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PROOF OF SOME CONJECTURES ON THE MEAN-VALUE
OF TITCHMARSH SERIES-II

BY

R. BALASUBRAMANIAN AND K. RAMACHANDRA

§1. INTRODUCTION. One of the crowning achievements in the Theory
of TITCHMARSH SERIES (introduced by the second of us [R];) is the

following theorem discovered by R. Balasubramanian and K. Ramachandra
[BR].

THEOREM 1. Let{a,}{n =1,2,3,---) be a sequence of complez numbers

and {An}(n = 1,2,3,---) a sequence of real numbers with a1 = Ay = 1 and

*év < Ant1 = An € C(n = 1,2,3,.-.) where C is a positive constant. Let

H > 10 be a real parameter and | a, |< (nH)? where A is a positive integer
(s o]

constant. Suppose that F(s) = Zan).;;‘,(s = ¢ + it), can be continued

n=1
from o > A+ 2 analyticelly in {o > 0,0 <t < H}. Assume that (for some

K > 30) there ezist Ty, Ty with 0 < Ty < Hs,H — H§ < Ty < H, such
that | F(o + iTh) | + | Flo + iTy) |< K uniformly in o > 0. Then for all
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H > (4C)%%004% 4 590000A4%loglog K there holds

(o) Jo' | F(it)Pdt
> 3 (H - (3C)" ™4 H5 — 130000A4%l0glog K — 100C%n) | a, |2,
n<aH

where a = (200C?)~12-84-20_ Also, there holds,

| 1 ' C1 Caloglog K
L3 F % L _
® iRz 1 G e

where Cy and C3 are effectively computable positive constants depending only
on A and C.

REMARK 1. In (a) the case a; = 1 and a,, = 0 for n > 1 shows that it is
not possible to replace the RHS by (1 + ¢) times its present form. Also the

... example F(it) = {(o +.it.+ iT) where o is a large negative constant and H

is a large constant times T, shows that in the most general case we cannot
have a > 5~ and RHS replaced by 8 H ) (1 - )| @n |* (where 8 > 0
is any absolute constant). neett

REMARK 2. (b) is our second main theorem and (a) our third main
theorem in [BR]. This theorem covers every possible application to the Rie-
mann zeta-function on its mean square lower bounds and also to Q2 theorems
(except the © theorem for {(o + it)(3 < o < 1) of H.L. Montgomery [M]).
However another important result on TITTCHMARSH SERIES is [R],. (This
covers some very important applications to (1 + it) and so on). Having
reached our goal thus, we now turn to the question “How much can we relax
the conditions on TITCHMARSH SERIES F(s) and still prove worthwhile
results?” Of course our results are of interest for their own sake and we do
not envisage any fresh applications from the results of the present paper.
(We have proved five main theorems on TITCHMARSH SERIES in [BR] by
R. Balasubramanian and K. Ramachandra and [R]; by K. Ramachandra).
QOur sixth main theorem is

SIXTH MAIN THEOREM. Let0<e<1,C>1,D>1,E = 21, a; =

1-¢g?

AM=1%< 41 -2 £C (forn=1,2,3,.-.) and forn > 2 let | a, |<
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Ezp{(DH® -100C - 1)log A\,.},(H > 10). Let F(s3) = ZanA;’ (convergent
n=1

absolutely in 0 > DH*®) admit an analytic continuation in {¢ > 0,0 <t <
H}. Assume that there exist Ty, T, with0 < Ty < §H,IH < T, < H, such
that | F(o +iTy) | + | F(o + iT2) |< K (where K > 30 holds uniformly
in o > 0. Let finally H > maz{(100D loglog K)¥,100D(100DE)3*}. Then
there holds -

200/0 | F(it) | dt > H.

Our next main theorem is as follows

SEVENTH MAIN THEOREM. Let0 <¢ <1,C > 1,D > 2560C* E =
a=M=L,F< -2 <C (forn=1,2,3,--.) and forn > 2 let
| an |< Ezp{(DH® - 100C — 1)log A\.}. We assume

H > maz{(256 D loglog K)F,(24000C®DE)3}

where F(s) = Zan)\;’ has the proporties stated in the sizth main theorem
n=1
and with K defined ezactly as in the sizcth main theorem. Then there holds

- ol S 9
T [ F@raz ¥ e
nSM;

where My = [(8000C%D)-1H!~¢].

§ 2. PROOF OF THE SIXTH MAIN THEOREM. We begin with
some lemmas. We put B = DH*®.

LEMMA 2.1. For o > B, we have | F(s) - 1|< -

PROOF. We observe that A, > 1+ 251 and hence, for o > B, | an ;" |<

(1 n !}5}.)_1000—1 —_—

| F(s}) -1] < i {Clmc+1(n % C)—moc—1}
n=1

< CIOUC+1 .”‘000(“ e C)~10(JC’-1du - _1_10_6
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LEMMA 2.2, Letz =z +iy bea complez variable with | z |< . Then for
all y we have, | Ezp((Sin z)?) |< e3 < 2. Moreover if | y |> 2, we have,

| Ezp{(Sin 2)?) |< e¥(EzpEzp |y |)~* < 2(EzpEzp |y )"

PROOF. See Lemma 2.2.1 of the previous paper I of this series by us [BR].

LEMMA 2.3. Let Bo > 0,k and o real with 0 <| o |< By. Then, we have,

o . o (ik—0—iu du; By
./I_W'Ezp(sm( 4By ))tk a~11|<12+4la‘ql |

PROOF. See Lemma 2.2.2 of the paper referred to in the proof of Lemma
2.2. '

LEMMA 2.4. Put 39 = B + ity where B = DH®. Then subject to $H <
g K %H, we have,

1 ] - d
F(80) = m—/F(W)Xw"“Ezp (Szn2 (wu;o)) ” _wsi), (2.1)

the contour being the (anti-clockwise) boundary of the rectangle bounded by
the lines Re w =0,Re w = 2B, Im w=T,Im w = Ts.

PROOF. Follows by Cauchy’s theorem.

LEMMA 2.5. Let I, I, be the integrals over the horizontal boundaries in
(2.1) and J1 that over the left vertical boundary and Jp that over the right
vertical boundary. Then

3IH
Jo (1h |+ 1 12 |)dto
-1
<2.4. {%K(XB +X-B)E 2. (Eszzp 3—2’%) -23}, (2.2)
IH
f_rf | J1 | dbo

<& {I7 1 F) | Sy X8 | Bop (sin? (2=f5)) 1| %% 1}

< 3 (f(, | F(iv) | d'u) X-B.1a, (2.3)
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and o

T 1 101 B B
jﬂ_ }Jg!dtgsﬂ(fl--l—-a-a)x -12<2HX", (2.4)

provided H > 64B i.e. H > 64DH® holds for the validity of (2.2). We have
employed (ty) to mean integration over —oo < ty < 0.

4

PROOF. Follows by Lemmas 2.2 and 2.3.
LEMMA 2.8. Let X be chosen by XB = XPH® = 1 gnd let H > (64D)F.
Then, we have,
3H
(&%) < Jd | Flso)dto < 2 4+10 [T | Fliv) | d
32D

—e —1
+3ODH€K(Eszzp H ) . (2.5)

PROOF. Follows from Lemma 2.5 on observing that

:(3) (&) () wo <

We can now complete the proof of the sixth main theorem with the help
of (2.5). Let H > (64D)F so that H*~¢(32D)~! > 2 and so E::pEzp%}g» >
(EmpE:cp %Bi)z. Let Ea:pEzp%% > maz(K,30DH)
ie. H > (64D loglog K)F and since Ezp L5 > 4 (%:%)ﬂ for all integers

12 1,
2E
== 1
; > 30 DH
( 64D ) (BEPE =

would suffice to secure what we want. This requires

3640)3 \*F
3
H > 30D (“(*1—'?)*) ,

which is secured by
H > 30D(48DE)%E.

Hence under the condition H > maz((64D loglog K )¥,30D(48 DE)3F) we
have
(gs_ - z) . X
p 5) 10

B F)dv > &
> & if H > 20000.
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The last condition is clearly satisfied by the condition H > 300(48 D E)3F
imposed already. So we get better constants in lower bounds for H. In the
theorem we have rounded off these constants.

The sixth main theorem is completely proved.

$ 3. PROOF OF THE SEVENTH MAIN THEOREM.

The proof of this theorem is more involved. It consists of four steps.
Step III deals with a convexity question and we prove a convexity theorem
of independent interest. In all there are ten lemmas and the tenth is essen-
tially the theorem with sharper constants than those in the theorem. In the
theorem we have rounded off the constants.

STEP I. We put B = DH®, s = TE}H + ito, where JH < to < 3H. Since
F(s) converges absolutely in & > B, we have, with Y = Hloslog H

727 Jre wezp F(W)Y™ ™% Ezp (Sin® (%0)) ;22
oo

== Zfﬂrﬂ (X‘Y::B:‘SG) ’ (31)
n=1 o

where
Y 1 Y \*% . w — 8 dw
) =3 () o (5)) 5
A (’\n, B’Jo) 2xi -[Re w=2B (An) w ( it 8B w — 8¢

For brevity we sometimes write A for A (11_,}3,30) . Initially we set H >
100, D > 2560C? for some reasons to follow. We begin with

LEMMA 3.1. We have,
2B
(@) 181 £ (£) 12
2B
) [A-1l< & (4) 12

REMARK. We use (a) for A, > Y and (b) for A, <Y, although both are
valid whether A, > Y or not.

PROOPF. For (a) we move the line of integration to Re w = 2B + ﬁﬁ.

For (b) we move the line of integration to Re w = —2B + 5. In both the
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cases we use Lemma 2.3 with By = 2B. The only condition that we need is
2B > 1+ Ef-g which is clearly satisfied.

LEMMA 3.2. We have, if Y2 > 10C,
-100C
| ¥ Al L oo (%2-..20) .
My 8 100

PROOF. By (a) of Lemma 3.1 we have, since /X, > Y andso | A |< 2);5,

LHS < 2 ) };,;igg S A, 1000 1

An>Y2 A,,gY?DC
Z100C -1 -
< Z (1+ _r_s_é_'l_) < (100C+1 L (L 1 — 1)_1000*1
nC>Y? o> X2
100C+1 ly? ~1000° 2
< ¢10+(1000) ([%] -2+ €) . since Y2 > 10C,

< W0 (B _90) T
This proves the lemma completely.

In the LHS of (3.1) we would like to cut off the portions Im w <
T1,Im w > T3 and move the line of integration in the rest to Re w = 0. The
horizontal bits contribute two terms the sum of whose absolute values is

<2 %K .Y .2B.2(EzpEap ;) - §,if H > (128D).

Also the infinite vertical bits do not together exceed in absolute value

-1
1 101+-2B { 3» H
2- & - 1§¥?P (BzpEep offp)  x

Srnwanys 2 | Ezp(Sin® (%52)) |2 3| . Since for H > (128 D),

8

Ezp| Sin® (%30 H~|E2P( Sin® (%5 )iz

<| Ezp (Sin? (%)) |7| Ezp (Sin? (42)) |? and | Ezp (Sin® (¥522)) |7

\u!)—

H_

-~ / -~ ” 1 . ! ---1 T lh e &
< \Eszzp 43) < {Ezpb.’cp ﬁ%ﬁ) . Also putting fm w = v,

>J|>—-

| Brp{Sin® (2] | 1< (EZPEIPL =

7
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< (Bzp| %4 )" and [° Ezp(—135) dv = 16B.
Thus the contribution from the infinite vertical bits do not exceed
(since in Im(w — so) > %,l w— 3 |> %)
=
2. 4 3Y2B (Esza:p -2--5) 168 - § (by Lemma 2.1). Thus we have

LEMMA 3.3. We have, with some 8’s not necessanly the same ones, with
|8i<1
-100C

Fso) = Y. fA+ 5% (5 ~20)"
AalY?

+6.2. L K .Y?P4B.2. (EzpBzp 1X5) &

+4 fns <l w<my | F(w)Y*—% | Ezp(Sin® (%3°)) jj &
promded H 2 (256D)5.

e |
PROOF. Follows since K > 30 from the arguments preceeding the lemma.

'LEMMA 3.4. We have,

| X sva < 18{1 Flso) P +15dpC* (3 20)*2000}
An<Y?

+ (35?)2 K2y+Bp? (Eszzp -1—2%3)"2 7

{+—@';,"'T; o wen, | Fl0) P Bz (Sin? (20)) | o }

w— S dw
g e /w«mm(ulEzp(Sm ( - )) Pt

Re w=0

where

We have used H > (256D)F and Y? > 10C. Also since 25y < 2B we have
J <12+ 4 log(2B log H) by Lemma 2.3, with By = 2B. In the last but one
integral note that | w — s |> E}‘H’-

PROOF. Foliows from Lemma 3.3.
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STEP II. In this step we obtain a lower bound for

3H

hil G
/H | ¢(80) |? dty where p(sg) = Z —%A
i Angr2m

and Y = Hloglog H pyt 4, = TJ,?“H and M; = {%—D—] and assume that
H'-¢ > 24000C%D. Also we put

)= T (558)800= T (5ra)

m< M Y2>Aa2 M +1

and assume H > Ezp(e®) so that loglog H > e. To start with observe that
| A 1< 3 and that '

| ¢(s0) I°2] A(s0) I” +2Re(A(s0)B(s0).

Hence by putting A = u; +us + -- -+ u, where 0 < u; < U,5 =1,2,3,---,r
and 2rU < -;‘-H we have

3H CLOS 5 A,
T Le(so) Pt > U [ dup oo f dus fu (7 olso) 1P dto

s
> I + Re(zfg),

3H sl
where I} = _,ZiUU | A(sy) |1 dtg and
4
U U SH-rU+A
B = U"/ du,---/ dul_/ A(s0)B(sa)dto.
0 0 242

By a well-known theorem of H.L. Montgomery and R.C. Vaughan we have

H ;
L2 > (% -2rU -100C%*m) | am P A0 1A ).
2
m<M;
We now assume that -ii > 2rU + 100C2M;, so that we can replace the

quantity in the common bracket here by the lower bound 1 H. Note that for
n < 1”1
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8
(if # > 12) > 1 and that A;* > (MiC) T B > e~ Thus with M; =

[H'-%(8006C6D)-1] and H > 12C, we have,

H H -8 2
R e Z N
16 16 2<n< M,

Now we turn to 7. We have

-r-1
Bl<UT Y {mnm(togﬁ) AmAnr“}

m<M) ,m>Mj +1 A"l
Ap<Y?
(where we have written A,, and A, with an obvious meaning namely the
A’s associated with )\, and Ay) |

—r-1
su-’(z | Amtm I) S 1 Bnan | (log) | 2

m< M n>Mj 1
- An<y?2

Here the m-sum is

= 303
<3 E £ -100C-1 » 279 €
<3 Ezp(DH®) ) ), < wOEzp(DH )

n=1

by Lemma 2.1. The n-sum is

<3 Y Ianl(logx’f;l—)_'

-1

AM1<AlSY2
A —r-1
<3 ( M, +1)
3 Yl (log dan
Anﬁf<kn5235ﬁ

+3 Ezp(DH®) Y I;10C0-1(jgg 2)-"-1
An>2AA&

<3 Ezp(DH®) Y a;lC-1(an0nH
Argy <An<2A0q

r = = . A -
+3 Ezp(DH?®)2 +1,\ g;\ A;100C-1 (gince log—’;g:'—’ > (C2My) ™),
n Lll
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T € (1—e) \(r+1)
< 35(20) 2 Exp(DH*) (dimrp)
(if M; > 2,ie. if H > (24000C%D)E)

Here we have used Lemma 2.1.
Thus

_ » l~g r+1
12| < 3B.2. Bzp(2DH®) - %(8C?) MU (i)

< Ezp(2DH*® )(“—()Z‘Tb‘) (m)-%%ﬁ)r.

We have to satisfy & > 2rU + 100C*M; and by the definition of M; (via.
My = [H'"¢(8000C®D)~"]) this is satisfied if U = 5ilmrs,r = [ADH?] and
8 > Ay + {55 which is clearly satisfied. Thus

|21 | < qmamrpEzp(2DHE — 3DH*)
< £
Of course M; > 2 requires H > (24000C®D)F. Collecting we have the
following result.
Let o(s0) = Y, (anA;*0A) where Y = H'9o0 H gnd A is as ezplained in

An<Y?
Step 1. Then

. H
/ (o) [Pdte> 2 4 Hps 5 g, 2
!4{' 32 16 2<n<M;

where My = [H'~¢(8000C%D)~}] provided H > (24000C®D)E and D >
256002,

STEP III. (CONVEXITY). We begin by stating a convexity theorem of
R.M. Gabriel [G]. Let z = z + iy be a complez variable. Let Dy be a closed
rectangle with sides parallel to the azes and let L be the closed line segment
parallel to the y-azis which divides Dy into 2 equal parts. Let Dy and D,
be the two congruent rectangles into which Dy 1is divided by L. Let Ky and
K3 be the boundaries of Dy and Dy (with the line L excluded). Let f(z) be
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analytic in the interior of Dy and continuous on the boundary of Dy. Then,
we have,

L1y dzi (jK | F2) 1Y dzi)%(Lzlf(Z)!°ldz I)%,

where ¢ > 0 15 any real number.

(See Theorem 2 in the appendix to [R], for a proof). We now slightly extend
this as follows.Consider the rectangle 0 € z € (2" + 1)a (where n is a non-
negative integer and a i8 a positive number), and 0 < y < R. Let I, denote
the integral fOR | f(2) |1? dy where as before z = z + iy. Let @, denote the
maximum of | f(z) [ on {0 € 2 € a,y = 0,R}. Then we have as a first
application of the theorem of Gabriel.

I < (To + 48Q124)? (I2a + 4aQ24)%.

We prove by induction that if b,, = 2™ + 1, then

I. <

1

(fo + 2200, ) ¥ (I + 22"+ 00Qus, )T 7 (1, + 26m400Qys,, )7

We have as a first application of Gabriel’s theorem this result with m = 0.
Assuming this to be true for m we prove it with m replaced by m + 1.
We apply Gabriel’s Theorem to give the bound for I,;,, in terms of I, and
Iab,. - We have

1 1
Iab,. S (Ia 4 2bm+laQabm+|) + (Iabm+1 + QGbm+1 Qabm.“)i

since as we can easily check binyy = b + b — 1. We add 220%+1) g Q  to
both sides and use that for A > 0,B > 0,Q > 0 we have

VAB +Q <\/(A+Q)(B + Q)

which on squaring both sides reduces to a consequence of

(VA - VB)? 2 0. Thus
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Lp, + 22m+aQ,, <

(Ia +a (2bm+1 + 22(’““)) Qobm+1)

-
B

(-Iabm+z +a (2bm+1 = 22(m+1)) Qabm+1)

Now 2bmsy + 22041 < 920m+2) j o 2(2m+1 4 1) < 3.220m+1) which is true.
Since § — yagr + gy = 5 — gy the induction is complete and the required
result is proved. We state it as a

CONVEXITY THEOREM. Form=0,1,2,.--,n we have

1
~ ST

e

% . .
e (10 * 22(1"“)‘1(2@".)* (Ia . 1 22(m+"aQabm)
1
S (Iabm + 22(""4‘1)&(")”})’") am 1 .

STEP 1V. (FINAL DEDUCTION).
We now go back to Lemma 3.4. Wehave Y > H? and so if H > 1002,

12000 2 ~200C 200C , ~200C ~200
| —-a8] s 2 gpmeyrw g B L EO L
10000 \ C = 10000 10000 H? 10000 H?

since 2= ~ 20 > H (-g- - QC) > 8HC. Let

128\% 4p oo (g H \
(-2-7-;) YR (Ezpﬂzp~1283)

IA

16

and

K°|{ ExpEr £ )H1<1‘
(” sy =™

The second is satisfied if (note B = DH®)
H > (256D loglog K)E,

The first is satisfied if

1-g

EzpEzp (55612) > 88BY %8 = 88D H HPH logleg H

_ . . # g3l 23
This is satisfied (since 88 D ¢ g 2D oalog H < o+ < 207 jif

1-¢

EzpEzp (Eﬂgﬁ_ﬁ) > Ezp(HY)
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ie. if Ezp L= > H*. This is satisfied if Ezp £+ > H which is implied
2560 102D p

~c\ BB '
by ({&—m { }'@gl)n' > H which is implied by H > (3072D E)*%. Thus by

Lemma 4 and Lemma 2.3 we obtain

H H sf < 2 £ 2
AT Y. lanl*) <16 | F(so |* dtot

H
2<n<M: T
+2 1 18 (1og H)8(12 + 16 log H)zj | F(w) || dw |
R TE | Tigim =<1 '
Now (1 ) i
16(log H)~ 2 . 16 —6(6a)2
—_— < — 2 <<
Gr P (12 +16 log H)* < —(log H)™°(28)* <1

if (log H)® > Q%@l ie if H > 6. Also ifﬁg—ss > }"} ie if H > 8v/33 then
the result in question becomes

— 4 B 2) <186 YIF 2 dto + 2IF 24
+ - E ar s i / 1 !
33 166 1 [*] < /:, | F(s0) |° dto - (iv) |* dv

2<n< M,

If fr | F(iv) | dvzsai’um’ine-s( > lan!z) i follows that
2<n<M

f(f’ | F{iv) |* dv > lg;s” (H > loa \2) . Otherwise it follows that
n<M;

ek H H
2 -8 2
/ﬂ | F(so) [ do 2 o5~ = + 55 17¢ ( 2. !"'"‘)'

4 2<n<M;

Starting from this we now deduce a lower bound for fOH | F(iv) |* dv. We
do this in a series of Lemmas.

LEMMA 3.5. Let |0 |<2B,0< Ty < &, < T, < H,H > 64B. Then,
we have,

2H
i | F(o+it) * dt
4

3H .
<} [m dv( i | Flo+iv) || Bep(sin® (i) |dt0)
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PROOF. Consider the contribution of the RHS from & < v < 2H. The
integral with respect to g is

su -
f‘if Ezp(-sinh? (4it)) dip = fu-é?- Ezp (—w.smh2 ) du

P
> fo' Ezp(-sinh? gy) du (since v~ 32 < 0 and v~ & > 0 and their
difference is { H)

H
= 8B [#*% Ezp(—sinh? u)du > 8B Ezp(—sinh* 1) > B

(since sinh?1 < £=2te® < 9241 _ 9 and ¢? > }). The lemma is
completely proved.

We now apply the convexity theorem with ¢ = 2, f(z) = F2(2)Ezp (Sin? (354))
(where 8o = a + itg,a = g ) to the rectangle bounded by the lines z =
0,z = (2" + 1)a,y = T1,y = T» and choose n such that B < z < 2B,(B =
DH?),ie. E-1<2m < 28 (observe that 22 —1 > 2(£ ~1)). Weneed an
upper bound for 22("+1) g which is plainly a-4.(3-§)2 < 4(log H)D?H* < H*
(if H > 4D%), .

Al30 Qqb, < K?maz | Ezp (Sin® (3552)) |, where the maximum is taken
over 0 < z < 2B,y = T3,y = T and hence (with the condition -’} <ty <
3 H. L >2ie H2> (16 D)P) we have

64D ~ H?
under the conditions imposed at the beginning of this step. Hence by our
convexity theorem we obtain

1~g\ 1
22(m+1)aQGbm < K2H4 (Esz:cp H ) < .._1__

1

1\? L\T-7% T / 1\
L (htgs) (ltgs) (r+ )

where I* is the integral over z = (2™ + 1)a fixed already. All the integrals
contain a parameter {g. Now we integrate with respect to tg in ¢ H <t < 3”
and get by Hdlder’s inequality,

LEMMA 3.6 We have,

[ nao ([ (0o ) an) (5 (e o))

4 4
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LEMMA 3.7. We have,

3H

f ¥ I"dty < 100BH.

AE:

PROOF. LHS does not exceed (by Lemmas 2.1 and 2.2)

3H

= 101 . a*+iy—a —1ilg
/ﬂ dto (/T] (100) Isz(Szn ( 5B )) )dy)

4

(where a* = (2" + 1)a(< 2B))

< 77.:’ }8(1) ( . | Ezp (Sm (___%_B__..“"H ‘“'it“)) | dto) dy
< f72 38(64B + 32B) < 100BH,

by breaking the last but one integral into | ¥ — #; {< 16 B (from which the
contribution is 648) and using over the remaining portion

wl
/ - < 4/ (Eszzp (ST;)) du < 32B.

This proves the lemma completely.

LEMMA 3.8. We have,

3

ks

*h

3H
i
I*dto < 56100 /H Ladto
T

and
BH

> 2
f Ladto B/ | Flo+ito) [* dto > =

PROGQGF. The first part of the second inequality follows fromn Lemma 3.5.
Its second part follows from our assumption preceeding Lerln—ma 3.5. By
Lemma 3.7, LHS of the first part is < 100BH < 56100 fH‘ I, dty. This
completes the proof of the lemma.
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3!1
Now fH (I* + —7) dtg < 56100 f;, ( T —I;}y) dt as is shown by Lemma
3.8 and so by Lemma 3.6

IH 3H

2 3 1 ; ES 1 7
JARCE (]¥ (Io+ Hz)dto) (/{} (1 +Ii1_) dto) (56100) 7T

T

Also by the second part of Lemma 3.8, we have

3H 3H
i i 561 561 /—— /-
P < == I <1
f% pdtg S H™ = 56] <= dty <107 | ¥ Ldto

i
under the conditions imposed on H. Note that (56100)7%%T < (56100)]5 2
2% since D > 2560. Thus since (1 + 10-%)227 < /2 we obtain

LEMMA 3.9. We have,

3H

IH
1 1 H 2
< < ) |2 —
/a . Tadto <2 (/ Todto + H) < 1923/0 | F(iv) |* dv + 4.

PROOF. The second part of the inequality follows exactly as in the proof
of Lemma 3.7.
From Lemma 3.8 it follows that

kPed = 2

Y

]aﬂ|2.

~

2<n< My

Thus by Lemma 3.9 we obtain

H . 2 H 1 8 ] 1
L' 1 F(iv) [P dt 2 w5y {33 + 38 Z | an | } ~ 96DH
2SnSM1

(:—B
> e {:%4 +% 2. lan |2}
2<n< M;
provided 96 H? > 192 x 17 % 33 x 34 i.e. H? > 2 x 17 x 33 x 34. This is
satisfied if H > 34 x 6 which is clearly satisfied by the conditions imposed
on H.

Collecting we obtain
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LEMMA 3.10. Under the conditions on H,e and D imposed already, we
have,

/H|F(iu)|2dv> He S el
0 “TexiTx192, 5 '

where My = I ] Note m > 1078, All the required conditions
on H,e,C,D are satzsﬁed by

D > 2560C2, H > maz {(2561) loglog K, (24000 C°DEYF} .

This proves the seventh main theorem completely.
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FINAL REMARK.

PROVE OR DISPROVE THE FOLLOWING CONJECTURE

For all N-tuples of compler numbers a;,as,---,an with a; = 1 and for all
N > H > 10000,

T / Z a.n® |2 dt > (log H)™1%0 3" |a,|2.

n<N 11.<H'l'10'
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