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§ 1. INTRODUCTION AND NOTATION. In the paper vnl4l of this 

series (for the earlier papers of the series see the list of references in the paper 

VII[4l) K. Ramachandra started a new problem "Let ,, = rr +it, T T0 . For 

what values a: = a:(T) the rectangle (a a:(T), T t 2T) contains 

infinity of zeros of a generalised Dirichlet series of a certain type?" (In 

the earlier papers of this series he and R. Baslasubramanian, sometimes 

individually and sometimes jointly, considered the problem where a: = a:(T) 

is independent of T). Since the series considered in that paper were too 

general the answer ( a(T) = - T) was perhaps too weak. In the 

present paper we consider some of the Dirichlet series of the form F( s) = 
00 

L which were considered in the paper vl3l of this series. (The 
n.:=:l 

method of the present paper does not succeed for all the series considered in 

Vl3l let alone those considered in VIl2l). Before we recall the general series 

of Vl3l, we record two neat results (the second being deeper than the first) 

as two theorems. In what follows Tis the only variable and we assume that 

T exceeds a large positive constant. 

THEOREM 1. Let {x(n)}(n = 1,2,3,···) be any sequence of complex 
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numbers with Ex(n) = 0(1). Let, as 1J.Sual, s = u +it. Then the number 

00 

of zeros of ((s) + 'E(x(n)n-•) in the rectangle 
n=l 

1 3 I 

{tr 2" - Co(loglog T)-'I,T::::; t::::; 2T} 

is > T(loglog T)- 1 for a suitable positive constant Co. 

THEOREM 2. Let 1 = At < A2 < Aa < · · · be an infinite sequenvce of 

real numbers such that for n no {no, a constant}, A.. is the restriction to 

integers of a twice continuously differentiable function g( :z:) of a real variable 

:z: with the following properties. 

(1) As z-+ oo,z-1g(z) tends to a positive limit. 

{2) There exist positive constants a and b such that for all z no, we have, 

a ::::; g'(z) ::::; b 

and 

a::::; (g'(z))2
- g(x)g"(z)::::; b. 

00 

Then the number of zeros of F(s) = 'E((-l)nA;•) in the rectangle 
n=l 

is > T(loglog T)-1 for a suitable positive constant Co. 

. 1 /3 p(l) /3(2) h p(l) d /3(2) REMARK. Forn = 1,2,3,· ··, et n == n + n w ere n an n are 

two bounded monotonic sequences of real numbers. Then for n n0 we can 

replace An by A..+ f3n and the result is practica.lly unchanged (i.e. except 

for a change of Co). 

The general theorem is too lengthy to state. We now proceed to state 
00 

it. We consider series of the form F(s) = where A., has been 
n=l 

introduced already (the change of An to An+ f3n mentioned in the remark 
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below Theorem 2 is certainly permissible in what follows). Let /(z) be a 

positive real valued function with the following properties. 

(1) /(z)z"' is increasing and /(z)z-"1 is decreasing for every '1 > 0 and all 

z :co{ 71). 

(2) For n a I (f(n))-l 

(3) For all z 1, L I bn+l - bn bf(z). We next assume that {an} 
z<n<2o: 

and {bn} satisfy one at least of the following two conditions. 

(4) Monotonicity condition. Let an(n = 1, 2, 3, · · ·) be a bounded se-

quence of complex numbers such that :z:-1 l:an tends to a non-zero limit 

(which may be complex) and further I bn I A;;"" is monotonic decreasing for 

every 1J > 0 and all n no(7J). 

(5) Real part condition. There exists an infinite arithmetic progression 

J of positive integers such that 

and 

We are now in a position to state our general theorem. 

00 

THEOREM 3. Let F(s) = :L(anbn,X;,"') be as described above. Let 
n=l 

Ezp( -..jl{i'iZ) f(z) for x xo. Let /3 be a positive constant < and 

that F(s) can be continued analytically in (u {3, t !T) and here 

maz I F( s) TA1 where A1 2 is a positive constant. Finally let 
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where A2 > 2 is a constant. Then the number of zeros of F(s) in the 

rectangle 
1 3 I 

{a 
2

- Co(loglog T)! (log T)-1, T t 2T} 

is> T(loglog T)- 1 where Co 0 is a certain constant. 

REMARK 1. The restriction of the theorem regarding the upper bound 

for the mean square of I F(! +it) I is very strong. Practically (since the 

mean square can be proved to be > (f(T))2
) it forces us to consider the 

series of vl3l, with the extra restriction f( z) (log z )A for some constant 

A ;::: 2 and all z x0 (A). Further the restriction f(x) Exp( -....j[(igi) 

forces us to consider only a sub-class of functions considered in V[3l. It may 

be remarked that the mean square hypothesis is satisfied for all functions 

considered in Vl3l by imposing f(z) z)A . 

. ... REM.AltK 2 ... .A..,nice example of the functions covered by Theorem 3 is 
00 

'L:({-1tEzp(-y'10g1i)n-•). It may be noted (as a special case of a very 
n=1 
general Theorem [1]) that this is an entire function. 

REMARK 3. In the theorem it is not difficult to relax the rectangle of 

analytic continuation to (u {3,T :$ t :$ 2T) and replace the mean-value 

condition by 
1 {2T 1 
T JT I F(2 +it) (log T)A2 

where .42 2 is a constant. 

REMARK 4. It is possible to generalise our results further. As a simple 
00 

example we can in Theorem 1 replace ((s) + l:(x(n)n-•) by 
n=l 

00 00 

K-•(((s) + L(x(n)n-•)) + 
n=1 n=1 

where Ed..= 0(1), K is a positive constant, I ).m- Kn (100)-1 for all 
n<z 

m,n,1 <i:: An+1- >. .. and finally>. .. == O(n). 

REMARK 5. We have imposed the restriction f(z) Ezp(-.,;rog-i) for 
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z ;::.: zo to obtain some worthwhile results, but it is possible to obtain weaker 

results by relaxing this condition. 

NOTATION. The letter A with or without subscripts will denote constants 

;::.: 2. The letter C with or without subscripts will denote positive constants. 

§ 2. A GENERAL LEMMA. Let 1 = At < >.2 < >.3 < · · · be an infinite 

sequence of real numbers with 1 > An+l- A..> 1 and {kn}(n = 1,2,3, · · ·) 

be any sequence of complex numbers such that kt = 1 and the series ¢( s) = 
00 

is convergent in a::::>: A1 and is continuable analytically in (a::::>: 
n=l 

,8,T- (log T)2 t T +(log T) 2
) and there max I ¢(s) TA 2

, where 

fJ < i is a positive constant. Let 

1 h2T+(log Tj2 1 
-T . I¢(-+ it) 12 

dt T)A 3
• 

T-(log T)2 2 

Then, we have, 

1 h2T+l - . I ¢(a+ it) 12 dtda (log T)A 4
• 

T T)-1 T -1 

REMARK. This lemma is well-known to experts in the subject and so its 

proof will be postponed to the last section. Also it is possible to replace 

(log T) 2 by a constant multiple of log log T. 

§ 3. THE FUNCTION F2(s). As in VJ[2l we introduce the function 

(in VIl2l we have used the kernel Exp(W4a+ 2
) but we now use the kernel 

Exp((Sin W) 2 )) 

00 

F2(s) = 
n=l 

where Dis a large positive constant and for x > 0 is defined by 

] 12+ioo W dW 
= F(W)xw Exp((Sin -

0 0
)2 )-W . 

.:,'Jn 2 -ioo 1 0 

As in VI[2l we have 
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LEMMA 1. Let q be any real constant satisfying /3 < q < Then we have 

the inequalities 

(1) 

and 

(2) 
1 rT I 

T lr I F2(q +it) I> T'I-q f(T). 

PROOF. Similar to the proof of Lemma 10 of VII21. 

LEMMA 2. Let T be an integer. Then the number of integers M in the 

range T M 2T - 1 for which 

exceeds C2T. 

PROOF. Similar to that of Lemma 4 of VII2l. 

LEMMA 3. There exist at least C3T(loglog T)-1 points t; with 

and such that any two points t; and t;' with j ::f. i' differ by at least 

C4loglog T 

REMARK. Here C4 is arbitrary and C3 depends on it. 

PROOF. Follows from Lemma 2. 

LEMMA 4. Let r be a constant satisfying /3 < r < q Cs = 
and H = C5loglog T. Then 

l
t;+H 

t;-H I F2(r +it) c6v loglog T 

where V = Tt-,. f(T) for at most C1Ci1T(loglog T)- 1 points t;. 

REMARK. Here C6 is arbitrary and C1 is independent of C6. 
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PROOF. By (1) of Lemma 1, the sum over j of the quantity on the LHS 

does not exceed C1 VT and this gives Lenuna 4. 

LEMMA 5. There are at least iCaT(loglog T)-1 points t; seperated by 

(distances) at least C4loglog T such that if H = loglog T then with 
I 

V = T,_,. f(T), we have, 

l tj+H I F2(r +it) I dt c6v loglog T. 
tj-H 

REMARK. Here C4 iS' arbitrary and Ca depends on it. 

PROOF. The lemma follows by choosing a large C6 in Lemma 4. 

LEMMA 6. Uniformly in a with q < ao a < ! , we have, for the points 

t; of Lemma 5, 

l
tiHH W dW 1 

I F2(cr + iv)Exp((Sin 
1000

)2) W I> CaT'I _ ... f(T)(loglog T)-9 

. 

where cro is a constant W == cr- q + iv, and() = 

PROOF. Put so== q +it;, we have 

F2(so) = j F2(so + W)Xw E:cp((Sin 
1000 

where the integral is taken over the ( anticlockwise) boundary of the rectangle 

bounded by the lines Re W == r- q, Re W = cr- q,lm W = ± ll. We take 

the absolute values (using Lemma 3) of the integrand on the RHS and choose 

X = C8T(loglog T)(q-r)-
1

, where Cs is a large positive constant. This leads 

to Lemma 6. 

LEMMA 7. Given any u in uo u < t, there exist points v; satisfying 

t;- 2H v; t; + 2H, such that uniformly in cr there holds 

I F2(a + iv;) I> CgT!-a f(T)(loglog T)- 8 

where 0 = (2(q- r))-1
. 

REMARK. Note that v; are seperated by (distances) at least T 
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where c4 is at our disposal. 

PROOF. Follows from Lemma 6. 

LEMMA 8. Given any u in uo ::; u < ! there exist points Pi satisfying 

vi - H ::; Pi ::; vi+ H such that uniformly in a, there holds, 

I F(u + ipi) I> C10Tt-u /(T)(loglog T) - 8 

where (} is the constant defined before. 

REMARK 1. Note that Pi are seperated by (distances) at least !C4 loglog T . 

Also the number of points Pi is at least !C3T(loglog T)-1
. Here C4 is arbi-

trary and C3 depends on it. (Both are independent of a). 

REMARK 2. We can refine the lower bound for I F(a + ipi) I but we do 

, not do it since it does not have an application. 

PROOF. We start with 

F2(a + iv;) = j F(u + iv; + W)Tw (1- D-w)Exp((Sin )2
) dW 

2n 1000 W 

where the iiltegration is over Re W = 2. We break off the portion I v 12: 
C11 loglog T with a small error and move the line of integration in the rest 

toRe W = 0. Here Cu is a specific constant and not arbitrary. We now use 

Lemma 7 and majorise the integrand. This leads to the lemma. 

The rest of the proof consists in proving that at least !C3T(loglog T)- 1 

of the rectangles 

{ 
1 3 I } 

a 2: 2- Co(loglog ,p;- H ::; t ::; Pi+ H 

contain a zero ofF( & ) if Co is a large positive constant. This would complete 

the proof of Theorem 3. 

§ 4. TWO APPLICATIONS OF BOREL-CARATHEODORY THE-

OREM. Suppose that the rectangle 

1 
{u 2: 2- K6,p;- H::; t::; P; + H} 
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is zero free for F(s), where 5 and K are positive quantities to be chosen in 

the next section. (The quantity o will be chosen to be small and K to be 

large). 

LEMMA 1. (Borel-CaratModory Theorem. See [5) page 174). Suppose 

G(z) is analytic in i z- zo Rand on I z- zo I= R we have Re G(z) :::; U. 

'l'hen in I z- zo r < R, we have, 

2rU R + r 
I G(z) R- r + R- r I G(zo) I . 

REMARK. The r of this lenuna is not to be confused with that of the 

preceeding section. 

LEMMA 2. In the rectangle 

1 
{u 2:: 2 -· (K- l)o,pi- H + C12 t H - C12} 

we have, 

I log F(s) cl36 -
1log T . 

PROOF. Choose zo to be a point in 

where log F(s) is bounded and then take R to be such that the circle with 

centre zo and radius R touches u == t - K 6 and lies within the rectangle 

{u l- Kti,pi- H t H}. Next chooser= R- 5. This proves 

Lemma 2. 

LEMMA 3. Let Mi denote the maximum of I F(s) I in {u t•Pi - H :S. 

t S: Pi+ H} . Then, we have, 

'f)·1J T(log T)A 5
• 

j 

PROOF. Let M; be attained at s; say. Then MJ is majoriscd by the mean 

of i F(s) 1
2 over a disc of radius (log T)- 1 with centres;. The leuuna uow 

follows from the general result of § 2. 



30 R. Balasubramanian and K. Ramachandca 

LEMMA 4. We have, 

Mj?. (log T)11A5 

for at most T(log T)-10 values of j. Hence we still left with at least 

CsT(loglog r)-1 values of j for which 

REMARK. From now on we restrict j only to these values. 

PROOF. Follows from Lemma 3. 

LEMMA 5. In the rectangle 

{u?. 5,p;- H + C12 S t S Pi+ H- C12} 

we have, 

llog F(.s) IS C145- 1loglog T. 

PROOF. Choose zo to be a point in 

{u?. 2,p; - H + C12 S t S P; + H- C12} 

and then take R to be such that the circle with centre z0 and radius R 

touches u = lies within the rectangle {u?. l•Pi- H S t S Pi+ H}. 

Next chooser= R- 5. The lemma now follows from Lemma 4. 

§ 5. COMPLETION OF THE PROOF. Suppose that for a certain j, 

the rectangle {u ?.!- K5,l Pi-t ISH} does not contain a zero of F(s). 

We obtain a contradiction in the following way. Put so = O" + ip; where 

u = l- 5, and also let u1 = l- (K- 1)5, 0"2 = u, and us = l + 5. We apply 

maximum modulus principle to 

,P(W) =log F(so + W)Xw Exp{(Sin 
1
:

0
)2

) 

according to which 

I T/1(0) max I 1/J(W) I 
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maximum being taken over the boundary of the rectangle bounded by Re W = 
-(K _ 2)6,Re W = 26,Jm W If 5;::: 6(log we have (by a 

suitable choice of X and C4) 

6 

2 
log T 5 6 log T- 3..)log T 511/J(O) I 

5 C15(6- 1log T)k(6- 1 loglog T)¥. 

We now choose K = loglog T and obtain 

6 
2 log T 5 C166-

1
loglog T. 

This is a contradiction if we choose 6 = C11(loglog T)4 (log and Cf7 > 

2C16. This proves Theorem 3 provided we prove the general lemma of§ 2. 

§ 6. PROOF OF THE GENERAL LEMMA. Let e > 0 be arbitrary 

but fixed. Then in {cr;::: J3 + e, T 5 t 5 2T}, we have, by Cauchy's theorem 

I ¢/(s) 1::; TA 2 +l and so in {I cr-t 15 r -4
A 2 ,T 5 t::; 2T} we have 

1 
l¢l(2 +it) - ¢2

(u +it) 15 1. 

Hence it suffices to consider in th.is rectangle the portion I u- t r-4
A 2

• 

If now l ·- (log T) -· 1 < cr < 1.- T- 4 A2 we have 
2 - - 2 

the contour being the (anticlockwise) boundary of the rectangle bounded 

by Re W = {3 - cr,Re W = i -- u,Im W = ± log T. We choose X to be 

a large power of T so that the integral over the left boundary is negligible. 

Clearly the integrals over the horizontal boundaries are together negligible. 

We take absolute values and integrate with respect to t from t = T to 

t == 2T. This leads to the result since on the right boundary j xw I 5 1 and 

f I d: I« log T . 

If now u + r- 4
A2 we start with 
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tb.e contour being the ( anticlockwi::2) boundary of the rectangle bounded by 

Re W = i - u, Re W = 3A1 - u, I m W = ± log T. The proof proceeds as 

before using ¢(s + W) = 0(1) on the right boundary and negligible on the 

horizontal boundaries and the fact f I l<t: log T on the left boundary. 

Thia .:ompletes the proof of the general lemma. 

Theorem 3 is now completely proved. 
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