10.46298/hrj.1993.126
https://hrj.episciences.org/126
Erdös, Paul
Paul
Erdös
Sárközy, András
András
Sárközy
On sets of coprime integers in intervals
If $\mathcal{A}\subset\mathbb{N}$ is such that it does not contain a subset $S$ consisting of $k$ pairwise coprime integers, then we say that $\mathcal{A}$ has the property $P_k$. Let $\Gamma_k$ denote the family of those subsets of $\mathbb{N}$ which have the property $P_k$. If $F_k(n)=\max_{\mathcal{A}\subset\{1,2,3,\ldots,n\},\mathcal{A}\in\Gamma_k}\vert\mathcal{A}\vert$ and $\Psi_k(n)$ is the number of integers $u\in\{1,2,3,\ldots,n\}$ which are multiples of at least one of the first $k$ primes, it was conjectured that $F_k(n)=\Psi_{k-1}(n)$ for all $k\geq2$. In this paper, we give several partial answers.
episciences.org
prime number theorem
pairwise coprime integers
[MATH] Mathematics [math]
2015-06-12
1993-01-01
1993-01-01
en
journal article
https://hal.archives-ouvertes.fr/hal-01108688v1
2804-7370
https://hrj.episciences.org/126/pdf
VoR
application/pdf
Hardy-Ramanujan Journal
Volume 16 - 1993
Researchers
Students