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ON A SUM OVER PRIMES 

J. W. Sander1 

Abstract. It will be shown that, for any 6 > 0, 

"'•log p 1 1 5 
L.J p = 2tog n + O((log n)s+ ), 
p<n 

J.W. Sander 

where ( *) restricts the summation to those primes p, which satisfy n = kp+r 

for some integers k and r,p/2 < r < p. This result is connected with ques-

tions concerning prime divisors of binomial coefficients. 

1. Introduction. In 1975, Erdos, Graham, Ruzsa and Straus (3] investi-

gated the sum 

f(n) = 

where p runs over the primes. They proved that 

but could not decide whether f(n) itself is bounded or not. In connection 

with this, they conjuectured that 

2:* = + o(l)) log log n, 
v5n P 

(1) 
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where ( *) indicates that the summation is extended over all primes p such 

Lhat n = kp + r for some integar 1: and p/2 < r < p. Since 

1 l:=- =log log n + 0(1), 
p<np 

conjecture (1) roughly says that half of the primes satisfy condition (• ). We 

will prove the following 

THEOREM. For n > 1 and any 6 > 0, 

1:•log p = n + O((log n)lH), 
p 2 . 

p<n 

(2) 

where the constant implied by 0( ) may only depend on 6. 

It is well-known by a result of Mertens that 

Llog p =log n + 0(1). 
p<n p 

Hence our theorem shows that, on avarage, indeed half of the primes satisfy 

( •) as predicted by (1 ), however with regard to a slightly different weight. 

We did not make any effort to obtain the best possible error term in (2) . 

For references to related problems, the reader may'.consult [2]. Throughout 

the paper, c1 , c2 , · · · will denote positive absolute constants . 

With pleasure I take the opportunity to thank Professor S. Srinivasan 

and the editor of this journal Professor K. Ramachandra for their hospitality 

during my stay at the Tat a Institute of Research in Bombay. 

2. Preliminaries. Two ingredients will be used in the sequel. The first is 

an exponential sum estimate due to Jutila. 

LEMMA 1 {[4]). For 2 t n, we have 

where 

< (tl-ctA(t,n) + t312n-l/2)ezp(c2(log log tf'), . 

P$t p 

A(t n)= -(logt)2 
' log n 
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and e(z) == ezp(2-Kiz). 

The second tool in our proof is Vinogradov's Fourier series method, as 

it may be found in [5], p. 32, or [1], Lemma 2.1. 

LEMMA 2. Let 0 < £ < t· Then there are 'periodic functions ,P(x) and 

ii(z) with period 1 satisfying 0 f/;{z) 1,0 'P(z) 1 for all x-E iR and 

( ) 
_ { 1 for i + E z 1 - E, 

"':1: - 1 , 0 for 0 z 2, 
(3) 

and 

) 
{ 

1 for j z 1, 
= 1 . 

0 forE Z J -E. 
(4) 

Moreover, f/;{z) and 'P(z) have Fourier expansions in the form 

1 
f/;{z) = 2 - E + L a,.e(mz) (5) 

O<lml<oo 

and 
1 

'P(z) = 2 + E + L A.,.e(mz), 

O<lml<oo 

(6) 

where am, Am E <C satisfy form i= 0 

1 1 
I ami< -2 .I Am l< -2 . 

mE mE 
(7) 

3. Proof of the theorem. Clearly, the condition(*) in (2} is equivalent 

to the fact that 

p 

for some integer k and 1/2 < r' < l. Since 

GH = {r'}. 

where {:c} denotes the fractional part of z, we obviously have 

L•log p = L log P. 

p<n p JO$• p 
- {}J>! 

{8} 
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We define 

B = B(n) = n(log n)-2ezp( -4c2(log log n)2
). 

Applying Lemma 2, we get by (8), (3) and (4) 

L &og p L•log p::; L log 

<B p p <B p p<B p p 
p_ p_ -

By (5) and (7), 

1/J(z) :;;: j- E + L a,.,e(mz) + 0 ( L ;!r.) 
O<lmJ<c-2 

= j + L a,.,e(mz) + O(E) . 

O<lml<e-2 

We set 

E =(log nt11 

with 17 > 0 to be chosen later. It is well-known that 

Llog p =log n + 0(1). 
p:5n p 

Hence, by (10), 
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(9) 

(10) 

(11) 

"""' log p n 1 """' """' log p mn L....,--1/1(-)=2logB+ L...., a,.,.L....,--e(-)+O(Elogn). (12) 
P:5B p p O<Jmi<c2 P$8 p p 

Similarly, (6) and (7) yield 

L AmLlogp (13) 

p$8 p p 
2 

O<Jml<e-2 P:5B p p 

Let 

A= A(n) = ezp((log n)"') 

where a > 2/3. Thus, for any t A, constants c3 > 0 and c4 > 0, and 

sufficiently large n, 

( )
I/2 ( lo t )3/2 

log n $ (log t)I/a ::; (log l:g t)2/3 



36 J.W. Sander 

Therefore, 
(log t)3 

c4(log log S es (log n)2 = csA(t, n)log t, 

which implies for suitable c4 > c2 

Hence, for t A and suffi.Cierltly large n, 

t1-c3A.(t,n)ezp(e2(log log t)2) $ __ t __ 
·. (log t)3 

Since for 0 < m < 

A(t,mn) = 

we get for t :;::: A, 0 < m < e-2 and suffiCiently large n 

tl-c,A(t,nm)ezp(c (log log t)2) < __ t __ 
2 

- (log t)3 

By partial summation, Lemma 1 and (i4) 

{14) 

¥ { ";,n) + Jf ( L e { ";,n )) logt: - l dt 

A<p$B A<p9 

L 
A<p$ 8 

< ¥ + B312(mn)- 112ezp(c2(log log n)2
)) 

+ f% + t 312(mn)-112e:z:p(c2(log log n)2
)) 

< (log
1 
B)' + ezp( -c2(log log n)

2
) + loi A 

<: zO: A <(log n)-a. 

Therefore, (11) implies 

$ I L (n;,n) I 
p!'OA , · A<p$8 

< (log n)a. 

Using this in (12) resp. (13), we get by (7) 

L log p 1/J == B + O(t-1(/og n)a} + O(t: log n) 
p$B p p 
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respectively 

L log pi) ( = log B + O(e:-1 (log nt) + O(e log n). 
p:58 p p 

Taldng TJ = j(1- a), we thus have by (9) 

By (11), 

Now (15) yields 

L•log p B + 0 ((log n)l(l+a)). 

p:58 p 

log B + 0(1) 

4c3(log log n)2 + 2 log log n + 0(1)' 

O((log log n}2
). 
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(15} 

,E* log p = L•log p + O((log log n)2 ) = n + 0 ((log n)!{l+a)) 
p:5n p p:5n p 

which proves the theorem since a was an arbitrary constant satisfying a > 

2/3. 

4. Final remarks. The used method, i.e. the application of Ju.tila 's result, 

is not sufficient to deal with the sum 

(16) 

The reason for this is that, contrary to (14), we easily obtain 

fort ::; ezp((log n)213
) = K(n), say, which means that, fort::; K(n), Lemma 

1 does not imply a better estimate than the trivial one. In other words, we 
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cannot take advantage ofthe condition (•) in {16) for p :-:; K(n) . However, 

it is well-known that 

1 2 L p ==log log K(n) + 0(1) == a log log n + 0(1), 

P5K(n) · 

which is too big already to get the conjectured formula (1). Hence, a non-

trivial estimate for the exponential sum of Lemma. 1 for "small" values oft 

{compared with n) would be needed. 

On the other hand, the ranges of primes which give essential contribu-

tions to (1) aresp . {2) are not completely disjoint. In order to see this, one 

may observe that for L(n,E):::: ezP((log n)1-e), we have 

as t: __... 0. Clearly, 

1 L -= o(log log n), 
L(n,t):SP:Sn p 

2.: log p = o(log n) 

P:SL(n,t) p 

for any e > 0. So, ii we only knew the asymptotic behaviour 

"•log p (1 ) 
LJ p = 2 +o{l) log n, 
p:Sn . . 

(17) 

{18) 

(19) 

then, by (17) and (18), the validity of (1) resp. (19} could be regarded as 

being dependent on disjoint sets of primes, which means that (19) contains 

no information about (1). However, (2) is more precise than (19) and actu-

ally does depend on primes p :-:; L( n, E) relevant for the validity of ( 1). In 

this sense, our theorem does give some indication for the conjectme. 
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