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On sets of coprime integers in intervals

P. Erdds and Sarkdzy !

1. Throughout this paper we use the following notations : Z denotes
the set of the integers. N denotes the set of the positive integers. for
ACN,me¢ N,ue Z we write A,y = {6 : e € A, a = u(mod m)}. p(n)

dencies Fuler’s function. p denotes the B™® prime: py = 2,p2 = 3.--- and
k

we put P = Hp.-, If ke N and k > 2, then €;(.A) denotes the number of
the k-tuples ((;:,---,ak) such that a1 € A,---,ar € A,ai < a2 < --- < ag
and (a;,8; = 1) for 1 <i<j<k.IfkeNACNand $,(A)=0,ie, A
does not contain a subset S consisting of k pairwise coprime integers, then
A is said to have property Py, and I'; denotes the family of those subsets
of N which have property Pr. We write

Fi(n) = max_|Al.

AET

(In other words, t = Fi(n)+ 1 is the smallest positive integer such that every

4

set B with B C {1,---,n},| B |= ! ccatains k pairwise coprime integers).
Moreover, for k,m,n ¢ N we write
(1) gr(m,n) = max | Al

AC{mm+1, - mtn-1}
AET
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and
Gi(n) = max g(m,n)
melV

so that, clearly,
(2 (9x(1,n) =)Fi(n) < Gi(n).

For k,m,n € N, let Yx(m,n) denote the number of those integers u €
{m,m+1,--.,m +n— 1} which are multiples of at least one of the first k
primes, and write

\In.(n) = 1/)1‘(1,11).

The set A % {a:a€e{mym+1,---,m+n—1},(a, Pr_y) > 1} has property
P, and thus for this set A we have

(3) gx(m,n) 2| A= Ye_1(m,n),
in particular,
(4) 9x(1,n) = Fi(n) > Yi_1(1,n) = ¥x_1(n).
Clearly for all m,n € N we have
Ye(mn) =|{u:m<u<m+n,(u,P)>1}|=

“{u:m<u<m+n}| - u(@) | {u:m<u<mind|u}|=
d| Py

(5)
=n- zl‘:n(d) (=3~ - [3))
d|P,
whence

| x(m,n) - (1'— fl (1 - %)) nl=

=1

=] (n- > u(d) ([=52] - [%])) - (ﬂ" Zﬂwa) I<

d{Py diP,
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(6)
< Iu@ Il [=5] - 3] -5 1<
d|P,
<Y (=l -= 1412 -3 ) <2) =201
d|P: d|P:

If P; | n, then we have | {d: m < u < m+ n,d| u} |= n/d thus it follows
from (5) that

n . . 1 i
(Y tw(mn)=n- %u(d)z =11~ g (1 — ;’1—) n for P; | n.

In particular, we have

Ui(n) = Ye(l,n) =|{u:ue N,u<n,(ubP)>1} |=

(8) == Y wd) [7:] foralln € N
dPy d>1

k

¥i(n) = (1—H (1 - —;:)) nforne N,P |n.
i=1

Finally, for k,2,m,n € N,h; g(m,n) denotes the maximum of the car-
dinalities of the sets A suchthat AC {m,m+1,--- . m+n—1},(a,P)=1
foraliaec Aand A€T,

2. It is easy to see that

(9) Fy(n) = #1(n) = 3]
and .
R = %a(m) = [2] + [2] - [§] (=3 forein).

Erdos, Sarkézy and Szemerédi [3],[4] extended and sharpened these state-
ments in various directions, Erdds conjectured long ago (see, e.g., [2]) that

(11) Fi(n) = ¥i_1(n).
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Szabé and T6th [5] proved this in the special case k = 4:
1"4(1’1) = ‘I’a(n).

However, the general case seems to be hopeless at the present.

In this paper, our goal is to study the case of general k and to prove
several partial results. In particular, in sections 3 and 4 we will study the
connection between the functions Fi.(n) and Gk(n). In section 5, the function
hx,g(m,n) will be studied. In section 6, we will give an upper bound for
Gi(n). Finally, in section 7, we will generalize several results proved in [3]
and [4] by estimating ®x{A). -

3. By (2), Fx(n) < Gi(n) for all n. First we remark that for £ = 2 and
3, both < and = occur infinitely often in this inequality.

THEOREM 1. Ifm,u,v € N, then
(12) g2(m,2v) = v,
(13) ga(2u,2v+1)=v +1,
(14) g2(2u-1,2v+1) = v,
(15) ga(m,6v) = 4v,
(16) g3(6u — 5,60 — 1) = 4v — 1,
(17) g3{6u,bv — 1) = 4z,
It follows trivially from 'i‘heorem 1 that
COROLLARY 1. For all v € N we have
F(2v) = G(2v) = v,
G2+ 1) =v+1=FRuv+1)+1,

F3(6v) = G3(6v) = 4v

and
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Gy(6v — 1) > dv = F3(6v - 1) + 1.

PROOF OF THEOREM 1. (12),(13) and (14) are near trivial, thus we
prove only (15),(16) and (17). By (3) and (5), for all m,n € N we have

(18) ga(m,n) > ¥P(m,n) = N1 + N2 - N3
where
Ni=|{a:aec {mm+1,---, m+n—-1},2|a}|,

Ny;=|{a:ae{mm+1,..-, m+n-1},3|a}|

and

N3=|{a:a€ {mm+1,---,m+n-1},6]a}|.

It is easy to see that

19) Ny =3v, Na = 2v and N3 = v for all m and n = 6v,

(20) Ny=3v—-1,N,=2v-1land N3=v—-1form=6u—-5n=6v=-1

and

(21) Ny =3v,N2 = 2v and N3 = v for m = 6u,n = 6v — 1.

It follows from (18), (19), (20) and (21) that

(22)  ga(m,6v) > 6v,93(6u — 5,6v — 1) > 4v — 1, g3(6u,6v — 1) > 4v.
Now we will show that

(23) _ 93(2,6) <4 forall teN.

In fact,if AC {t,t+1,---,i+ 5} and | A |> 5, then either A contains three
consecutive odd numbers or A contains two consecutive odd numbers and an
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even number divisible by either 3 or 5. In both cases, these three numbers
are pairwise coprime so that A cannot have property P3 which proves (19).
Clearly, for all k,a,b,¢c € N we have

(24) gi(a, b+ c) < gk(arb) + gk(a + b, c)'

By (23) and (24) we have

v-1 v—1
(25) 93(m,6v) < ) g3(m +6i,6) < Y 4= 4v.
i=0 =0

{15) follows from (22) and (25).
Next we will show that

(26) g3(6u — 5,5) < 3.

In fact, if A C {6u — 5,6u — 4,6u — 3,6u — 2,6u — 1} and | A |> 4, then
either A contains three consecutive odd numbers or A contains 6u—4,6u—2
and one of 6u ~ 5,6u — 3 and 6u — 1. In both cases, the three numbers are
pairwise coprime and this proves (26).

It follows from (15), (24) and (26) that

(27) g3(6u—5,6v—1) < g5(6u—>5,5)+g3(6u,6(v—1)) < 3+4(v—-1) = 4v-1.

(16) follows from (22) and (27).
Finally, by (15) we have

(28) 93(6u,6v — 1) < gg(6u, 6v) = 4v.
(17) follows from (22) and (28).

4. In this section we will show that for all k there is an integer n; such
that lim (G(nx) — F(nx)) = +oo.
k—+4oo

THEOREM 2. There is a positive constant ¢; and a number kg such that
Jorallk > ko there is an integer n, with

(29) © Gi(ng) — Fi(ne) > c1k(log k)*(loglog k)~2.
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PROOF. We need the following result of Erdds :

LEMMA 1. For a certain positive constant c3 and alln € N we can find
more than e;p,, 10g p.(loglog p,.)~2 consecutive integers so that each of them
is divisible by at least one of the primes p;,pg,k--.- »Pn-

In fact, this is Theorem 2 in [1].

By the prime number theorem, p, ~ 1 10g n 50 that p, log pa(log log p.) % ~
n(log n)?(loglog n)~2. Thus by Lemma 1, there is a positive constant ¢3 and
for all k > k; there are numbers ng,x € N so that

(30) ne > esk(log k)?(log log k)2

and each of the integers £, + 1,---,fx + nx — 1 is divisible by at least one
of the primes p1,ps, -, Pk—1. Then clearly, the set A= {tx,tx +1, -, +
ni — 1} has property P, whence

(31) Gr(nk) = gi(te, ne) = ni.

Now we will give an upper bound for Fi(n,). Assume that A C {1,2;---,m}
and A has property Pr. If ¢y < ¢2 < --- < g are primes contained in A,
then these primes form a subset of A consisting of pairwise coprime integers.
Since A has property Py, this implies that £ < k—1,i.e., A contains at most
E — 1 primes. Thus by (30) and the prime number theorem we have

| Al < |{n:n< ng,nisnot prime} | +(k-1)=
= me-w(ne)+{(k-1)<np- c4nk(10g ) trk-1<
< mny — csk(log k)3(log log k)2
whence
(32) Fi(ng) < ng — csk(log k)3(log log k)~2.

{29) follows from (31) and (32), and this completes the proof of Theorem 2.
On the other hand, we conjecture that

nE‘fmﬂup(Glz(ﬂk) — Fi(ni)) < 400



8 P. Erdds and Sarkozy

for all k {and, in fact, perhaps the lower bound in (29) is close to the truth).
Unfortunately, we have not been able to show this.

' Moreover, we conjecture that conjecture (11) can be extended to the
more geperal function gx(m,n) in the following way : forallk > 2and m,n €
N, the maximum in (1) is assumed by aset AC {m,m+1,.-- , m+n—-1}
which consists of the multiples of certain primes gy,¢s,--- ,qk-i.' However,
these primes need not be the first £ — 1 primes, as the following example
shows : Let m = 45,n = 10, k = 4, and consider

A% (a:45<a<54,(a,2-3-7) > 1} = {45;46,48,49,50, 51,52, 54}.
Then clearly, A € T so that
94(45,10) > A]=8
On the other hand, we have
¥3(45,10) =| {u: 45 < u < 54,(u,2:3-5) > 1} |=| {45,46,48,50,51,52,54} |= 7

5. In this section, we will estimate the finction hg g(m,n).

THEOREM 3.
(i) Iflc,l,m,n € N and{ > 2, then we have

(33) h(k,l)(m n) < (l 1) (

) H(p‘ -1).

(i) If k,{,m,nc WV and £ > 2, then wehave
1 / k-1 1
(34) h(“)(m Tl) > nH (1 &= 1- H <1 Bz —~) = Pk+[_1.
i=1 pi j=k+1 Pi

Moreover, if Peys 1| n, then the term Py 41 on the right hand side can be
dropped.

PROOF.

(i) Assume that

(35) Ac{mm+1,.-.-,m+n-1}
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(36) (a,P)=1 forall a€ A
and
(57 a1z -1 (5 +2) [l

i=1

Let u denote an integer for which | A(Pg,u) | is' maximal :
| A(Pe,u) |2| A(Pr,v)| forall ve Z.

By (36) and (37), clearly we have

(38) | AP 12 S5k =1 4] H(p, S -0 (G 4 2).
Define the integers £ and y, respectively, by

(39) z=u(mod Pi),z+1<m<z+ P

and

(40) z+(y—Dpe1Pa<m+n—-1<z+yps1Px

so that, by (39) and (40),

_1— P _
(y geZiE B g B Sn e Bonn

D1 = 1P Drey1be

For i € N write

A = Ap, ) {2 H((E—1)Pes1+1) Pry 2+ ((i— 1)prs1+2) Pr, -+, 2+HiPe 1 P}

Then we have
A(Pg,u) = U?:l'A"'r
thus by (38) and (41) there is an integer z (with 1 < z < y) such that

il 00 (525 +2) (o )
>——~—*—)— % erd 2 2) =t£-1
e # ) Pr+1 Pk * Pr+1Pk *
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whence
(42) | Az |> L

If a € A;,0' € A, and a > o/, then a — o’ is of the form a — o' = jP,
where j € N,j < py+1. The prime factors of j P, are smaller, than py . It
follows that (a,a’) has no prime factor greater than p;. On the oiher hand,
by a € A,a’ € A we have (a, i) = (¢/, i) = 1,80 that (a, a’) has no prime
factor not exceeding px. Thus we have (a,a’) = 1 so that the elements of A,
are pairwise coprime. By (42), it follows that A, C A contains an {-tuple
of pairwise coprime integers so that A ¢ T';. This is so for all A satisfying
(35), (36) and (37) which proves (33).

(i) Define the set B g(m,n) by

B y(m,n)={b:b€ Nym < b<n,(b. Pi) =1,(B, Pks1Phs2- - - Prre-1) > 1}

Then clearly, B o(m,n) € I'; and thus
(43) hag(m,n) 2| Bg g(m,n) | .

If Piy¢-1 | n, then by the Chinese remainder theorem we have
(44)

k 1 kte-1 1
| B.oy(m,n) |= ey § P 1= =) | (for Pipey|n)
(k,5y(m, ) ng( p',) ( 11 ( )) (for Prye—1|m)

=kl P

If Prye-1 | » i8 not assumed, then define »’ by Peysy | 0,0 < 1 <
n' + Pgyr-1- Then by (44),

| Bik,gy(m,n) 12| B g(m,n') |=

@ #T10-3) (- 1T 0-8)) ~+I16-2) (- T 0

“o-f16-2) (1T 6-3))

j=k+1
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kL1

>nH (1———) k1~ 11 (1———)) Peyoa

=h+1
The result follows (43), (44) and (45).

6. In this section we will study several consequences of Theorem 3 and,
in particular, we will estimate Gx(n). First we consider the important special
case £ = 2, when we get a quite sharp estimate for the function hg; »(m,n).
In fact, in this case the error term is bounded for fixed & :

THEOREM 4. For k,m,n € N we have

1
k mn——-— 1-—) <P
! (“)( ) m+ H( Px)' s

=1
PROOF. By using Theorem 3 with £ = 2 we obtain that

k
ma) < (G2m+2) [Im-1=

B 2){
=1
k k
- m’;l‘I—]l (1 -3 +2‘1:11(p,~_-— 1) <
k
< p;‘g(h%) +2P,

and

k k
1 1 n 1
h m,n)>n (1~——-) (1-(1————))—P = (1-——)—P
(k,2)( ) g bi D1 K+ D1 .];Ix Di el

whence the result follows.
I £ > 2 but £ is not much greater, than k, then still we have a satisfactory
estimate for h g (m,n) -

THEOREM &. For all e > 0 there exist numbers § > 0,17 > 0 and ko(e)
such that for all k € N,k > ko(€) we have

(ST & L—1n
(1-e)n ( Z ﬁ) H (1 - %) < hggn(m,n) < (1+E)( o ) H (1 - —1-)

i=k41 =1 +1 i=1 pi
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(46) for k> ko(e),2 <L < K8, all m € N end n > ng{k,¢),

k
. )(z.. 1)n1-I (1 _ %) < h(gg(m,m) < (1 +e)(¢p— l)nH (1 - i)

Pe+r k+1 iy Di
(47) for k> ko(e),£ < nk, all m € N and n > no(k,€,n)
and
(48)

(1-¢)log 2 . —— H ( ) < B pyry(m,n) < (1+€)

103

for k> ko(e), all m € N and n > no(k,¢).

PROOF. The upper bound in (46) follows trivially from (33) in Theorem
3. To derive the lower bound in (46) from (34) in Theorem 4, observe that
1-z=e"0E") and e= = 1 — 2 + O(z?) for  — 0, moreover, it follows
from

1
49 — = loglog z+ C + o(1
(49) 2(: 5 = loglog (1)
p<z
and the prime number theorem that if p > 0, § is sufficiently small in terms

of p and k > ko(p), then
k14]

Z;‘:<p.

i=k+1

(47) follows trivially from (46) and the prime number theorem.

(48) follows from (46), (49) and the prime number theorem and this
completes the proof of Theorem 5.

One may use (48) to estimate Gx(n) :

THEOREM 6. For all € > 0 there is a number ko = ko(e) such ihat for
k > ko(e), ell m € N and n > no(k,€) we have
2l (-5):

k—
(50) —2* < gy(m,n)~ (1 - I-I1 (1 - -}—)'1—)) n< (1+e)

i=1
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Moreover, for P._; | n the lower bound can be replaced by 0.
Note that since except for gx(m,n), all the terms in (50) are independent
of m, it follows that

COROLLARY 2. Fore > 0,k > ko(e) and n > ny(k,€) we have

L=
A~1

4 ; k-1
1
2% < Gi(n) - (I—H (1—;))n<(1'+e)10:kn (1—;};)

i=1

where the lower bound can be replaced by 0 for Py | n.
PROOF OF THEOREM 8. It follows from (3) and (6) that

k-1
(51) g, 1) = (1 -TI (1 - %)) n > u_1(m,n)—

i=1

_<1—’ﬁ(1—51:))n2—2k

i=1
and, by (7), this lower bound can be replaced by 0 for Pr_1 | n.

On the other hand, assume that A C {m,m +1,---,m + n - 1} and
A € T;. Then by (6) and (48), for £ > ko(e), all m € N and n > ng(k,¢€)
we have

|Al=I{a:a€A(s,Py)>1}|+[{a:a€ A(a,P1) =1} <
<|{a:m<a<m+n,(a,Pr1)>1}| +h(k_1,k)(m,ﬂ).=
(52) . "/)k—l(m) ﬂ) + h(k—l,k)(m:") <

<((-TT0-8)me#) + 0+ 9 Tl (- 4) <

i=1 i=1

< (l—iﬁ(l-%))n+(1+e)r£—glﬁ(1—;};).

=1 =1

The result follows from (5.1) and (52).
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7. In this section, we will generalize Theorem 3 in [3] and Theorem 8 in
[4]. For k € N,k > 2 we write

o = inf ZH®).
neN n

(It is easy to see that a2 = 1/2,a3 = 2/3).

THEOREM 7. Letk € N,k > 2 and ¢ > 0. There are numbers ng =
no(k,€) and cg = ce(k,€) such thatifn > no,m € N,AC {m,m+1,---,m+
n— 1} and

(53) 1A > (ax +&)n,
then
(54) &.(A) > Cs‘n.k.

Note that it follows trivially from Theorem 7 that for all k > 2, hm g—‘-('—‘l
n—+400
exists (and this limit is equal to ag).

PROOF. The proof will be based on the following lemma :

LEMMA 2. To every p > 0 and § > 0 there is an ro = rg(p,8) so that
ifr>ro,n > nipbr)yme N and u = 1,2,---, P, then for all but P
integers b satisfying

(55) m<b<m+n, b=u(modF,),

we have

0¥ T i<

plbpr<p<n

PROOF. Denote the set of the integers satisfying (55) by B a.nd write
= {b:b € B,v(}} > 6}. By the Chinese remainder theorem, Z—y < 400

i=1
and Z; ~ log log n, for r > .r¢(p, §) and n > ny1(p, §,r) we have
p<n
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- ¥ ¥ i-

beB m<b<min  plb
b=u(mod Pr) pp<p<n.

6)= Y I > 1<

pr<p<n mLb<min
b=u(mod Pr),pib

< T HEEr)<EXF+Yi<

pr<p<n Pr<p p<n
< %s--;%+2loglog n < pbg.

On the other hand, clearly we have

(57) D)= D)2 6=6(B].

bcB beBy B

It follows from (56} and (57) that
n .
| By |< pFr

and this completes the proof of Lemma 2.
Now we prove Theorem 7. By the definition of ay, there is a positive
integer n; such that

£
Gr(n1) < (ar + Z)nl’
s0 that

(58) gk(m,n1) < (o + i—)n; forallm e N.
Let r be a positive integer such that

- f £ €
(59) r>max(n1,r0 <8n1’32k))

and write n; P, = M.
By (53) we have

ny

P, max | Aatinaty 12
L2

<i<P o
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~1 1y

M
>4 Z Z I A(M,uu+]) 2_: A(M.u) |:l A |> (ak % E)Tl.

=0 ;=1
1t follows that there is an integer i such that 0 < ¢ < P, and
(60) Z | A(MmH-J) |> (ak T 5)"—‘
i=1

Clearly, for all u € Z we have

(61) | Amy 1€l {a:m < a<m+n,a=u(mod M)}|<—;—;-+1,
(60) and (61) imply that for sufficiently large n there exist integers ji, fa,- - -
such that
(62) 1<h<ja< - <jefm,
(63) > (s + %)nl
and
64 IAMin-{—' l>il for u=1,2, s
( ST 7-) 4 M

’jt

since otherwise, writing i = {j : 1 < j £ n1,| Amini45) |> § Ty} and

J2 = {3 :1<j < na,| Apging45) 1< § f7} by (61) for large n we had

E i A(Mlﬂ1+1) I* E IA(M.lﬂ1+J) I +Z I A(Mrn1+,1) |<

iCTh JET

SO (F+HD+ Y =(HF DD +H57 | RI<
JEN FET -

(fr + Do+ Pni + 5 frm =

={ax+ §)F + (o + §Im < (ar +€) 5
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o
-3

and this contradicts (60).

By (58), (62) and (63), the set {iny + j1,in1 + j2,---,in1 + je} contains
a subset {v1,v2,---,v:} consisting of k pairwise coprime integers. Then we
have

(65) v, Zvy, (mod M) for 1<z<y<k,

(66) (vo,y) =1 for 1<z<y<k
and, by (64),

en
(67) | Aa,) |> iv for £=1,2,---,k.

Now we will show that it suffices to prove

LEMMA 3. Using the notations above and writing D = {d : m < d <

minyd= Y, i<k}
pld.pe<p<n

(i) there are more than § [ integers dv, satisfying dy € D 01 A(n ),

(ii) ifj € {2,3,---,k} and dy, - -,d;_1 areintegerswith dy € DNApgyry, -~ di—1 €
Dn 'A(Mv,'_l) and (fOTj 2 3) '

(68) (dz,dy) =1 for 1<z<y<j-1,
then there are more than {5 §; integers d; satisfying d; € D N Ay, and
(deydj)=1 for 1<2<j-1.

Assume namely that Lemma 3 has been proved. Select a d; in the way
described in (i). Then select da,---,dr successively in the way described
in (ii). In this way, we obtain distinct k-tuples (di,dz,---,ds) all whose
elements belong to A and whose elements are pairwise coprime. Thus ¥,(.A)
is greater than or equal to the number of these k-tuples (d;,---,dx): To give
a lower bound for the number of these k-tuples, observe that by (i), d; can be
choser in more than § f; ways; if dy is given, then by (i1), d3 can be chosen
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in more, than {5 7 ways (independently of d), etc., finally, if dy,---,de_y
are given, then d). can be chosen in more, than {5 2 ways. Thus the total
number of these k-tuples (di, - -,dx) i8 greater, than § Sh B 5 %
so that

di(A) > —— n* > ey(k,e)n*

16'=M
and this proves (54).
It remains to prove Lemma 3.

PROOF OF LEMMA 3. By Lemma 2 (with p = & and § = 35) (59)
and (67) for 1.< z < k we have.

| DN Amy,) =l Ay | - [ {a:a € Apgy,y,a ¢ D} >

> % H-{aa=v(mod M), m<a<m+n,v(a)> 55} >
(69) > £ & |{a:a=v.(mod B),m<a<m+n(a)> g} >

S>em. Lernoog o n
“4M 8 P, 8 M

e

which, with z = 1, proves (i).
Assume now that 2 < j < k and d;,---,d;_1 are given as described in
(ii). Then clearly, '

! {d:dE DﬂA(M’Vj),(dl,d) —F T (dj-l,d) — 1} IZ

-1
(70) 2 D0Awyy | -, | {d:d € Dn Ay, (di,d) > 1} |

i=1

Assume that 1 <i<j-1,deDn .A(M,V,.) "and.p i8 a prime with
(1) pl(d,d).
By m < d;,d < m + n, we have

(72) |d; —d|<n.
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Moreover, by d; € A(m,v;), d € Amy;), i < j and (65) we have
(73) B di #£d.

It follows from (71), (72) and (73) that p < n.
By di € A(umy;), d € Aag,y;) we have

(74) d = v (mod M), d=v;(mod M).
'If p < p, then it follows from (71), (74) and p | M = n, P, that
/ v; =v; =0 (mod p)

_ 8o that p| (v, v;) with § < j which contradicts (66).
Thus (71) implies that p, < p < n and thus, by (59), (p, M) = 1 so that,
bydieD,for1 <i<j—1 wehave

| {d:d € DnAuy;), (di,d) > 1} |<
< Z ]{d:msd<m+n,dzvj(modM)},p|d}|<

pldi,pr<p<n
m < Y (;'1'&1+1) -
pldi.pr<p<n
=% > i+i{p:pld,m<p<n}i<
pldi,pr<p<n

<zx mtl{p:pldip <p<n}|.
By (68), it follows (69) (with z = j), (70} and (75) that for large n we have

|{d:dEDﬂA(M'Vj),(dl,d)=--~=(dj_1,d)=l} 1>
i-1
>Ef - (gt {p:pldm<p<n}]) =
i=1
-1
=EF-U-Vix - I{p:pldp<p<n}i>
i=1

>sm-—smm - ) >G4
which proves (ii) and this completes the proof of Lemma 3.
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