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THE NUMBER OF PRIMES IN A SHORT INTERVAL
SHITUO LOU AND QI YAO

§ 1. INTRODUCTION.

Let z be a sufficient large number.

We shall investigate the number of primes in the interval (z - y, 2] for
y = 2% with 1/2 < @ < 7/12. Hoheisel [1] was the first to give a value of

# < 1 such that

¥ — 0
Iogz'v_:c . - (1)

x(2) - 7(z - y) ~

Ingham [2] connected the problem with zero density estimates for ¢(s), and:
Montgomery [3] showed how a method of Hal4sz could be used to estimate
N{o,T) (the number of zeros of {(s) in the range Re 8 > 0,0 < Ims < T').

Huxley [4] proved that for
7
— <
3 < <1
(1.1) holds. His work built on foundations laid by the authors mentioned
above.
Heath-Brown [5] has given an alternative proof of Huxley’s result :

Heath-Brown has actually proved more namely

THEOREM A [5] Let ¢(z) < 1/12 be a non-negative function of-z. Then

4
) =l — g = T {1 +O0(eM2) + 0 ((“’—gli’ﬂ) ) } (1.2)

log z log z
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uniformly for

TN2-e(=) « 4 < z ]
z s¥= (log z)*

Thus (1.1) holds for such y, providing only that e(z) — 0 as z — o0.
Moreover, he oblained ’

x(z) —x(z —2"*?) = %ﬂ—;{l+0.((£%%£>4)}- (1.3)

In [5], Heath-Brown has shown :
THEOREM B. Let

= Y 1 (1.4)

s—p<p-PgEE
piZxi=1,..6

11 z_ \™
E(z,2) = log z * E/ ) ,/ 42 (loy t1tziat4t5) ‘

tyfgt3tetg >x/s

and

dtydtadisdtsdts (1.5)
titatatats log 1y }og tg log t3 log t4 log ts ’
is independent of y, where z may take any value in the range

z1/7'< 2 zl’ee;p(—(log 2)43/44),1, > z7/12.
27 < 7 < y0rPexp(—(log z)*¥*),y < 2712,
Then
.. .
7(2) - x(z ~ ¥) = ¥E(z,7) ~ £ () + O ezp(~(log 2)/7)  (16)

uniformly for
o £7/12-1/6000 <« o < 2 exp(—(log z)'/%). @n

In this paper, we shall give a generalization of Theorem B in § 2. Let
the interval |¥ = (z — y,z] with

1
P <cy< 3%
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and the parameter z satisfying
2k <z < 215

where ko i8 a positive integer that will be chosen later. For example, with
y = 2%, we shall choose kp =11 if § = 11/20 +¢.
Denote p(d;) the smallest prime factor of d;. We write

Spi={d1--dp:dy --de=deV,p(d)>z1<i<k}

di---de=dy---d; €S fandonlyifr=jand &, =difor1 <i<r.

Let
E an(k) = E 1= E 1
nejr &y oody=m #E€S,
#di)2s1<igh
nE(Y

Let r be a positive integer, I;,1 < j < r, be a set of integers, and
I; C [2,z] and H be the “Direct Product” of sets I;, for 1 < j < r, it means

deHifandonlyif d=dy---d, withd; € I;,1<j<r, andd € . (L8)
Suppose # be fixed in the interval (1/2,1) and y € [2°,z ezp(~—log z)'/°)].
Define the conditions (4;) and (A;) as following :

(41). If there exist some sets Hy,1 < k < ko, which are collections of direct
products H’s and constants ¢y such that

Y= Y ewd 140 (E,:Tz) (1.9)

nejy HeH, deH
then we call Hy,1 < k < ko, satisfy (41).

(A42). If Hy,1 < k < ko, satisfy (A;), There exists a subset H] and for each
H € H there exists a function Ey(H, z) independent of y such that

31 = yEu(H, 2) + O(y ezp(—(log 2)'/7)), (1:10)
; deH
uniformly for

2% <y < z ezp(—(log z)'/%),
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then we call H;,1 < k < ko, satisfy (42).
We now state our Theorem here :

THEOREM 1. Let z be a sufficient large number, 8 be fized in (1/2,1),z° <
y < (1/2)z, ¥ = (z — y,z], ko be an integer which is dependent on 0, and z
be fized in (z'/*,z!/5). Let Hy,1 < k < ko, such that (A;). If there ezists a
subset H}, of Hy such that (Az), and writing HY = H, \ H}, then we have

x(z) — x(z — y) = yE(z,2) + R(y) + O(y exp(~(log z)"/")  (1.11)

uniformly for
2? < y < z ezp(—(log z)/%),

where E(z,z) independent of y, and
Rp)= >, (1% D) en) 1. (1.12)

1<k<kg HeH] deH
We call H] a ‘good set’ and call HY a ‘bad set’, for 1 < k < ko. Heath-
Brown [5] prove:that-

w(z)-xz-y)= Y, (D)% 1Y 1+0@z¥) (1.13)
1<k<ky #€Sy

Comparing (1.13) and (1.6) with (1.5), Heath-Brown took ko = 7, 51,--- S5
as good sets and only Ss as a bad set i.e. H} = S1,---,H} = S5, H; = Q;
and HY = .-- = HY = @,H§ = S¢. In Theorem 1, we are not limited that
the good set or that the bad set should to be whole of Si. In fact, R(y) is
the contribution of all bad sets. He proved that the contribution of his bad
sets i8 Y (z) in (1.5). Heath-Brown applied Theorem B to improve (1.3).
He obtained that if z is sufficient large,

1y
s P > x
w(z)-nz-v) 23 g 5" (1.14)
where
z12 %00 <y <z (1.15)

In § 2 we shall prove Theorem 1. In § 2, we shall prove the following
theorem also :
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THEOREM 2. Suppose that 8 is fized in (1/2,1),y0 = z ezp(—(log z)*/®),H,,1 <
k < ko, satisfy (A1) and (A2). If there exist constanis e, ¢}, ez and e} such
that

(-2t +ehye A R—ig—i {e: — £y
et & X, A1 R Blp) f S (1.16)
logz 1<k log z
and fdliot 23 , ( )
“e2 T E)Y k-1p,~1 ey —E)y v
S22 N G R(y) < S (1.17)
. log z 12k logz . N ‘

where € is a small positive constant. Then

(1—e1—e3)y
log =

(1+ e} +ea)y

<x(z)~-x(z-y) < B

(1.18)

uniformly for 2% < y < po.
Take an applicable form Hy with condition {A;), which makes it possible
to extend the range of validity of

(1-¢) y

log z’

¥
z

Tog 7 < x(z)—-x(z~y) <(1+¢)

(1.19)

where ¢ and ¢’ are constants. In this paper, we prove that (1.19) holds with
y=2%0=11/20+candc=¢ =0.01in § 6. ‘
In (7], we gave some sufficient conditions that imply some kind of “direct
product” be “good set”. In § 3 and § 4 below, we use those conditions to
prove that H,,1 < k < ko, which will be defined in (3.3) and (3.4) below be
“good set”.
In § 6 we will prove

Theorem 3. Suppose z be a large number, then

y

¥
01— > x(z) ~n(z —y) > 0.9 :
1 Ollag =2 x(z)-n{z—-y)>0 glog 2 (1.20)
with y = 2%, uniformly for ;
1L
— < -, .
S <0< (1.21)

A criterion for good sets is extracted. However, the technical work
needed to choose good sets and to make the size of the bad sets as small
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as possible, is precisely the main difference between our method and that
Heath:Brown's. The new Theorem 1 will enable us to impfove the results
of Heath-Brown and Iwaniec [10]. Later on we shall establish one deeper
results: for
<y < z exp(—(log z)'/%),

we have (1.19) with 8 =6/11+cor 8§ =7/13 +¢.

Moreover, we can improve (1.19) further but only at the cost of much
arduous computation. '

§ 2 Proof of Theorem 1 and Theorem 2. -

The proof of Theorem 1 is much along the method that was used by
Heath-Brown [5].

Our starting point is based on a formal identity (see [5]) :

log () [I)= X %@ ] - 1) (21)

1<k<oo

=0 3 Z " (2.2)

1<t<cop>z

I =]la- —)

p<s

where

‘We pick out the coefficients of n~* for those terms in (2.1) and (2.2) with
n € |¥. Thus in (2.2), these coefficients total

Z (1r (z%) —w((z-—y) )) =x(z) - x(z—y)+0(yz K). (2.3)
1<

Lt<oo

On the other hand, the Dirichlet series for C(.s) I(s) - 1is

Zcﬂn ': ‘ (2.4)
n>s
where ¢, is 0 or 1 according to n has a prime factor < z or not. It follows
from (1.7) that there are no term of n~* in (2.2) with n € |¥ corresponding
to exponents k > k. Hencexorm we consxder only the terms with k < ko.
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Let
¢TI - = Y aalkyn— (25)
" 1€n<oo
By (2.4), .
k
(C(-’)H(s)—l)"=( y c..n“) . (2:6)
1<n< oo '
Then :
k
2. onlk)n™ = ( > cnn‘,')
1<n<oo 1<n<o0
and
aB)= Y ca-eca
dy---dp=n
Write

an(k) =| {(dy, - ,dx) :n=dy - de,p(di) > 2,1 <i< Kk}, (2.1

where (dy,---,di) = (d},--,d}) means d; = d} for § = 1,.. k. Therefore

SNealky= > 1, (2:8)

nejy dyodp=n
) Pe)2a1<i<k
Y=

and in (2.1), the coefficients total

S EDRE Y wm = Y GRS L (29)

1<k<ko nely 1<k<oo dy-dp=w
P2 1<igh
nejy
We have that ‘ ‘
r@)-xz-1)= 3 (<% Y 1+0(p=i). (210)
1<k<o0 dydp=n
P4)251<i<k
nej¥

since (2.3) and (2.9).
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By conditions (A;) and (A4;), we have that

xz)—x(z-y) = Z (~1)*-1g1 Z CHZI +0 (yz_i') +0 (TE}?’;)
1<k<ky HeH, deH
= 3y Y (1% Y cnFu(H,2)+ R(y) + O (,—g,_)
1<k<ko HeH)
Let

E(z,z) = Z (=) Z e Ex(H, 2).

1<k<ky HeH)

This completes the proof.

The proof of Theorem 2

By Prime Number Theorem,

x(z) = /: ok + O(z ezp(—log z)'/%).

log t
We have
. % 1 1 Yo 1/2
r@)-rte-w0) = [ (g~ 1oz g + Ol eopl- (tog 2))
_ [ log% Yo 1/2 '
- /z Tl st T + 0l eopl~(log 2)7%). (2.11)

Clearly,forz —ypo <t <z,

log = <log

z_y()(;—%zo(-’f),

Therefore, (3.1) is

() —w(z-w) = . g + O(yoezp(—(leg 2)'/°). (2.12)

Using Theorem 1 with p = g9, 5, = H;, and

R(yo) = 1)y*-1k-1R o=
(o) = th( ) e(va) + \lagz)



Number of primes 29

we have .
x(e) - 7le — ) =B+ 3 (-1 Rw) +0 (7).
1<k<kg 0g9°%
(2.13)
Comparing (2.12) with (2.13), we have
Yo k-1p-1
'z = wEEA) T 3 (1 Riw)+0 (720-), aa)
hence
1 1 k—1p-1 ( Yo )
= _— -1 . .
E(z,2) 07 7 K;ko( Y-k~ Re(yo) + O Tog’s ) (2.15)

By (2.15) and (1.16),

1—-e; 1+e§
o < E(z,z) < T

(2.16)

Using Theorem 1 again,
vB(z,) = 2(e)~x(z-1)- 3 (I R)+0 (1 ) 2an)
1<k<ko

By (1.17), (2.15) and (2.17), we have

(1-e1—e3)y
log z

(T+e + ez)ll

<x(z)-x(z-y) < Tog

(2.18)
This completes the proof.

§ 3. “Good Set”

Let ¢p be a constant that will be defined later on. Let }g be an interval
[ag, bg] which contains in [1, ] and |;(1 € j < r) be a subset of interval [a;, b;]
containg in [z%, 2] also. Denote D = [o---}, be a direct product of |;. Let
i; = log aj/log = and i = log b;/log z and let d; = 2% with i; < §; < i}
and 0 < j < r. For convenience, we write d = {fp,8;,---,6,} € D, and a set

D:{{00,01,~--,9,-}:1/2 >21-01 -~ -6, =620,2>---> 01'} (31)
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For short, we denote {8;} = {80,61,---,60.}.

Let D N [V be a set of integers, d € DN [V if and only if d € D and
del-d=d withd,deDnN|Vmeansd=dy---d, and d' = dj,---d/ with
d; = d} for 0 < j < r. We shall show the sufficient conditions for D N |¥ be
a “good set”, i.e. for a fixed z with 21/5.> z = z°, there exists a function
Ep(z,z), independent of y, which satisfies that

‘ E 1=yEp(z,2)+O(y ezp(—loglﬁz)), (3.2)
deDnI»

where Ep(z,z) and constant in “O” are uniformly for
2® <y < z ezp(—4(log z)5(loglog z)¥).

Let 6 = 11/20 4+ £,t0 = 1 — 8 + ¢/2 and z = z° with ¢ = 1/2 — Bt,/9.
Define ’

D(6) = {{65,61,--- 05} : {00,61,--,05} €D, 2o/5>1~0; —---— 5 =
00> 6, >---> 05 >1/2 -~ 8tp/9} (3.3)

and

D(8) = {{00,61,"+-,07} : {f0,01,---,07} €D, 240/T2 1 0y — --- — b7 =
B> 0> - > 07 > 1/2 — 8t/9} (3.4)

In this gection, we shall prove that :
Theorem 4. Suppose § = 11/20 + e,80 =1 -8 +€/2,2 = 2 with ¢ =
1/2 = 8tp/9, D’ be.a subset of D, and
D’ n (D(6) U D(8)) = @, (3.5)
then D' satisfies (3.2), i.e. D’ is a good set.

Obviously, the subset of D with r # 5 or 7 are good sets. D(6) and D(8)
- ‘are called ezceptional sets.
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We discuss those sequences d = {fg,01,---,6,} = {§;} in D. For such

{6}, we define a corresponding set © of all of sequences {6},61,---,8,,0,41,-*

with 6 < 60,01 > --- > 0, > log z[log 2 > 0,41 > - -+ > 0.4, and
0+ 01+ Opyr, =1 (3.6)
By (3.6) and (3.1), we have that if ry = 0, then
6="00>6. (3.1

For short, write {6;} = {85,01,--,0r,0r41, - -,0,4r }. {6;} and {8;} €
©. Let 6 = log X/log z,0; = log X{Jlog z (1 < j < 1) and 6,,; =
log Zij/log z (1 < j < 7). For each {6,601, --,0,,0,41,--,0r4r, }; we
define a product of Dirichlet series :

W(s 16:Y) = W(s) = X[ [XP Y ][ Z:)  8)

J=1 j=1
where
X(s) = n-*,;
. X<n<2X s y
xP = Y Mm@y
XxWemgaxi
Zis) = Y qllal<y
Z;<|<2Z;
Y() =Y mlthued v <1
Y<t<2y

with Y = O(z®%), 6 be a sufficient small number with.§ < ¢. Each {4;} € D
corresponds all of W(s,{6;}')’s for which {#;}' € ©. Define that W(D) is
a set of all of such W{(s, {6,}’). For short, we write W(s,{0;}') = W(s).In
[7], we proved that

Theorem A. If D satisfies one of following conditions
(1) ao > 2'/%;
(2) all of W(s) € W(D) such that

.[:T |W (% + it)"l dt € z%ezp (—(lag :n':)?l?(loglog z)'i) (3.9)

. :9r+n}
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for b
Tl < T S - ]

. ¥
where A 13 any fized positive constant, and

T, = ezp ((log z)3 (loglog z)—i) .

Then (1.2) holds i.e. D is a good set
Let 8o, 01, --,0x be positive numbers. In [7], we discussed the sequence
{60, 61, - - , 0} with positive number k such that

bot bt tO=1, (3.10)

defined a set E(f) of some {f,0y,---,0,}’s and acutely proved that [7.§ 5]).

Theorem B. Let {#;} € D. For each {8;} € © define

W'(s) = X(.,)ﬁx,gﬂ(,)ﬁz,-(,).

i=1 Jj=1
If {6;} € E(8), then
2T 1
/ | W’ (— + it) | dt < z'/*e. (3.11)
T 2 ,
Moreover, (3.9) holds.
We now describe the set E(9).
Supposeb{al,az,o'} or {e1, as, a3, 0} be a complementary partial sum (it
means that each #; belongs one and only one set and their sum in a set be
o or a;) of {6p,01,---,0:} with o = 6g or o < t5/2, then

ayt+tato=1 (3.12)

or
a1+ag+a3+ak_:‘1. (313)

Later on, we only define two of a1, a2 and ¢ if (3.12) holds; or define three of
a1, az,a3 and o if (3.13) holds. Suppose § = 11/20+ ¢ and £, = 9/20 — ¢/2.
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We define E(f) be a set which contains all of sequence {6p,01,---,8;} with
(3-12) which satisfies one of following three properties :

(I) There exists at least one complementary partial sum {a;,a2,0} of {8o,61, - -, 6k}
which satisfies one of following conditions: '

(3.14)‘ a; < to and az < io (see Lemma 4.4 of [7]);

(3.15) o > to/5,a1 > Bto/9 and az > 8to/9 (see (4.1.3) with i = 3 of [7]);
(3.16) @1 > 6to/T,az > 6to/T and o > to/4 (see (4.1.3) with i = 2 of [7]);
(3.17) a1 2 to and aa > to (see (4.1.1) of [7]); . |
(3.18) 1/2 > a1 2 o, and o < 1/2 — 8ty/9 (see (4.5.6) of [7]);

(3.19) o > tp/2 (see Lemma 4.3 of [7}).

(II) There exists at least one complémentatyv partial sum {ay,az, ds,a} of
{6,601, -- 0} which satisfies '

(3.20) a1 > 10,82 > 10/3,a3 > o/3 and o > 2t4/5 (see (4.2.2) of [7]).

For a fixed o, in [7] we proved that there exists a pair of numbers (m,, M,)
with the properties

My —my > 1/2 = 8t0/9 if o > 1/2 — 810/9; (3.21)
M, ~my <aif a<1/2~8t5/9 - (3.22)
Moty (3.23)
and
M,4+m,+0=1 (3.24)

(I1I) Suppose {a;, as, ¢} or {a1, as, a3, o’} be a complementary sumof {0y, 0;,---,6i}
with :
my < 6 < Mo, (i=1o0r2), _(3.25)

(See Lemma 4.5 of {7]).
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Applying Theoremt A and Theorem B, Theorem 4 follows from
Theorem 5. Suppose § =11/20 + ¢, and D’ be a subset of D such that
D' N (D(6) UD(8)) =.¢,
Then for every {0;} € D', the all of corresponding {#;} € © contain in
E(9).

§ 4. LEMMAS.
Let 8 = 11/20 + ¢ and {6p, 01, -, 0} with (3.11), i.e.

Go+01+ -+ 0, =1.

In this section, we shall show some sufficient conditions for {8y,6,,---,0x} €
E(6). By the definition of E(f) we check that {8;} satisfies at least one of
conditions (3.14) - (3.20) and (3.25).

Lemma 4.1. Suppose there ezist two elements §' and 6" of {0y,61,---,0:}
with 8 < to/2 and 6” < 1/2 — 8ty/9. If there ezists a partial sum s of
{80,61,--- 0 3\{0', 6"} such that s < tg and s+8' > to, then{0,6:,---,0:} €
E(8). ' '

Proof. We discuss following three cases :

Case 1. 1< s+ <Mgrand1—s—-8 >t
Let o = 6" and a; = s + ¢, we have that {f,01,---,6,} € E(6) by
(3-23) and (3.25).

. Case 2. s +8' > Mpn.
By (3.24), we have

1—3—0’—9”_(_1-—-Mgn—0"=m9"

and, by (3.22),
1-8—8 <0"+4 mgs < Mgu.

Letay =1—85— ¢ and ¢ = 0”, if ag > men, then {00,91,---,91;} € E(ﬂ)
by (325) If a3y < mygr < tp, then {00,01," ',0]:} € E(ﬂ) by (314) '(since
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az <mgn < tp.)
Case 3. foSk+0’<Mon and 1 -3 — ¢ <tig.

Leta; =1—8-8 <ig,a3 = 8 <ipand o = ¢, then {0,8,---,0,} € E(F)
by (3.14). : - :

Lemma 4.2. Suppose {a1,az,0} be a complementary partial sum of {6y, 6,,- -

witha; =6+ +0k, a2 =0 +---0,,a1 > a2, 0 =1 @y ~az > 1/2-8/9
1 k

and
maz{fy,---,0c} — min{fy,---,0,} < —12- - %—q; (4.1)

then {65,864, - - ,0:} € E(8).
Proof. If a1 < to, then {6y,6:,---,0,} € E(0) by (3.14); if az > to, then
{0Os011 e yak} € E(g) by (28)1 ifma <@ < Ma:{eoygh e ,9)‘} € E(a) by
(3.25).

Now we suppose a; > M,.

By (3.15) and (3.1), we have

br+--+O01+0; = 14+ 0+ (0 — )
> M, - (- %) 2m,.
If
01+ 4Oy + 0, < M,.

letag =01+ ---+ 601+ 02, then {00,01, -, 0} € E(B) by (3.17); if
Gt b By H O > M,

and
b1+ -+ Ok2+ 8,y + 8 < M,.

10’5}

repeating above process, let a3 = y+- - -+0;_; 10} we also have {8, 8y,---,0:} €

E(6). And repeat it again, we have that, in all cdses, {#,01,---,0c} € E(f)
since
01 +---+ 0 <to < M,.
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§ 5. Proof of Theorem 3
It is sufficient to prove Theorem 4, i.e., let {¢;} € D and {6;} € O that
satisfies following conditions :

(5.1) tg > 1-—91-—----—0f=00206201 >...20 > 1/2—8t0/92
Orgr 2 - 2 Oryryi

(5.2) {60,61,---,05} ¢ D(6) if r = 5, and {f,01,-+-,67} ¢ D(6) if r = T;
(53) G5+ 01+ +04r, =11,
we shall prove that {#;} € E(0).
We record (2.2) here : if r; =0,
06 =0p > 6;.

Let k¢ be the number such that

¥ o8i<to (5.4)
1<j<k—1
and
> 8>t (5.5)
1<j<ko '

By (5.1), 61 < to, then we have kg > 2.
Ifr+r > ko > r, then Oy < 1/2 - 84y/9. In Lemma 4.1, take §' =
Biy, 8" = 0,4, then {0;} € E(0). I kg =1 + ry, let

= Y 8<t,
1<i<ke—1
and
as = 950 <1/2=8t/9< ty
then {6;}’ € E(6) by (3.14). Finally, we consider 2 < ko < 7.

Lemma 5.1. Suppose ry = 0. If r < 2(kp — 1), or r > ko + 4, then
{8;} € E(6).
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Proof. If r < 2(ko — 1), let

a = Z 0; <to,

1<i<ko-1
and
az = Z 0,-5a1 < ip.
ko<jgr
Thus {0;}' € E(6) by (3.14).
Ifr2>ko+4,let
mo= D 6>4(5-5) >,
ko+1<j<ko+4
a = Z 0,- >ip
1<igke

ande =1-ay -;ag. Thus {6;} € E(6) by (3.15) since ¢ = i— Oy —--.

#; > to/5. The Lemma is proved.
To prove Theorem 4, we now discuss following cases :

Case 1. kg > 3.
By (5.1) and (5.4), we have

1 1
03 <0; < 5(91 +6;) < Sto-
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If r; > 0, take #' = 03 and 6" = 6, ,,, in Lemma 4.1, we have that {6;} €

E(0).
Now may suppose that
"n= 0.

By Lemma 5.1, we also suppose
2k~ 1<r<ko+3,

ie 3<ky<4.

(56)

When kg = 4, by (5.6) we have r = 7. Since {§;} ¢ D(8), we have

6
01+ 6,+ 63> ;{‘to.
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Let a; = 01 + 62+ 83 > 6to/T,a3 = 04 + 05 + 85 + 87 > 8tp/9 > 61y/7, and
o = 6p > 1/8 > to/4, thus {6} € E(6) by (3.16). When k; = 3, by (5.6),
r=>5o0r6.If r =5, by {6;} ¢ D(6), we have

2
o > -5‘50.

Let a; = 0s + 04 + 05, when 03 + 04 + 05 > to, let a2 = 62 > £0/3 and
a3 = 0; > 2tp/5, then {6;} € E(6) by (3.20). When 03 + 04 + 05 < to, let
az = 01 + 02, by (5.1) we have

2 2
b1+ 62 < 5(00+01+92)S 5(1—03—94—-05) < tg.
Thus {6} € E(6) by (3.14).
When kg = 3,7 = 6 and r; = 0, we discuss following cases :
Case 1.1. 0 + 03+ 805 <tgor Oz + 64+ 062 to.

Let a3 = 6 + 03 + 05 and a3 =02 + 04 + g, then {6;} € E(9) by (3.14) or
(3.17).

Case 1.2. 01 + 03+ 05 > to > 02 + 04 + 5.
If; —0s < 1/2 —8tp/9, take o =1 —a; —---—ag > a3 > 1/2 — 8to/9m
Lemma 4.2, then {8;} € E(8). We consider that

0y — 06 > 1/2 — 8ty/9.
By (4.1), 8s > 1/2 — 8ty/9, therefore

6y > 1 - 16t0/9

and G + 61 > 2 — 32t5/9 > 8ty/9. Let a; = Oy + 61 > 8ty/9,a2 = 03 + 03 +
04+ 05 > 8t5/9 and o = g, thus {6;} € E(8) by (3.15).

Case 2. ko = 2. ¢

By (5.4), we have 0y > tp/2. If r1 = 0, then 8} = 8p > £o/2 and {§;} €
E(6) by (3.19). Now may suppose that r, > 0 and 8y < ¢p/2.

We discuss the following two cases :
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Case 2.1. 03 > 1p/2.
Let a; = 6, + 83 > to. By (5.1) and (5.3), we have that
024+03<1—0f— 8~ 04— —bpy,, <10y B
then »
62+03<1/2. . (5.7)

Let ¢ = 0,4+, then {8;} € E(8) by (3.18) (since ry > 0 implies 8p4r, <
1/2 — 8t/9). o

Case 2.2. 0; < t3/2.

We have
O1+80+03+--+ b0y =1-02>1—-1

and 6, + 0o+ 03 + -+ + Oppry -1 > to (Since Or4y, < 1/2 — 82/9 < 1 - 2tg).
We can find a number j =0or3or j<r+r —1 with

Oi+00+83+---+01<to

and
O1+60+03+ -+ 6 > 1.
In Lemma 3.1, take ¢ = 6 and 6” = 0,,,, then we have that {§;} € E(4).

The proof of Theorem 1 is complete.

§ 6. Proof of Theorem 3.
In this section we discuss that 8 = 11/20 + .

Let
Si={d=dody-+-de_1:d€ Sp,dp > --- 2 dp1}. (6.1)
Take Hy = S} and cg = k!, then (A;) holds.
Let

D(6) = {d:d e Shd=do--ds,a™/% > do> -+ 2 ds 2 24~ diidads > 2%}
(6.2)
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and
D(8) = {d:de Sl ey vl e B lla B e 47235—5&“} (6.3)

In [8], we proved the following lemma :

Lemma 6.1. Let B = D(6),Hf = D(8) and H = @ for k # 6 and 8
then condition (A2) holds, i.e. (1.10) holds for H = H, \ H}.

Proof of Theorem 3. By (1.12), we have that

Ry)=(5") > 1+(7!) S (6.4)

deD(6) deD(8)
We now estimate R(y). By (4.2), d € D(6) implies d = dy - - - d5 with
(d)>z! !5“>( ) ,0<7<5. (6.5)
Then all of d;’s be primes. Let
Dy(6) = {(po,- - - ,p4) : p; primes for 0 < j < 4,:2;‘l >
>pe> > g5 (0-%2) B2 =¥}

0 = | (g, - -- p.)-[ S}

P4P0 i
and
A5=A%UA2,
where ”
A‘—{(t°, 250> >t‘233‘3} (6.6)

and

2ty _ ,0< t 1 8t
A’:{t”---t‘:—>°>--->’*’>—°>4>.. YL

(Fasd )r B2 _t_va_t_zl 3 (6.7)

Then we have that

2y
1= 1< P . (D
Z E Z = E p4loy—.ﬂ_
deD(8) (Po,--pa)€D1(6) pefY) (m.---,m)eD.(s) Po--P4
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(2 (2+e)y / / ;
< “logz g B e t4(1 - t0 ot ©8)
By (6.6) and (6.7) we have that
/ --dtt /‘ / / dil. .. dtt
/ Alto t4(1—t° ..._..t4)“‘5l 0. 41 ~10 ... - #4)
<18(1,,18 8  0.002015
5T \"Y15 5’
and
/ / de® ... dt 2
a1 -0 ) T
dil . ..dtt
dt°/ dt.. /
—4' 1o g;g)to t“(1-t° o — 1)
1 10e228Y (10 (_)_1§) . 0002933
< @y —orz—o01s) \'Y01s 9514 5!
Thus 0.009895
Y 1<e—F— (Téli) . (6.9)
deD(6) : g
Let

2 . 12
D;(8) = {(po,-+,P6) : p; primes for 0 < j < 6,2 2 po 2 -2 gy 2 23 (-},

@ = {pg.... pe) =[2_¥ z
I | (m) ’m) [m.‘.m, m"'pﬁ)’

and
A'IZA;UA?I)
where Y i
A‘:{(t",---,t“):T"zt“z---t“zz‘l} (6.10)
and

12
A’={(t°,---,t°):-2—;32t°z---zt5zt" 2t°z§<l~—t‘1
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Then we have that

Yi= ¥ )IREID 3 >

deD(8) (po,--ps)€D1(8) prel@ (m,...,p,)enl(s)po P log Po---Pe

(2+e)y/‘ /‘ -~ dt -
= logz A, 20 1!6(1—150 )

By (6.6) and (6.7) we have that

dts dtl .2_;11 dtﬁ
/“./A}to ta(l to—---—tﬁ) / / / 0.1 -0 -

7
10 o8 7.6(1076)
ot ('Dym <
B Wik &

/ dt® dt6 &
a2 t0---28(1 - t° — %) —
1 0...ds
" / dt"/ dt, / _ edt Odt i
6! ,:,(1_13,}&)t ...t(]___t _..._.t)
8
1 92 0o 4.027(10-%)
= ) (1 " 120045) _ g#) ("’gﬁ_;ﬁ) (l"-" 01 ) < o

Thus -
) i< 9'58(71, ) (l | ) . (6.12)
deD(s) ' A&

By (6.4), (6.9) and (6.12) we have that

0.01 y
logz’

R(y) <

In Theorem 2 take e; = e = 0 and 4 ——aie’2 = 0.01, Theorem 3 follows.

----te)
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