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On certain partial sums involving squares of Hecke

eigenvalues

Winfried Kohnen and Florian Luca

Abstract. Let a(n) be the nth Fourier coefficient of a cuspidal Hecke eigenform of even integral weight k ≥ 2 and trivial character
that is a normalized new form for some level N . We show that the partial sums

Hn =

n∑
m=1

a(m)2/mk

are not integral for n ≥ n0.
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1. Introduction and Results

Let

hn := 1 +
1

2
+ · · ·+ 1

n
(n ∈ N)

be the n-th harmonic number. Harmonic numbers have been studied since antiquity and are important
in various branches of number theory. They also have interesting arithmetic properties. For example,
a result of Theisinger [The1915] asserts that hn for n ≥ 2 never is an integer. Except for the use of
“Bertrand’s postulate” (cf. below) the proof is completely elementary.

If one seeks for a generalization in the context of modular forms one naturally is led to the partial
sums formally attached to the Rankin-Selberg L-series at s = k where k is the weight of the form
in question. (For properties of the Rankin-Selberg zeta function we refer, e.g. to [Bu98, sect. 1.6].)
Indeed, more precisely let

f(z) =
∑
n≥1

a(n)e2πinz

(z ∈ H = complex upper half-plane) be a cuspidal Hecke eigenform of even integral weight k ≥ 2 and
trivial character that is a normalized new form of some level N . Recall that a(1) = 1 and a(n) is the
eigenvalue of the n-th Hecke operator T (n). It is well-known that the a(n) are algebraic integers and
generate a totally real number field K. Let

Df (s) :=
∑
n≥1

a(n)2n−s (<(s)� 1)

be the Rankin-Selberg L-series attached to f . Recall that σ0 = k is the abscissa of convergence of
Df (s). We define

Hn = Hn(f) :=

n∑
m=1

a(m)2m−k (n ∈ N). (1.1)

Then Hn ∈ K and the Hn could be viewed as (at least) formal generalizations of the numbers hn.
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We prove:

Theorem 1. Assume that n ≥ 8 is an integer such that a(p) 6= 0 for some prime p ∈ (n/2, n]. Then
Hn is not an algebraic integer.

The proof of Theorem 1 works in a similar way as the proof in [The1915] with an additional use of
Deligne’s deep result

|a(p)| ≤ 2p
k−1
2 . (1.2)

The assumption n ≥ 8 (which implies that p ≥ 5) comes from the fact that seemingly we do not have
good information about the exact p-power dividing a(p) for p = 2, 3, as will be clear from the proof.

2. Proof of Theorem 1

Assume that n ≥ 8. Let p be any prime number in the interval (n/2, n] which is guaranteed to exist
by the hypothesis of Theorem 1. Further, p ≥ 5. We denote by O ⊂ K the ring of algebraic integers
of K. Suppose that Hn ∈ O.

Let C(n, p) be the n-th factorial, with the factor p omitted; i.e.:

C(n, p) := (p− 1)! ·
n−p∏
ν=1

(p+ ν).

We multiply both sides of (1.1) with C(n, p)k. Our assumption implies that C(n, p)kHn ∈ O. Hence,
we infer that

C(n, p)k · a(p)2

pk
∈ O

since the denominators of all other terms of the resulting sum on the right-hand side cancel. Therefore
also

C(n, p)k/2 · a(p)

pk/2
∈ O. (2.3)

Now note that p does not divide any of the numbers p+ 1, p+ 2, . . . , n, because the next multiple of
p, namely 2p is larger than n.

By the unique factorization of integral ideals into products of prime ideals in the Dedekind domain
O, applied to the principal ideals in question and using that p does not divide C(n, p), we deduce
from (2.3) that pk/2|a(p); i.e., a(p) = pk/2αp with αp ∈ O.

From (1.2) we therefore find that

|αp| ≤
2
√
p
< 1 (2.4)

where for the last inequality in (2.4) we have used that p ≥ 5.

Let σ be one of the finitely many embeddings of K over Q into an algebraic closure of Q. Then as is
well-known

fσ(z) :=
∑
n≥1

a(n)σe2πinz (z ∈ H)

is a normalized cuspidal Hecke eigenform of weight k, trivial character and level N . We have
a(p)σ = pk/2ασp and

|ασp | ≤
2
√
p
< 1.
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From the above we therefore find that the norm of αp satisfies

|N(αp)| = |
∏
σ

ασp | < 1.

However, N(αp) is a rational integer. Hence, we should have that a(p) = 0, which contradicts our
assumption. This proves Theorem 1.

Remarks. i) For the Ramanujan τ -function, which are the Fourier coefficients of the discriminant
function ∆ of weight k = 12 (see [Leh47]), Lehmer conjectured that a(n) 6= 0 for all n. If this were
true, then Theorem 1 together with a well-known theorem of Tchebyshev (also known under the name
of Bertrand’s postulate, see [HaWr59, p. 373, notes on chap. XXII]) would apply immediately to
show that Hn is not algebraic integer for all n ≥ 8.

ii) Theorems about the vanishing of a(p) for primes p were proved by Serre in his seminal paper
[Ser81]. Theorem 15 on Page 174 and Proposition 18 on page 180 there, give the following:

Serre’s Theorem Assume that k ≥ 2 and x ≥ 2.

i) In case f is non-CM (there is no complex quadratic field L such that a(p) = 0 for all primes p
which are inert in L), we have that

#{p ≤ x : a(p) = 0} = O

(
x

(log x)4/3

)
.

ii) In case f is CM, we have that

#{p ≤ x : a(p) = 0} =
x

2 log x
+O

(
x

(log x)2

)
.

In either case, with n large and x = n, we conclude that the interval (x/2, x] contains

π(x)− π(x/2)−#{p ∈ (x/2, x] : a(p) = 0} ≥ x

log x
− x/2

log(x/2)
−
(

x/2

log(x/2)
− x/4

log(x/4)

)
+O

(
x

(log x)4/3

)
≥ x

4 log x
+O

(
x

(log x)4/3

)
(2.5)

primes p such that a(p) 6= 0. In the above, we used the Prime Number Theorem with the error term

π(x) =
x

log x

(
1 +O

(
1

log x

))
as x→∞. (2.6)

Since the last quantity indicated in the right–hand side of (2.5) is positive for large x, we conclude
that for large n, the interval (n/2, n] contains a prime p with a(p) 6= 0 and thanks to Theorem 1, we
have that Hn is not an algebraic integer. Thus, we may write our conclusion as:

Theorem 2. There exists n0 = n0(f) such that Hn is not an algebraic integer for n ≥ n0.
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3. Comments and a challenge problem

We would like to suggest the following challenge question. Let `, j be integers and put

Hn,`,j =
n∑

m=1

a(m)`mj .

Our paper discussed the case ` = 2 and j = −k. We ask under what conditions on `, j one
may guarantee that Hn,`,j is an algebraic integer for only finitely many n. When j is negative and
large in absolute value (say −j > `(k − 1)/2) the above argument applies. Indeed, the argument
used in Theorem 1 creates an algebraic integer all whose conjugates have absolute values at most
2/p−j−`(p−1)/2 and since the exponent in the denominator is positive, this bounds p; hence, n. If
` ≥ 1 and j ≥ 0, then Hn,`,j is an algebraic integer for all n, and the case when ` < 0 is difficult
since a(m) might be zero (although we may decide to sum only over the values of a(m) which are
nonzero). The case ` ≥ 1 and j ∈ [−`(k − 1)/2,−1] is different since the argument of Theorem
1 creates an algebraic integer with large conjugates so it does not lead to a contradiction. As a
toy example, we took a(m) = τ(m), the Ramanujan function of m and studied the borderline case
` = 2, j = −1. Let n be large and assume s ≥ 1 is such that 13s is the largest power of 13 smaller
than or equal to n. Then the only numbers m ≤ n divisible by 13s are of the form ` × 13s where
` ∈ {1, 2, . . . ,K} and K ≤ 12 is some integer. Separating those ones out and multiplying everything
by A = 13s−1 · lcm[pt ≤ n, p 6= 13], and using the multiplicativity of τ(m)2, we get that

AH(n, 2,−1) =
(A/13s−1)τ(13s)2

13

K∑
`=1

τ(`)2

`
(mod Z).

But 13‖τ(13s), 13‖A/13s−1 and a small calculation with Mathematica reveals that

K∑
`=1

τ(`)2

`

is not a rational number whose numerator is divisible by 13 for any K ∈ {1, . . . , 12}. Thus,
H(n, 2,−1) 6∈ Z for any n ≥ 13. Presumably there is an integer n0 such that Hn,`,j is not an
integer for any n ≥ n0, ` ≥ 1 and j < 0. Note that since p | τ(p) for p ∈ {2, 3, 5, 7}, we have that
Hn,`,j is an integer for all n ≤ 10, ` ≥ 1 and j negative and small in absolute value. Knowledge of
non-ordinary primes p, namely primes p such that p | τ(p) would be useful. It has been checked that
in addition to the above four, 2411, 7758337633 are the only ones below 1010. See [MoSm13] for some
results on this problem.
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[Ser81] J.P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 54 (1981),
123–201.



W. Kohnen and F. Luca, On certain partial sums 5W. Kohnen and F. Luca, On certain partial sums 5

[The1915] L. Theisinger, Bemerkung über die harmonische Reihe, Monatshefte für Mathematik und Physik, 26 (1915), 132–134.

Winfried Kohnen
Mathematisches Institut der Universität Heidelberg
INF 205
69120 Heidelberg, Germany
e-mail : winfried@mathi.uni-heidelberg.de

Florian Luca
School of Maths, Wits University
South Africa

and

Centro de Ciencias Matemáticas UNAM
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