { LHS } & \leq 2 \sum_{\lambda_{n} \geq Y^{2}} \frac{\left|a_{n}\right|}{\lambda_{n}^{\eta}} \leq 2 \sum_{\lambda_{n} \geq Y^{2}} \lambda_{n}^{-100 C-1} \\
& \leq \sum_{n C \geq Y^{2}}\left(1+\frac{n-1}{C}\right)^{-100 C-1} \leq C^{100 C+1} \sum_{n \geq Y^{2}}(C+n-1)^{-100 C-1} \\
& \leq C^{100 C+1}(100 C)^{-1}\left(\left[\frac{Y^{2}}{C}\right]-2+C\right)^{-100 C}, \text { since } Y^{2} \geq 10 C, \\
& \leq C^{100 C}\left(\frac{Y^{2}}{C}-2 C\right)^{-100 C}
\end{aligned}
$$

This proves the lemma completely.
In the LHS of (3.1) we would like to cut off the portions $\operatorname{Im} w \leq$ $T_{1}, I m w \geq T_{2}$ and move the line of integration in the rest to Re $w=0$. The horizontal bits contribute two terms the sum of whose absolute values is

$$
\leq 2 \cdot \frac{1}{2 \pi} K \cdot Y^{2 B} \cdot 2 B \cdot 2\left(\operatorname{ExpExp} \frac{H}{64 B}\right)^{-1} \cdot \frac{8}{H}, \text { if } \quad H \geq(128 D)^{E} .
$$

Also the infinite vertical bits do not together exceed in absolute value

$$
\begin{aligned}
& 2 \cdot \frac{1}{2 \pi} \cdot \frac{101}{100} Y^{2 B}\left(\operatorname{Exp} \operatorname{Exp} \frac{H}{128 B}\right)^{-1} \times \\
& \int_{I m n\left(w-s_{0}\right) \geq \frac{H}{8}}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right)\right|^{\frac{1}{2}}\left|\frac{d w}{w-s_{0}}\right| \text {. Since for } H \geq(128 D)^{E}, \\
& \operatorname{Exp}\left|\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right|=\left|\operatorname{Exp}\left(\frac{1}{2} \operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right)\right|^{2} \\
& \leq\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right)\right|^{\frac{1}{2}}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right)\right|^{\frac{1}{2}} \text { and }\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right)\right|^{\frac{1}{2}} \\
& \leq\left(\operatorname{Exp} E x p \frac{H}{64 B}\right)^{-\frac{1}{2}} \leq\left(\operatorname{Exp} E x p \frac{H}{128 H}\right)^{-1} \text {. Also puiting } \operatorname{Im} w=v, \\
& \left.\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right)\right|^{\frac{1}{2}}<\left(\operatorname{Exp} \operatorname{Exp} \frac{\left|v-t_{0}\right|}{8 B}\right)^{-\frac{1}{2}}
\end{aligned}
$$

$$
\leq\left(E x p\left|\frac{v-t_{0}}{16 B}\right|\right)^{-1} \text { and } \int_{0}^{\infty} \operatorname{Exp}\left(-\frac{v}{18 B}\right) d v=16 B
$$

Thus the contribution from the infinite vertical bits do not exceed (since in $\operatorname{Im}\left(w-s_{0}\right) \geq \frac{H}{8},\left|w-s_{0}\right| \geq \frac{H}{8}$)
$2 \cdot \frac{1}{2 \pi} \cdot \frac{101}{300} Y^{2 B}\left(\operatorname{Exp} \operatorname{Exp} \frac{Y}{128 B}\right)^{-1} 16 B \cdot \frac{8}{H}$ (by Lemma 2.1). Thus we have
LEMMA 3.3. We have, with some θ 's not necessarily the same ones, with $|\theta| \leq 1$

$$
\begin{aligned}
& F\left(s_{0}\right)=\sum_{\lambda_{n} \leq Y^{2}} \frac{a_{n} \lambda_{n}}{\lambda_{n}} \Delta+\frac{\theta}{100} C^{100 C}\left(\frac{Y^{2}}{C}-2 C\right)^{-100 C} \\
& +\theta \cdot 2 \cdot \frac{1}{2 \pi} \cdot K \cdot Y^{2 B} 4 B \cdot 2 \cdot\left(E x p E x p \frac{Y}{128 B}\right)^{-1} \frac{8}{H} \\
& +\frac{\theta}{2 \pi} \int_{\left.T_{1} \leq I_{i} m=w \leq \pi_{2}\left|F(w) Y^{w-s_{0}}\right| E x p\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right) \| \frac{d w}{w-s_{0}} \right\rvert\,}^{\text {provided } H \geq(256 D)^{E} .}
\end{aligned}
$$

PROOF. Follows since $K \geq 30$ from the arguments preceeding the lemma.

LEMMA 3.4. We have,

$$
\begin{aligned}
& \left|\sum_{\lambda_{n} \leq Y^{2}} \frac{a_{n}}{\lambda_{n}^{6}} \Delta\right|^{2} \leq 16\left\{\left|F\left(s_{0}\right)\right|^{2}+\frac{1}{10000} C^{200 C}\left(\frac{Y^{2}}{C}-2 C\right)^{-200 C}\right\} \\
& +\left(\frac{128}{2 \pi}\right)^{2} K^{2} Y^{4 B} B^{2}\left(\operatorname{Exp} E x p \frac{H}{128 B}\right)^{-2} \frac{1}{H^{2}} \\
& \left\{+\frac{Y^{--\frac{8}{\log _{g}} H}}{(2 \pi)^{2}} \int_{T_{1} \leq \lim _{R \in=0} \leq T_{2}}|F(w)|^{2}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right)\right|\left|\frac{d w}{w-s_{0}}\right| J\right\}
\end{aligned}
$$

where

$$
J=\int_{\substack{-\infty \leq 1 m \\ \operatorname{Re} w=0}}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{w-s_{0}}{8 B}\right)\right) \| \frac{d w}{w-s_{0}}\right|
$$

We have used $H \geq(256 D)^{E}$ and $Y^{2} \geq 10 C$. Also since $\frac{4}{\log H} \leq 2 B$ we have $J \leq 12+4 \log (2 B \log H)$ by Lemma 2.3, with $B_{0}=2 B$. In the last but one integral note that $\left|w-s_{0}\right| \geq \frac{4}{\log H}$.
PROOF. Follows from Lemma 3.3.

STEP II. In this step we obtain a lower bound for

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|\varphi\left(s_{0}\right)\right|^{2} d t_{0} \text { where } \varphi\left(s_{0}\right)=\sum_{\lambda_{n} \leq Y^{2}} \frac{a_{n}}{\lambda_{n}^{s_{0}}} \Delta
$$

and $Y=H^{\operatorname{loglog} H}$. Put $\sigma_{0}=\frac{4}{\log H}$ and $M_{1}=\left[\frac{H^{1-\varepsilon}}{8000 C^{6} D}\right]$ and assume that $H^{1-\varepsilon} \geq 24000 C^{6} D$. Also we put

$$
A\left(s_{0}\right)=\sum_{m \leq M_{1}}\left(\frac{a_{m}}{\lambda_{m}^{s_{0}}} \Delta\right), B\left(s_{0}\right)=\sum_{Y^{2} \geq \lambda_{n} \geq M_{1}+1}\left(\frac{a_{n}}{\lambda_{n}^{s_{0}}} \Delta\right)
$$

and assume $H \geq \operatorname{Exp}\left(e^{e}\right)$ so that $\log \log H \geq e$. To start with observe that $|\Delta| \leq 3$ and that

$$
\left|\varphi\left(s_{0}\right)\right|^{2} \geq\left|A\left(s_{0}\right)\right|^{2}+2 \operatorname{Re}\left(A\left(s_{0}\right) \overline{B\left(s_{0}\right)}\right)
$$

Hence by putting $\lambda=u_{1}+u_{2}+\cdots+u_{r}$ where $0 \leq u_{j} \leq U, j=1,2,3, \cdots, r$ and $2 r U \leq \frac{1}{2} H$ we have

$$
\begin{aligned}
\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|\varphi\left(s_{0}\right)\right|^{2} d t_{0} & \geq U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{\frac{H}{4}+\lambda}^{\frac{3 H}{4}-U_{r}+\lambda}\left|\varphi\left(s_{0}\right)\right|^{2} d t_{0} \\
& \geq I_{1}+\operatorname{Re}\left(2 I_{2}\right)
\end{aligned}
$$

where $I_{1}=\int_{\frac{H}{4}+r U}^{\frac{3}{4} H-r U}\left|A\left(s_{0}\right)\right|^{2} d t_{0}$ and

$$
I_{2}=U^{-r} \int_{0}^{U} d u_{r} \cdots \int_{0}^{U} d u_{1} \int_{\frac{H}{4}+\lambda}^{\frac{3}{4} H-r U+\lambda} A\left(s_{0}\right) \overline{B\left(s_{0}\right)} d t_{0}
$$

By a well-known theorem of H.L. Montgomery and R.C. Vaughan we have

$$
I_{1} \geq \sum_{m \leq M_{1}}\left(\frac{H}{2}-2 r U-100 C^{2} m\right)\left|a_{m}\right|^{2} \lambda_{m}^{2 \sigma_{0}}|\Delta|^{2}
$$

We now assume that $\frac{H}{4} \geq 2 r U+100 C^{2} M_{1}$, so that we can replace the quantity in the common bracket here by the lower bound $\frac{1}{4} H$. Note that for $n \leq M_{1}$

$$
|\Delta| \geq 1-6\left(\frac{\lambda_{n}}{Y}\right)^{2 B} \geq 1-6\left(\frac{C M_{1}}{H^{e}}\right)^{D H^{\varepsilon}} \geq 1-6\left(\frac{1}{H}\right)^{D H^{\varepsilon}}
$$

(if $H \geq 12) \geq \frac{1}{2}$ and that $\lambda_{n}^{-2 \sigma}>\left(M_{1} C\right)^{-\frac{8}{\operatorname{Tog}_{2} H}}>e^{-8}$. Thus. with $M_{1}=$ $\left[H^{1-\varepsilon}\left(8000 C^{6} D\right)^{-1}\right]$ and $H \geq 12 C$, we have,

$$
I_{1} \geq \frac{H}{16}+\frac{H}{16} e^{-8} \sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2}
$$

Now we turn to I_{2}. We have

$$
\left|I_{2}\right| \leq U^{-r} \sum_{\substack{m \leq M_{1}, n \geq M_{1}+1 \\ \lambda_{n} \leq Y^{2}}}\left\{\left|a_{m}\right|\left|a_{n}\right|\left(\log \frac{\lambda_{n}}{\lambda_{m}}\right)^{-r-1} \Delta_{m} \Delta_{n} 2^{r+1}\right\}
$$

(where we have written Δ_{m} and Δ_{n} with an obvious meaning namely the Δ 's associated with λ_{m} and λ_{n})

$$
\leq U^{-r}\left(\sum_{m \leq M_{1}}\left|\Delta_{m} a_{m}\right|\right)\left(\sum_{\substack{n \geq M_{1}+1 \\ \lambda_{n} \leq Y^{2}}}\left|\Delta_{n} a_{n}\right|\left(\log \frac{\lambda_{n}}{\lambda_{M_{1}}}\right)^{-r-1}\right) 2^{r+1}
$$

Here the m-sum is

$$
\leq 3 \operatorname{Exp}\left(D H^{\varepsilon}\right) \sum_{n=1}^{\infty} \lambda_{n}^{-100 C-1} \leq \frac{303}{100} \operatorname{Exp}\left(D H^{\varepsilon}\right)
$$

by Lemma 2.1. The n-sum is

$$
\begin{aligned}
& \leq 3 \sum_{\lambda_{M_{1}}<\lambda_{n} \leq Y^{2}}\left|a_{n}\right|\left(\log \frac{\lambda_{\lambda_{n}}}{\lambda_{M_{1}}}\right)^{-r-1} \\
& \leq 3 \sum_{\lambda_{M_{1}}<\lambda_{n} \leq 2 \lambda_{M_{1}}}\left|a_{n}\right|\left(\log \frac{\lambda_{M_{1}+1}}{\lambda_{M_{1}}}\right)^{-r-1} \\
& +3 \operatorname{Exp}\left(D H^{\varepsilon}\right) \sum_{\lambda_{n}>2 \lambda_{M_{1}}} \lambda_{n}^{-100 C-1}(\log 2)^{-r-1} \\
& \leq 3 \operatorname{Exp}\left(D H^{\varepsilon}\right) \sum_{\lambda_{M_{1}}<\lambda_{n} \leq 2 \lambda_{M_{1}}} \lambda_{n}^{-100 C-1}\left(M_{1} C^{2}\right)^{r+1} \\
& +3 \operatorname{Exp}\left(D H^{\varepsilon}\right) 2^{r+1} \sum_{\lambda_{n}>2 \lambda_{M_{1}}} \lambda_{n}^{-100 C-1}\left(\text { since } \log \frac{\lambda_{M_{1}+1}}{\lambda_{M_{1}}} \geq\left(C^{2} M_{1}\right)^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{3}{100}(2 C)^{2 r+2} \operatorname{Exp}\left(D H^{\varepsilon}\right)\left(\frac{H^{(1-e)}}{8000 C^{4} D}\right)^{(r+1)} \\
& \text { (if } M_{1} \geq 2 \text {, i.e. if } H \geq\left(24000 C^{6} D\right)^{E} \text {) }
\end{aligned}
$$

Here we have used Lemma 2.1.
Thus

$$
\begin{aligned}
\left|2 I_{2}\right| & \leq \frac{303}{100} \cdot 2 \cdot \operatorname{Exp}\left(2 D H^{\varepsilon}\right) \cdot \frac{3}{100}\left(8 C^{2}\right)^{r+1} U^{-r}\left(\frac{H^{1-\varepsilon}}{8000 C^{4} D}\right)^{r+1} \\
& \leq \operatorname{Exp}\left(2 D H^{\varepsilon}\right)\left(\frac{H}{8000 C^{2} \bar{D}}\right)\left(\frac{H^{1-\varepsilon}}{1000 U C^{2} \bar{D}}\right)^{r}
\end{aligned}
$$

We have to satisfy $\frac{H}{4} \geq 2 r U+100 C^{2} M_{1}$ and by the definition of M_{1} (viz. $\left.M_{1}=\left[H^{1-\varepsilon}\left(8000 C^{6} D\right)^{-1}\right]\right)$ this is satisfied if $U=\frac{H^{1-\varepsilon}}{300 C^{2} D}, r=\left[4 D H^{\varepsilon}\right]$ and $\frac{H}{4} \geq \frac{H}{75 C^{2}}+\frac{H}{100}$ which is clearly satisfied. Thus

$$
\begin{aligned}
\left|2 I_{2}\right| & <\frac{H}{4000 C^{2} D} \operatorname{Exp}\left(2 D H^{\epsilon}-3 D H^{\epsilon}\right) \\
& <\frac{H}{32} .
\end{aligned}
$$

Of course $M_{1} \geq 2$ requires $H \geq\left(24000 C^{6} D\right)^{E}$. Collecting we have the following result.

Let $\varphi\left(s_{0}\right)=\sum_{\lambda_{n}<Y^{2}}\left(a_{n} \lambda_{n}^{-s_{0}} \Delta\right)$ where $Y=H^{\text {loglog } H}$ and Δ is as explained in Step I. Then

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|\varphi\left(s_{0}\right)\right|^{2} d t_{0} \geq \frac{H}{32}+\frac{H}{16} e^{-8} \sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2}
$$

where $M_{1}=\left[H^{1-\varepsilon}\left(8000 C^{6} D\right)^{-1}\right]$ provided $H \geq\left(24000 C^{6} D\right)^{E}$ and $D \geq$ $2560 C^{2}$.

STEP III. (CONVEXITY). We begin by stating a convexity theorem of R.M. Gabriel [G]. Let $z=x+i y$ be a complex variable. Let D_{0} be a closed rectangle with sides parallel to the axes and let L be the closed line segment parallel to the y-axis which divides D_{0} into 2 equal parts. Let D_{1} and D_{2} be the two congruent rectangles into which D_{0} is divided by L. Let K_{1} and K_{2} be the boundaries of D_{1} and D_{2} (with the line L excluded). Let $f(z)$ be
analytic in the interior of D_{0} and continuous on the boundary of D_{0}. Then, we have,

$$
\int_{L}|f(z)|^{q}|d z| \leq\left(\int_{K_{1}}|f(z)|^{q}|d z|\right)^{\frac{1}{2}}\left(\int_{K_{2}}|f(z)|^{q}|d z|\right)^{\frac{1}{2}}
$$

where $q>0$ is any real number.
(See Theorem 2 in the appendix to $[\mathrm{R}]_{2}$ for a proof). We now slightly extend this as follows.Consider the rectangle $0 \leq x \leq\left(2^{n}+1\right) a$ (where n is a nonnegative integer and a is a positive number), and $0 \leq y \leq R$. Let I_{x} denote the integral $\int_{0}^{R}|f(z)|^{q} d y$ where as before $z=x+i y$. Let Q_{α} denote the maximum of $|f(z)|^{q}$ on $\{0 \leq x \leq \alpha, y=0, R\}$. Then we have as a first application of the theorem of Gabriel.

$$
I_{a} \leq\left(I_{0}+4 a Q_{2 a}\right)^{\frac{1}{2}}\left(I_{2 a}+4 a Q_{2 a}\right)^{\frac{1}{2}}
$$

We prove by induction that if $b_{m}=2^{m}+1$, then
$I_{a} \leq$
$\left(I_{0}+2^{2(m+1)} a Q_{a b_{m}}\right)^{\frac{1}{2}}\left(I_{a}+2^{2(m+1)} a Q_{a b_{m}}\right)^{\frac{1}{2}-\frac{1}{2^{m+1}}}\left(I_{a b_{m}}+2^{2(m+1)} a Q_{a b_{m}}\right)^{\frac{1}{2^{m+1}}}$.

We have as a first application of Gabriel's theorem this result with $m=0$. Assuming this to be true for m we prove it with m replaced by $m+1$. We apply Gabriel's Theorem to give the bound for $I_{a b_{m}}$ in terms of I_{a} and $I_{a b_{m+1}}$. We have

$$
I_{a b_{m}} \leq\left(I_{a}-2 b_{m+1} a Q_{a b_{m+1}}\right)^{\frac{1}{2}}\left(I_{a b_{m+1}}+2 a b_{m+1} Q_{a b_{m+1}}\right)^{\frac{1}{2}}
$$

since as we can easily check $b_{m+1}=b_{m}+b_{m}-1$. We add $2^{2(m+1)} a Q_{a b_{m}}$ to both sides and use that for $A>0, B>0, Q>0$ we have

$$
\sqrt{A B}+Q \leq \sqrt{(A+Q)(B+Q)}
$$

which on squaring both sides reduces to a consequence of $(\sqrt{A}-\sqrt{B})^{2} \geq 0$. Thus

$$
\begin{aligned}
& I_{a b_{m}}+2^{2(m+1)} a Q_{a b_{m}} \leq \\
& \left(I_{a}+a\left(2 b_{m+1}+2^{2(m+1)}\right) Q_{a b_{m+1}}\right)^{\frac{1}{2}}\left(I_{a b_{m+1}}+a\left(2 b_{m+1}+2^{2(m+1)}\right) Q_{a b_{m+1}}\right)^{\frac{1}{2}}
\end{aligned}
$$

Now $2 b_{m+1}+2^{2(m+1)} \leq 2^{2(m+2)}$ i.e. $2\left(2^{m+1}+1\right) \leq 3 \cdot 2^{2(m+1)}$ which is true. Since $\frac{1}{2}-\frac{1}{2^{m+T}}+\frac{1}{2^{m+2}}=\frac{1}{2}-\frac{1}{2^{m+2}}$ the induction is complete and the required result is proved. We state it as a

CONVEXITY THEOREM. For $m=0,1,2, \cdots, n$ we have

$$
\begin{aligned}
I_{a} \leq & \left(I_{0}+2^{2(m+1)} a Q_{a b_{m}}\right)^{\frac{1}{2}}\left(I_{a}+2^{2(m+1)} a Q_{a b_{m}}\right)^{\frac{1}{2}-\frac{1}{2^{m+T}}} \\
& \times\left(I_{a b_{m}}+2^{2(m+1)} a Q_{a b_{m}}\right)^{\frac{1}{2 n+T}} .
\end{aligned}
$$

STEP IV. (FINAL DEDUCTION).
We now go back to Lemma 3.4. We have $Y \geq H^{2}$, and so if $H \geq 10 C^{2}$, $\frac{C^{200 C}}{10000}\left(\frac{H^{2}}{C}-2 C\right)^{-200 C} \leq \frac{C^{200 C}}{10000}(8 H C)^{-200 C} \leq \frac{(8)^{-200 C}}{10000} \frac{1}{H^{2}} \leq \frac{8^{-200}}{10000} \frac{1}{H^{2}}$, since $\frac{H^{2}}{C}-2 C \geq H\left(\frac{H}{C}-2 C\right) \geq 8 H C$. Let

$$
\left(\frac{128}{2 \pi}\right)^{2} Y^{4 B} B^{2}\left(\operatorname{ExpExp} \frac{H}{128 B}\right)^{-1} \leq \frac{1}{16}
$$

and

$$
K^{2}\left(\operatorname{ExpExp} \frac{H}{128 B}\right)^{-1} \leq 1 .
$$

The second is satisfied if (note $B=D H^{c}$)

$$
H \geq(256 D \log \log K)^{E} .
$$

The first is satisfied if

$$
\operatorname{ExpExp}\left(\frac{H^{1-\varepsilon}}{256 D}\right) \geq 88 B Y^{2 B}=88 D H^{\epsilon} H^{2 D H^{\epsilon} \log \log H}
$$

This is satisfied (since $88 D H^{\varepsilon} H^{2 D H^{\varepsilon} \log \log H} \leq e^{H^{2}+H^{3}} \leq e^{2 H^{3}}$) if

$$
\operatorname{ExpExp}\left(\frac{H^{1-\varepsilon}}{256 D}\right) \geq \operatorname{Exp}\left(H^{4}\right)
$$

i.e. if $\operatorname{Exp} \frac{H^{1-\varepsilon}}{256 D} \geq H^{4}$. This is satisfied if $\operatorname{Exp} \frac{H^{1-e}}{1024 D} \geq H$ which is implied by $\left(\frac{H^{1-5}}{1024 D}\right)^{[3 E]} \frac{1}{(3 E)^{3 E}} \geq H$ which is implied by $H \geq(3072 D E)^{3 E}$. Thus by Lemma 4 and Lemma 2.3 we obrain

$$
\begin{gathered}
\left.\frac{H}{32}+\frac{H}{16} e^{-8}\left(\sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2}\right) \leq 16 \int_{\frac{H}{4}}^{\frac{3 H}{4}} \right\rvert\, F\left(\left.s_{0}\right|^{2} d t_{0}+\right. \\
+\frac{2}{H}+\frac{16}{(2 \pi)^{2}}(\log H)^{-8}(12+16 \log H)^{2} \int_{\substack{T_{1} \leq 1 m \\
\operatorname{Re} w=0}}|F(w)|^{2}|d w| .
\end{gathered}
$$

Now

$$
\frac{16(\log H)^{-8}}{(2 \pi)^{2}}(12+16 \log H)^{2} \leq \frac{16}{36}(\log H)^{-6}(28)^{2} \leq 1
$$

if $(\log H)^{3} \geq \frac{(28)(6)}{4}$ i.e. if $H \geq 6$. Also if $\frac{H}{32 \times 33} \geq \frac{2}{H}$ i.e. if $H \geq 8 \sqrt{33}$ then the result in question becomes

$$
\frac{H}{33}+\frac{H}{16} e^{-8}\left(\sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2}\right) \leq 16 \int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|F\left(s_{0}\right)\right|^{2} d t_{0}+\int_{T_{1}}^{T_{2}}|F(i v)|^{2} d v
$$

If $\int_{T_{1}}^{T_{2}}|F(i v)|^{2} d v \geq \frac{H}{33 \times 17}+\frac{H}{16 \times 17} e^{-8}\left(\sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2}\right)$ it follows that $\int_{0}^{H}|F(i v)|^{2} d v \geq \frac{e^{-8}}{16 \times 17}\left(H \sum_{n \leq M_{1}}\left|a_{n}\right|^{2}\right)$. Otherwise it follows that

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|F\left(s_{0}\right)\right|^{2} d t_{0} \geq \frac{H}{33 \times 17}+\frac{H}{16 \times 17} e^{-8}\left(\sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2}\right)
$$

Starting from this we now deduce a lower bound for $\int_{0}^{H}|F(i v)|^{2} d v$. We do this in a series of Lemmas.

LEMMA 3.5. Let $|\sigma| \leq 2 B, 0 \leq T_{1} \leq \frac{H}{8}, \frac{7 H}{8} \leq T_{2} \leq H, H \geq 64 B$. Then, we have,

$$
\begin{aligned}
& \int_{\frac{2 H}{4}}^{\frac{2 H}{4}}|F(\sigma+i t)|^{2} d t \\
& \leq \frac{1}{B} \int_{T_{1}}^{T_{2}} d v\left(\int_{\frac{H}{4}}^{\frac{3 H}{4}}|F(\sigma+i v)|\left|E \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{i v-i t_{0}}{8 B}\right)\right)\right| d t_{0}\right)
\end{aligned}
$$

PROOF. Consider the contribution of the RHS from $\frac{H}{4} \leq v \leq \frac{3 H}{4}$. The integral with respect to t_{0} is

$$
\begin{aligned}
& \int_{\frac{H}{4}}^{\frac{3 H}{4}} \operatorname{Exp}\left(-\sinh ^{2}\left(\frac{v-t_{0}}{8 B}\right)\right) d t_{0}=\int_{v-\frac{3 H}{4}}^{v-\frac{H}{4}} \operatorname{Exp}\left(-\sinh ^{2} \frac{u}{8 B}\right) d u \\
& \geq \int_{0}^{\frac{H}{4}} \operatorname{Exp}\left(-\sinh ^{2} \frac{u}{8 B}\right) d u \text { (since } v-\frac{3 H}{4} \leq 0 \text { and } v-\frac{H}{4} \geq 0 \text { and their } \\
& \text { difference is } \left.\frac{1}{2} H\right) \\
& =8 B \int_{0}^{\frac{H}{32 B}} E x p\left(-\sinh ^{2} u\right) d u \geq 8 B \quad E x p\left(-\sinh ^{2} 1\right) \geq B
\end{aligned}
$$

(since $\sinh ^{2} 1 \leq \frac{e^{2}-2+e^{-2}}{4} \leq \frac{9-2+1}{4}=2$ and $e^{-2}>\frac{1}{8}$). The lemma is completely proved.

We now apply the convexity theorem with $q=2, f(z)=F^{2}(z) \operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{z-80}{8 B}\right)\right)$ (where $s_{0}=a+i t_{0}, a=\frac{4}{\log H}$) to the rectangle bounded by the lines $x=$ $0, x=\left(2^{n}+1\right) a, y=T_{1}, y=T_{2}$ and choose n such that $B \leq x \leq 2 B,(B=$ $D H^{\varepsilon}$), i.e. $\frac{B}{a}-1 \leq 2^{n} \leq \frac{2 B}{a}-1$ (observe that $\frac{2 B}{a}-1>2\left(\frac{B}{a}-1\right)$). We need an upper bound for $2^{2(n+1)} a$ which is plainly $a \cdot 4 \cdot\left(\frac{2 B}{a}\right)^{2} \leq 4(\log H) D^{2} H^{2 \varepsilon} \leq H^{4}$ (if $H \geq 4 D^{2}$).

Also $Q_{a b_{n}} \leq K^{2} \max \left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{z-s_{0}}{8 B}\right)\right)\right|$, where the maximum is taken over $0 \leq x \leq 2 B, y=T_{1}, y=T_{2}$ and hence (with the condition $\frac{H}{4} \leq t_{0} \leq$ $\frac{3 H}{4}, \frac{H}{8} \cdot \frac{1}{8 B} \geq 2$ i.e. $\left.H \geq(16 D)^{E}\right)$ we have

$$
2^{2(m+1)} a Q_{a b_{m}} \leq K^{2} H^{4}\left(\operatorname{Exp} E x p \frac{H^{1-\varepsilon}}{64 D}\right)^{-1} \leq \frac{1}{H^{2}}
$$

under the conditions imposed at the beginning of this step. Hence by our convexity theorem we obtain

$$
I_{a} \leq\left(I_{0}+\frac{1}{H^{2}}\right)^{\frac{1}{2}}\left(I_{a}+\frac{1}{H^{2}}\right)^{\frac{1}{2}-\frac{1}{2^{n}+T}}\left(I^{*}+\frac{1}{H^{2}}\right)^{\frac{1}{2^{n+T}}}
$$

where I^{*} is the integral over $x=\left(2^{n}+1\right) a$ fixed already. All the integrals contain a parameter t_{0}. Now we integrate with respect to t_{0} in $\frac{H}{4} \leq t_{0} \leq \frac{3 H}{4}$ and get by Hölder's inequality,
LEMMA 3.6 We have,

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a} d t_{0} \leq\left(\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left(I_{0}+\frac{1}{H^{2}}\right) d t_{0}\right)^{\frac{1}{2}}\left(\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left(I_{a}+\frac{1}{H^{2}}\right) d t_{0}\right)^{\frac{1}{2}-\frac{1}{2^{n+T}}}
$$

$$
\times\left(\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left(I^{*}+\frac{1}{H^{2}}\right) d t_{0}\right)^{\frac{n^{2}}{2^{n+T}}}
$$

LEMMA 3.7. We have,

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}} I^{*} d t_{0} \leq 100 B H
$$

PROOF. LHS does not exceed (by Lemmas 2.1 and 2.2)

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}} d t_{0}\left(\int_{T_{1}}^{T_{2}}\left(\frac{101}{100}\right)\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{a^{*}+i y-a-i t_{0}}{8 B}\right)\right)\right| d y\right)
$$

(where $\left.a^{*}=\left(2^{n}+1\right) a(\leq 2 B)\right)$

$$
\begin{aligned}
& \leq \int_{T_{1}}^{T_{2}} \frac{101}{100}\left(\int_{-\infty}^{\infty}\left|\operatorname{Exp}\left(\operatorname{Sin}^{2}\left(\frac{a^{*}+i y-a-i t_{0}}{8 B}\right)\right)\right| d t_{0}\right) d y \\
& \leq \int_{T_{1}}^{T_{2}} \frac{101}{100}(64 B+32 B) \leq 100 B H
\end{aligned}
$$

by breaking the last but one integral into $\left|y-t_{0}\right| \leq 16 B$ (from which the contribution is $64 B$) and using over the remaining portion

$$
\int \cdots \leq 4 \int_{0}^{\infty}\left(\operatorname{ExpExp}\left(\frac{u}{8 B}\right)\right)^{-1} d u \leq 32 B
$$

This proves the lemma completely.
LEMMA 3.8. We have,

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a}^{*} d t_{0} \leq 56100 \int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a} d t_{0}
$$

and

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a} d t_{0} \geq B \int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|F\left(\sigma+i t_{0}\right)\right|^{2} d t_{0} \geq \frac{B H}{561} .
$$

PROOF. The first part of the second inequality follows from Lemma 3.5. Its second part follows from our assumption preceeding Lemma 3.5. By Lemma 3.7, LHS of the first part is $\leq 100 B H \leq 56100 \int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a} d t_{0}$. This completes the proof of the lemma.

Now $\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left(I^{*}+\frac{1}{H^{2}}\right) d t_{0} \leq 56100 \int_{\frac{H}{4}}^{\frac{3 H}{4}}\left(I_{a}+\frac{1}{H^{2}}\right) d t$ as is shown by Lemma 3.8 and so by Lemma 3.6
$\int_{\frac{I I}{4}}^{\frac{3 I H}{4}} I_{a} d t_{0} \leq\left(\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left(I_{0}+\frac{1}{H^{2}}\right) d t_{0}\right)^{\frac{1}{2}}\left(\int_{\frac{H}{4}}^{\frac{3 H}{4}}\left(I_{a}+\frac{1}{H^{2}}\right) d t_{0}\right)^{\frac{1}{2}}(56100)^{\frac{1}{2^{n+T}}}$.
Also by the second part of Lemma 3.8, we have

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}} \frac{1}{H^{2}} d t_{0} \leq H^{-1}=\frac{561}{B H^{2}} \cdot \frac{B H}{561} \leq \frac{561}{B H^{2}} \int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a} d t_{0} \leq 10^{-3} \int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a} d t_{0}
$$

under the conditions imposed on H. Note that $(56100)^{\frac{1}{2 n+T}} \leq(56100)^{\frac{1}{D}} \leq$ $2^{\frac{1}{4}}$ since $D \geq 2560$. Thus since $\left(1+10^{-3}\right)^{\frac{1}{2}} 2^{\frac{1}{4}} \leq \sqrt{2}$ we obtain

LEMMA 3.9. We have,

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a} d t_{0} \leq 2\left(\int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{0} d t_{0}+\frac{1}{H}\right) \leq 192 B \int_{0}^{H}|F(i v)|^{2} d v+\frac{2}{H} .
$$

PROOF. The second part of the inequality follows exactly as in the proof of Lemma 3.7.

From Lemma 3.8 it follows that

$$
\int_{\frac{H}{4}}^{\frac{3 H}{4}} I_{a} d t_{0} \geq B \int_{\frac{H}{4}}^{\frac{3 H}{4}}\left|F\left(\sigma+i t_{0}\right)\right|^{2} d t_{0} \geq \frac{B H}{33 \times 17}+\frac{B H}{16 \times 17} e^{-8} \sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2} .
$$

Thus by Lemma 3.9 we obtain

$$
\begin{aligned}
\int_{0}^{H}|F(i v)|^{2} d t & \geq \frac{H}{102 \times 17}\left\{\frac{1}{33}+\frac{e^{-8}}{16} \sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2}\right\}-\frac{1}{96 D H} \\
& \geq \frac{H}{192 \times 17}\left\{\frac{1}{34}+\frac{e^{-8}}{16} \sum_{2 \leq n \leq M_{1}}\left|a_{n}\right|^{2}\right\}
\end{aligned}
$$

provided $96 H^{2} \geq 192 \times 17 \times 33 \times 34$ i.e. $H^{2} \geq 2 \times 17 \times 33 \times 34$. This is satisfied if $H \geq 34 \times 6$ which is clearly satisfied by the conditions imposed on H.

Collecting we obtain

LEMMA 3.10. Under the conditions on H, ε and D imposed already, we have,

$$
\int_{0}^{H}|F(i v)|^{2} d v \geq \frac{H e^{-8}}{16 \times 17 \times 192} \sum_{n \leq M_{1}}\left|a_{n}\right|^{2}
$$

where $M_{1}=\left[\frac{H^{1-\varepsilon}}{8000 C^{C} D}\right]$. Note $\frac{e^{-8}}{16 \times 17 \times 192}>10^{-8}$. All the required conditions on H, ε, C, D are satisfied by

$$
D \geq 2560 C^{2}, H \geq \max \left\{(256 D \log \log K)^{E},\left(24000 C^{6} D E\right)^{3 E}\right\}
$$

This proves the seventh main theorem completely.
ACKNOWLEDGEMENT. We would like to acknowledge here some difficult copying help given to us by A. Sankaranarayanan and K. Soundararajan.

FINAL REMARK.

PROVE OR DISPROVE THE FOLLOWING CONJECTURE

For all N-tuples of complex numbers $a_{1}, a_{2}, \cdots, a_{N}$ with $a_{1}=1$ and for all $N \geq H \geq 10000$,

$$
\frac{1}{H} \int_{0}^{H}\left|\sum_{n \leq N} a_{n} n^{i t}\right|^{2} d t \geq(\log H)^{-10000} \sum_{n \leq H \frac{1}{\frac{1}{10}}}\left|a_{n}\right|^{2}
$$

REFERENCES

[BR] R. BALASUBRAMANIAN AND K. RAMACHANDRA, Proof of some conjectures on the mean-value of Titchmarsh series-I, HardyRamanujan J., vol. 13 (1990), 1-20.
[G]R.M. GABRIEL, Some results concerning the integrals of moduli of regular functions along certain curves, J.L.M.S., 2 (1927), 112-117.
[M] H.L. MONTGOMERY, Extreme values of the Riemann zeta-function, Comment. Math. Helv., 52 (1977), 511-518.
$[\mathrm{R}]_{1}$ K. RAMACHANDRA, Progress towqards a conjecture on the meanvalue of Titchmarsh series, Recent progress in analytic number theory vol. 1, ed. H. Halberstam and C. Hooley, F.R.S., Academic Press, London, New-York, Toronto, Sydney, San-Franscisco, (1981), 303-318.
$[\mathrm{R}]_{2} \mathrm{~K}$. RAMACHANDRA, A brief summary of some results in the analytic theory of numbers/Addendum, Number Theory, Proceedings, Mysore, ed. K. Alladi, Springer Verlag - lecture notes 938, (1981), 106-122.
$[\mathrm{R}]_{3}$ K. RAMACHANDRA, Proof of some conjectures on the mean-value of Titchmarsh series with applications to Titchmarsh's phenomenon, Hardy-Ramanujan J., vol. 13 (1990), 21-27.

ADDRESS OF THE AUTHORS

1) PROFESSOR R. BALASUBRAMANIAN

MATSCIENCE
THARAMANI P.O.
MADRAS 600113
TAMILNADU
INDIA
2) PROFESSOR K. RAMACHANDRA

SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
HOMI BHABHA ROAD
COLABA
BOMBAY 400005
INDIA
(MANUSCRIPT COMPLETED ON 19.10.1990).

