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On a general divisor problem related to a certain

Dedekind zeta-function over a specific sequence of

positive integers

Anubhav Sharma and Ayyadurai Sankaranarayanan

Abstract. We investigate the average behavior of coefficients of the Dirichlet series of positive integral power of the Dedekind
zeta-function ζK3

(s) of a non-normal cubic extension K3 of Q over a certain sequence of positive integers. More precisely, we prove

an asymptotic formula with an error term for the sum∑
a2
1+a2

2+a2
3+a2

4+a2
5+a2

6≤x

(a1,a2,a3,a4,a5,a6)∈Z6

ak,K3
(a21 + a22 + a23 + a24 + a25 + a26),

where (ζK3
(s))k :=

∞∑
n=1

ak,K3
(n)

ns
.
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1. Introduction

Let K be an algebraic extension of degree m of rational field Q. Define

ζK(s) :=
∑
α

1

N(α)s
,

for <(s) > 1, where the summation is running over all the integral ideals α of K and norm of integral
ideal α is denoted by N(α). The function ζK(s) can also be written as

ζK(s) =

∞∑
n=1

aK(n)

ns
,

where aK(n) denotes the number of integral ideals of K with normm. It is shown (by Chandrasekharan
and Good [ChGo83]) that these coefficients are multiplicative and satisfies the upper bound

aK(n) ≤ d(n)m,

where m is the degree of extension, i.e., m = [K : Q] and d(n) is the number of divisors of n.
In 1949, Landau [Lan49] showed that∑

n≤x

aK(n) = cx+O
(
x1− 2

m+1
+ε
)
,

where c is the residue of ζK(s) at its simple pole at s = 1, which is further improved to∑
n≤x

aK(n) = cx+O
(
x

23
73 log

315
146 x

)
,
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for quadratic field by Huxley and Watt [HuWa00]. Some further improvement is also available for
cubic fields by Müller [Mül88]. In 1993, W.G. Nowak [Now93] established that

∑
n≤x

aK(n) = cx+


O
(
x

1− 2
m

+ 8
m(5m+2) log

10
5m+2 x

)
for 3 ≤ m ≤ 6,

O
(
x1− 2

m
+ 3

2m2 log
2
m x
)

for m ≥ 7.

We also have some significant results (by Chandrasekharan and Narasimhan [ChNa63] and by

Chandrasekharan and Good [ChGo83]) of
∑
n≤x

aK(n)k for some higher powers k, if K is the Galois

extension of Q.
If h is the class number of K and [K : Q] = r1 + 2r2, where r1 is the number of real conjugate

fields and 2r2 is the number of complex conjugate fields, then we can write∑
n≤x

aK(n) = hλx+ E(x),

where

λ :=
2r1+r2πr2R

w|∆|
1
2

.

Here, w is the number of roots of unity in K; R is the regulator of K and ∆ is the discriminant of K.
When [K : Q] = m ≥ 10, B. Paul and A. Sankaranarayanan proved that

E(x)� x1− 3
m+6

+ε,

where implied constants depend only on K and ε (see [PaSa20]).
Also, if K = Q(ζl), where l is some positive integer and [K : Q] = m ≥ 8, then,

E(x)� x1− 3
m+5

+ε,

where the implied constants depend only on K and ε (see [PaSa20]).
It is of great interest to study the L-functions related to primitive holomorphic cusp forms. For

many years, it has been a profound area in which many authors have contributed.
Let L(s, f) be the L-function connected with the primitive holomorphic cusp form f of weight w

for the full modular group SL(2,Z) and λf (n) are the normalized nth Fourier coefficients of Fourier
expansion of f(z) at the cusp ∞, i.e.,

f(z) =

∞∑
n=1

λf (n)n
w−1
2 e2πinz

where =(z) > 0, then the L-function attached to λf (n) is defined as

L(s, f) =

∞∑
n=1

λf (n)

ns
,

for <(s) > 1, where λf (n) are Hecke eigenvalues of Hecke operators Tn.
Also,

Lk(s, f) =

∞∑
n=1

λk,f (n)

ns
,
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where

λk,f (n) =
∑

n=n1n2...nk

λf (n1)λf (n2) . . . λf (nk).

In 2012, Kanemitsu, Sankaranarayanan and Tanigawa [KST02] proved that for k ≥ 2,∑
n≤x

λk,f (n)� x1− 3
2k+2

+ε,

where implied constant depends only on f and ε, which is further improved by Lü in [Lü12].
For such divisor problems connected to holomorphic cusp forms, see the work of H.F. Liu [Liu18],

[LiuZha19] and Lü [Lü12]. Recently, several authors considered the average behavior of λsymjf (n)
over certain sequences of positive integers and established some interesting asymptotic formulas (see,
for instance [ShSa22a, ShSa22b, ShSa22c, Hua22]).

For k ≥ 2, let ∆k(x) denotes the error term in the asymptotic formula for
∑

n≤x dk(n), where

ζk(s) =
∑∞

n=1 dk(n)n−s. The estimation of ∆k(x) is popularly known as the general Dirichlet divisor

problem. From elementary arguments, one can get ∆k(x) � x
k−1
k logk−2 x. For k = 2, we have

∆2(x) � x
35
108

+ε, see [Ivi12]. For k = 3, ∆3(x) � x
43
96

+ε is the best result available, due to G.
Kolesnik [Kol79]. We may define the order αk of ∆k(x) as the least number such that ∆k(x)� xαk+ε

for every ε > 0. The following results are known (see [Titch86]):

αk ≤
k − 1

k
for k = 2, 3, . . .

and

αk ≤
k − 1

k + 1
for k = 2, 3, . . . .

But the exact value of αk has not been determined for any value of k. For an extensive literature and
detailed discussion of general divisor problem, see [Titch86, Chapter 12].

Estimating the average behavior of some special functions over polynomial values has been of
interest since the early 1950s. In 1952, Erdös [Erd52] proved that

c1x log x <

x∑
k=1

d(f(k)) < c2x log x

and ∑
p≤x

d(f(p))� x,

where f(x) ∈ Z[x] and c1, c2 are some positive constants. For a quadratic polynomial f(x), McKee
[Mck95, McK99] proved that

x∑
k=1

d(f(k)) ∼ λ(f)x log x,

where λ(f) can be written in terms of Hurwitz class numbers. No similar results have been established
for polynomials that have higher degrees. Then, Titchmarsh considered the linear polynomials
f(x) = a + x (a 6= 0) and observed the average behavior of divisor function over shifted primes.
More precisely, he proved that ∑

p≤x
d(p+ a) ∼ C(a)x,
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where C(a) is some constant depending upon a. Motivated by the previous result of Titchmarsh,
many authors studied the problem of finding an optimal error term of

∑
p≤x d(np), where the np’s are

quantities of arithmetic significance, for instance see [Pol16, AkDr12, Chi22].
One topic that has drawn a lot of attention involves figuring out the average order of dk(n) over

sparse sequences of values taken by polynomials, i.e.,

Dk(f(x1, x2, . . . , xn), x) :=
∑

|f(x1,x2,...,xn)|≤x

dk(|f(x1, x2, . . . , xn)|).

For f(x1, x2) a binary irreducible cubic form, Greaves [Gre70] proved that there exist real constants
c1 > 0 and c2 depending only on f(x1, x2), such that

D2(f(x1, x2, . . . , xn), x) = c1x
2
3 log x+ c2x

2
3 +O

(
x

9
14

+ε
)
,

for any ε > 0 as x→∞. If f(x1, x2) is an irreducible quartic form, Daniel [Dan99] proved that

D2(f(x1, x2, . . . , xn), x) = c1x
1
2 log x+O

(
x

1
2 log log x

)
,

where c1 > 0 is a constant depending only on f . More related work can be found in [LaZh21].
In 1998, Friedlander and Iwaniec [FrIw98] established the asymptotic formula for the distribution

of prime values of a4 + b2. More precisely, they proved

∞∑
a=1

∞∑
b=1

a2+b4≤x

Λ(a2 + b4) =
4

π
κx

3
4

(
1 +O

(
log log x

log x

))
,

where κ is some constant. Motivated from the above result, they [FrIw06] replaced Λ by dk and
established the following asymptotic formula for d3(a6 + b2):

∞∑
a=1

∞∑
b=1

a2+b4≤x
(a,b)=1

d3(a6 + b2) = cκx
2
3 (log x)2 +O

(
x

2
3 (log x)

7
4 (log log x)

1
2

)
,

where c and κ are some constants. For irreducible binary definite quadratic forms f , Daniel [Dan97]
proved an asymptotic formula for Dk(f(x1, x2, . . . , xn), x) for any k ≥ 2. With the help of circle
method, Sun and Zhang [SuZh16] proved that∑

1≤a1,a2,a3≤x

d3(a2
1 + a2

2 + a2
3) = c1x

3(log x)2 + c2x
3 log x+ c3x

3 +O
(
x

11
4

+ε
)
,

where c1, c2, c3 are some constants and ε is any positive number. Finally, Blomer [Blo18] proved an
asymptotic formula for Dk(f(x1, x2, . . . , xn), x) for any k ≥ 2 where f(x1, x2, . . . , xn) is a form of
degree k in n = k−1 variables, coming from incomplete norm form. Very recently, Lapkova and Zhou
[LaZh21] investigated the average sum of the kth divisor function over values of quadratic polynomials
f , not necessarily homogenous, in n ≥ 3 variables for any k ≥ 2.

Let K3 be a non-normal cubic extension of a rational field Q given by an irreducible polynomial
f(x) = x3 + ax2 + bx + c of discriminant D(< 0). It is natural to study the kth integral power of
Dedekind zeta function, i.e.,

(ζK3(s))k =

∞∑
n=1

ak,K3(n)

ns
, (1.1)
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for <(s) > 1, where ak,K3(n) =
∑

n=n1n2...nk

aK3(n1)aK3(n2) . . . aK3(nk).

In 2012, Lü [Lü13] was able to refine the previously known results (by Fomenko [Fom08]) of mean
square and third power of aK3(n) to∑

n≤x

aK3(n)2 = a1x log x+ a2x+O
(
x

23
31

+ε
)

where a1 and a2 are constants and∑
n≤x

aK3(n)3 = xP3(log x) +O
(
x

235
259

+ε
)
,

where P3(t) is a suitable polynomial in t of degree 4.
In this paper, we will consider the average of the Dirichlet coefficients ak,K3(n) of the kth power

(ζK3(s))k of the Dedekind zeta-function of a non-normal cubic extension K3 of Q over the sequence
of values of a binary quadratic form F (x1, x2, . . . , x6) =

∑6
k=1 xk

2. More precisely, we are interested
in the asymptotic formula for the sum∑

a21+a
2
2+a

2
3+a

2
4+a

2
5+a

2
6≤x

(a1,a2,a3,a4,a5,a6)∈Z6

ak,K3(a2
1 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6),

for any integer k ≥ 1, where

ak,K3(n) =
∑

n=n1n2...nk

aK3(n1)aK3(n2) . . . aK3(nk).

Note that, a1,K3(n) = aK3(n).
First, we make the following remark.

Remark 1. Let |t| ≥ 1 and ε > 0 be any small constant. Then we have

ζ

(
1

2
+ it

)
� (|t|+ 1)µ+ε,

where µ = µ(1
2). Moreover, Phragmén Lindelöf principle leads to

ζ(σ + it)� (|t|+ 1)2µ(1−σ)+ε

uniformly for 1
2 ≤ σ ≤ 1 and |t| ≥ 1.

For any integer k ≥ 1, writing,∑
a21+a

2
2+a

2
3+a

2
4+a

2
5+a

2
6≤x

(a1,a2,a3,a4,a5,a6)∈Z6

ak,K3(a2
1 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6) =
∑
n≤x

ak,K3(n)
∑

a21+a
2
2+a

2
3+a

2
4+a

2
5+a

2
6≤x

(a1,a2,a3,a4,a5,a6)∈Z6

1

=
∑
n≤x

ak,K3(n)r6(n) (1.2)

= Mk,K3(x) + Ẽk,K3(x),

where Mk,K3(x) is the main term which is of the form x3Pk−1(log x), where Pk−1(t) is a polynomial
in t of degree k − 1. We prove the following theorem.
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Theorem 1. Let ε > 0 (be any small constant) and define (for k ≥ 1) λ̃k = max (λk, λ
′
k) , where λk,

λ′k are defined in Theorems 2, 3 resp. Then we have for any integer k ≥ 1,

Ẽk,K3(x)� x
3− 1

2(1+λ̃k)
+3kε

.

To prove Theorem 1, first, we demonstrate the following theorems:

Theorem 2. Let ε > 0 (be any small constant) and define λ1 = 3ε, λ2 = min
(
2µ, 1

4

)
, λ3 =

min
(
µ+ 1

2 ,
5
8

)
, λ4 = min

(
2µ+ 3

4 , 1
)
, λ5 = min

(
3µ+ 1, 3

2

)
and λk = µ (k − 6) + k

3 for k ≥ 6.
Then we have for any integer k ≥ 1,

Ek,K3(x)� x
3− 1

2(1+λk)
+3kε

,

where ∑
n≤x

ak,K3(n)l1(n) = Mk,K3(x) + Ek,K3(x),

and l1(n) is defined in Section 2.

Remark 2. From [Bou17] of Bourgain, we can very well take µ = 13
84 . Thus, the theorem is

unconditional with µ = 13
84 .

Theorem 3. Let ε > 0 (be any small constant) and define λ′1 = 3ε, λ′2 = 1
4 , and λ′k = 3k−5

6 for k ≥ 3.
Then we have for any integer k ≥ 1,

E′k,K3
(x)� x

3− 1
2(1+λ′

k
)
+3kε

,

where ∑
n≤x

ak,K3(n)v1(n) = E′k,K3
(x),

and v1(n) is defined in Section 2.

From (1.2), one can easily see that the proof of Theorem 1 follows from the proof of Theorems 2
and 3.

2. Preliminaries and some important lemmas

Let rk(n) := #{(n1, n2, . . . , nk) ∈ Zk : n2
1 + n2

2 + · · · + n2
k = n} allowing zeros, distinguishing signs,

and order. We will be concerned with the function r6(n).

Lemma 1. For any positive integer n, we have

r6(n) = 16
∑
d|n

χ(d′)d2 − 4
∑
d|n

χ(d)d2, (2.3)

where dd′ = n, and χ is the non-principal Dirichlet character modulo 4, i.e.,

χ(n) =


1 if n ≡ 1 (mod 4)

−1 if n ≡ −1 (mod 4)

0 if n ≡ 0 (mod 2)

.
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Proof. See, for instance, Lemma 1 of [ShSa22c].

We can reframe the equation (2.3) as

r6(n) = 16
∑
d|n

χ(d)
n2

d2
− 4
∑
d|n

χ(d)d2

=: 16l(n)− 4v(n).

We write l1(n) = 16l(n), and v1(n) = 4v(n).

The functions χ(d) and
n2

d2
are completely multiplicative functions. This implies that χ(d)

n2

d2
is

multiplicative. If g(d) is any multiplicative function, then
∑
d|n
g(d) is also multiplicative. Therefore,

l(n) is a multiplicative function. Similarly, v(n) is also multiplicative.
Note that

l(p) = p2 + χ(p),

l(p2) = p4 + p2χ(p) + χ(p2),

and
v(p) = 1 + p2χ(p),

v(p2) = 1 + p2χ(p) + p4χ(p2).

Lemma 2. ([Lü13]) For <(s) > 1, we have

ζK3(s) = ζ(s)L(s, f),

where f is a holomorphic cusp form of weight 1 with respect to the congruence group Γ0(|D|) and
D(< 0) be the discriminant of f(x) = x3 + ax2 + bx+ c.

From Lemma 2, we can write

aK3(n) =
∑
d|n

λf (d).

Also, note that
aK3(p) = 1 + λf (p).

Lemma 3. For any ε > 0, we have∫ T

1

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣4 dt ∼ T (log T )4

2π
(2.4)

and ∫ T

1

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣12

dt� T 2+ε (2.5)

uniformly for T ≥ 1.

Proof. For the proof of (2.4) see (Theorem 5.1 of [Ivi12]), and (2.5) result is due to Heath-Brown
[Hea78].
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Lemma 4. ([Go82]) For any ε > 0, we have∫ T

1

∣∣∣∣L(1

2
+ it, χ

)∣∣∣∣2 dt� T log T,

uniformly for T ≥ 1 and

L(σ + it, χ)�ε (1 + |t|)
1
3

(1−σ)+ε,

uniformly for 1
2 ≤ σ ≤ 1 + ε, and |t| ≥ t0 (where t0 is sufficiently large).

Lemma 5. ([Rama74]) For any ε > 0, we have∫ T

1

∣∣∣∣L(1

2
+ it, χ

)∣∣∣∣4 dt� T 1+ε,

uniformly for T ≥ 1.

Lemma 6. For any ε > 0 and for any T ≥ 1 uniformly, we have∫ T

1

∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣2 dt ∼ cT log T (2.6)

and ∫ T

1

∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣6 dt� T 2+ε. (2.7)

Proof. Proofs of (2.6) and (2.7) follow by A. Good [Go82] and Jutila [Jut87], respectively.

Lemma 7. For any ε > 0, we have

L(σ + it, f)� (1 + |t|)max(
2(1−σ)

3
,0)+ε

uniformly for 1
2 ≤ σ ≤ 2 , |t| ≥ 1.

Proof. Proof follows from a result of A. Good [Go82] on using maximum-modulus principle to a
suitable function.

Lemma 8. Let f be defined as in Lemma 2 and ak,K3(n) be defined as in equation (1.1). If

Fk(s) =

∞∑
n=1

ak,K3(n)l(n)

ns
,

for <(s) > 3, then
Fk(s) = Gk(s)Hk(s),

where
Gk(s) = ζ(s− 2)kL(s, χ)kL(s− 2, f)kL(s, f ⊗ χ)k,

and χ is the non-principal character modulo 4. Here, Hk(s) is a Dirichlet series which converges
uniformly and absolutely in the half plane <(s) > 5

2 , and Hk(s) 6= 0 on <(s) = 3.
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Proof. We observe that ak,K3(n)l(n) is multiplicative, and hence

Fk(s) =
∏
p

(
1 +

ak,K3(n)l(p)

ps
+ · · ·+

ak,K3(pm)l(pm)

pms
+ · · ·

)
.

Note that

ak,K3(n)l(p) = kaK3(p)l(p)

= k (1 + λf (p))
(
p2 + χ(p)

)
= kp2 + kχ(p) + kp2λf (p) + kλf (p)χ(p)

=: b(p).

From the structure of b(p), we define the coefficients b(n) as

∞∑
n=1

b(n)

ns
= ζ(s− 2)kL(s, χ)kL(s− 2, f)kL(s, f ⊗ χ)k,

which is absolutely convergent in <(s) > 3. We also note that∏
p

(
1 +

b(p)

ps
+ · · ·+ b(pm)

pms
+ · · ·

)
= ζ(s− 2)kL(s, χ)kL(s− 2, f)kL(s, f ⊗ χ)k

=: Gk(s),

for <(s) > 3. Observe that b(n)�ε n
2+ε for any small positive constant ε.

Now, we note that in the half plane <(s) ≥ 3 + 2ε, we have∣∣∣∣∣b(p)ps
+
b(p2)

p2s
+ · · ·+ b(pm)

pms
+ · · ·

∣∣∣∣∣�
∞∑
m=1

p(2+ε)m

pmσ

≤
∞∑
m=1

p(2+ε)m

p(3+2ε)m

=

∞∑
m=1

1

p(1+ε)m

=

1

p1+ε

1− 1

p1+ε

=
1

p1+ε − 1

< 1.

Let us write

A =
ak,K3(p)l(p)

ps
+ · · ·+

ak,K3(pm))l(pm)

pms
+ · · · , and B =

b(p)

ps
+ · · ·+ b(pm)

pms
+ · · · .

From the above calculations, we observe that |B| < 1 in <(s) ≥ 3 + 2ε.
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We note that in the half plane <(s) ≥ 3 + 2ε, we have

1 +A

1 +B
= (1 +A)(1−B +B2 −B3 + · · · )

= 1 +A−B −AB + higher terms

= 1 +
ak,K3(p2)l(p2)− b(p2)

p2s
+ · · ·+ cm(pm)

pms
+ · · · ,

with cm(n)�ε n
2+ε. So, we have (in the half plane <(s) > 5

2)

∏
p

(
1 +A

1 +B

)
=
∏
p

(
1 +

ak,K3(p2)l(p2)− b(p2)

p2s
+ · · ·+ cm(pm)

pms
+ · · ·

)
�ε 1.

Thus, we have (in the half plane <(s) > 5
2)

Hk(s) :=
Fk(s)

Gk(s)

=
∏
p

(
1 +A

1 +B

)
�ε 1,

and also Hk(s) 6= 0 on <(s) = 3.

Lemma 9. Let f be defined as in Lemma 2 and ak,K3(n) be defined as in equation (1.1). If

F̃k(s) =

∞∑
n=1

ak,K3(n)v(n)

ns
,

for <(s) > 3, then
F̃k(s) = G̃k(s)H̃k(s),

where
G̃k(s) = ζ(s)kL(s− 2, χ)kL(s, f)kL(s− 2, f ⊗ χ)k,

and χ is the non-principal character modulo 4. Here, H̃k(s) is a Dirichlet series which converges
uniformly and absolutely in the half plane <(s) > 5

2 , and H̃k(s) 6= 0 on <(s) = 3.

Proof. The proof of Lemma 9 follows along similar lines as the proof of Lemma 8.

Lemma 10. ([JiLü14]) Let χ be a primitive character modulo q and Ldm,n(s, χ) be a general
L-function of degree 2A. For any ε > 0, we have∫ 2T

T

∣∣∣Ldm,n(σ + it, χ)
∣∣∣2 dt� (qT )2A(1−σ)+ε,

uniformly for 1
2 ≤ σ ≤ 1 + ε, and T ≥ 1. Also,

Ldm,n(σ + it, χ)� (q(1 + |t|))max{A(1−σ),0}+ε ,

uniformly for −ε ≤ σ ≤ 1 + ε.
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3. Proof of Theorem 2

Let k ≥ 1 be an integer. Firstly, we consider the sum
∑
n≤x

ak,K3(n)l1(n). We begin by applying Perron’s

formula (see [GrSo14, Chapter 2.4]) to Fk(s) with η = 3 + ε and 10 ≤ T ≤ x. Thus, we have

∑
n≤x

ak,K3(n)l1(n) = 16
∑
n≤x

ak,K3(n)l(n)

=
16

2πi

∫ η+iT

η−iT
Fk(s)

xs

s
ds+O

(
x3+3ε

T

)
.

We move the line of integration to <(s) = 5
2 + ε. By Cauchy’s residue theorem there is only one

pole at s = 3 of order k, coming from the factor ζ(s− 2)k.
So, we obtain∑

n≤x

ak,K3(n)l1(n) = Res
s=3

{
Fk(s)

xs

s

}
+

16

2πi

{∫ 5
2

+ε+iT

5
2

+ε−iT
+

∫ 5
2

+ε−iT

3+ε−iT
+

∫ 3+ε+iT

5
2

+ε+iT

}
Fk(s)

xs

s
ds

+O

(
x3+3ε

T

)
=: x3Pk−1(log x) +

16

2πi
(J1(k) + J2(k) + J3(k)) +O

(
x3+3ε

T

)
,

where Pk−1(t) is a polynomial in t of degree k − 1.
Note that the horizontal lines (J2(k) and J3(k)) contribute (for any fixed integer k ≥ 1), using

Lemma 6, Lemma 7 and Remark 1

J2(k) + J3(k)�
(
x2
)

max
1
2

+ε≤σ≤1+ε
xσT (2kµ+ 2k

3
)(1−σ)+εT−1

�
(
x2+ε

)
max

1
2

+ε≤σ≤1+ε

(
x

T 2kµ+ 2k
3

)σ
T 2kµ+ 2k

3
−1+ε.

For any fixed k, µ(> 0),
(

x

T 2kµ+2k
3

)σ
is monotonic as a function of σ for 1

2 + ε ≤ σ ≤ 1 + ε and hence

the maximum is attained at the extremities of the interval
[

1
2 + ε, 1 + ε

]
. Thus,

J2(k) + J3(k)� x3+3ε

T
+ x

5
2

+3εT
1
2(2kµ+ 2k

3 )−1.

Vertical line contributions:

1. For k=1:

J1(1) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
F1(s)

xs

s
ds.
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Using Lemma 5, Lemma 6, Lemma 7 and Cauchy-Schwarz inequality,

J1(1)� x
5
2

+ε log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣ ∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣ dt
}

� x
5
2

+ε log T

 max
1≤U≤T

1

U

(∫ U

U
2

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣2 dt
) 1

2
(∫ U

U
2

∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣2 dt
) 1

2


� x

5
2

+ε log T max
1≤U≤T

{
1

U
U

1
2

+εU
1
2

+ε

}
� x

5
2

+εT 3ε,

which dominates over J2(1) + J3(1).

2. For k=2:

J1(2) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
F2(s)

xs

s
ds.

Using Lemma 7, Remark 1 and Lemma 5,

J1(2)� x
5
2

+ε log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣2 ∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣2 dt
}

� x
5
2

+ε log T max
1≤U≤T

{
1

U
U2µ+2εU logU

}
� x

5
2

+εT 2µ+4ε.

Note that, by Lemma 5

∫ U

U
2

∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣4 dt�
(∫ U

U
2

∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣2 dt
) 1

2
(∫ U

U
2

∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣6 dt
) 1

2

� U
3
2

+ε.

Also, we have

J1(2)� x
5
2

+ε log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣2 ∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣2 dt
}

� x
5
2

+ε log T

 max
1≤U≤T

1

U

(∫ U

U
2

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣4 dt
) 1

2
(∫ U

U
2

∣∣∣∣L(
1

2
+ it, f)

∣∣∣∣4 dt
) 1

2


� x

5
2

+ε log T max
1≤U≤T

{
1

U
U

1
2

+εU
1
2

( 3
2

+ε)

}
(using Lemma 2 and above observation)

� x
5
2

+εT
1
4

+2ε.

Thus, we have

J1(2)� x
5
2

+4εTmin (2µ, 1
4),

which dominates over J2(2) + J3(2).

3. For k=3:

J1(3) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
F3(s)

xs

s
ds.
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Using Lemma 2, Lemma 5, Cauchy-Schwarz Inequality and Remark 1,

J1(3)� x
5
2

+ε log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣3 ∣∣∣∣L(1

2
+ it, f

)∣∣∣∣3 dt
}

� x
5
2

+ε log T

 max
1≤U≤T

1

U
Uµ+ε

(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣4 dt
) 1

2

×

(∫ U

U
2

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣6 dt
) 1

2


� x

5
2

+ε log T max
1≤U≤T

{
1

U
Uµ+εU

1
2

(1+ε)U
1
2

(2+ε)

}
� x

5
2

+4εTµ+ 1
2 .

Also, we have (using Lemma 2, Lemma 5 and above observation)

J1(3)� x
5
2

+ε log T

 max
1≤U≤T

1

U

(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12

dt

) 1
4
(∫ U

U
2

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣4 dt
) 3

4


� x

5
2

+ε log T max
1≤U≤T

{
1

U
U

1
2

+εU
3
4( 3

2
+ε)
}

� x
5
2

+5εT
5
8 .

Thus, we have

J1(3)� x
5
2

+5εTmin(µ+ 1
2
, 5
8),

which dominates over J2(3) + J3(3).

4. For k=4: First we observe, (using Lemma 2 and Cauchy-Schwarz inequality)

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣8 dt�
(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣4 dt
) 1

2
(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12

dt

) 1
2

� U
1
2

(1+ε)U
1
2

(2+ε)

� U
3
2

+ε.

Now,

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣6 dt�
(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣4 dt
) 1

2
(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣8 dt
) 1

2

� U
1
2

(1+ε)T
1
2

( 3
2

+ε)

� U
5
4

+ε.

Now,

J1(4) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
F4(s)

xs

s
ds.
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Using Lemma 2, Lemma 5, Hölder’s inequality and Remark 1,

J1(4)� x
5
2

+ε log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣4 ∣∣∣∣L(1

2
+ it, f

)∣∣∣∣4 dt
}

� x
5
2

+ε log T

 max
1≤U≤T

1

U
U2µ+2ε

(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣6 dt
) 1

3

×

(∫ U

U
2

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣6 dt
) 2

3


� x

5
2

+ε log T max
1≤U≤T

{
1

U
U2µ+2εU

1
3

( 5
4

+ε)U
2
3

(2+ε)

}
(using above observation)

� x
5
2

+5εT 2µ+ 3
4 .

Also, we have (using Lemma 7, Lemma 2, Lemma 5, and Hölder’s inequality)

J1(4)� x
5
2

+ε log T

 max
1≤U≤T

1

U

(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12

dt

) 1
3
(∫ U

U
2

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣6 dt
) 2

3


� x

5
2

+ε log T max
1≤U≤T

{
1

U
U

1
3

(2+ε)U
2
3

(2+ε)

}
� x

5
2

+5εT.

Thus, we have

J1(4)� x
5
2

+5εTmin(2µ+ 3
4
,1),

which dominates over J2(4) + J3(4).

5. For k=5:

J1(5) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
F5(s)

xs

s
ds.

Using Lemma 2, Lemma 5, Hölder’s inequality and Remark 1,

J1(5)� x
5
2

+ε log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣5 ∣∣∣∣L(1

2
+ it, f

)∣∣∣∣5 dt
}

� x
5
2

+ε log T

 max
1≤U≤T

1

U
U3µ+3ε

(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12

dt

) 1
6

×

(∫ U

U
2

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣6 dt
) 5

6


� x

5
2

+ε log T max
1≤U≤T

{
1

U
U3µ+3εU

1
6

(2+ε)U
5
6

(2+ε)

}
� x

5
2

+6εT 3µ+1.
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Also, we have

J1(5)� x
5
2

+ε log T

 max
1≤U≤T

1

U

(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12

dt

) 5
12
(∫ U

U
2

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣5. 127 dt
) 7

12


� x

5
2

+ε log T

{
max

1≤U≤T

1

U
U

5
12

(2+ε)U
7
12

(2+ε)U
18
7
. 1
3
. 7
12

+2ε

}
� x

5
2

+5εT
3
2 .

Thus, we have

J1(5)� x
5
2

+5εTmin(3µ+1, 3
2),

which dominates over J2(5) + J3(5).

6. For k ≥ 6:

J1(k) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
Fk(s)

xs

s
ds.

Using Lemma 2, Cauchy-Schwarz Inequality, Lemma 5, Lemma 6, and Remark 1 we get

J1(k)� x
5
2

+ε log T

{
max

1≤U≤T

1

U

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣k ∣∣∣∣L(1

2
+ it, f

)∣∣∣∣k dt
}

� x
5
2

+ε

{
max

1≤U≤T

1

U
U (k−6)(µ+ε)U (k−3)( 1

3
+ε)

∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣6 ∣∣∣∣L(1

2
+ it, f

)∣∣∣∣3 dt
}

� x
5
2

+2kε

 max
1≤U≤T

Uµ(k−6)+ 1
3

(k−3)−1

(∫ U

U
2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12

dt

) 1
2

×

(∫ U

U
2

∣∣∣∣L(1

2
+ it, f

)∣∣∣∣6
) 1

2

dt


� x

5
2

+2kε

{
max

1≤U≤T
Uµ(k−6)+ 1

3
(k−3)−1U

1
2

(2+ε)U
1
2

(2+ε)

}
� x

5
2

+3kεTµ(k−6)+ k
3 .

Define

λk := µ(k − 6) +
k

3
,

for k ≥ 6, then

J1(k)� x
5
2

+3kεT λk .

Therefore, we have (for k ≥ 1)∑
n≤x

ak,K3(n)l1(n) = x3Pk−1(log x) + Ek,K3(x),

where Ek,K3(x) � x3+3ε

T
+ x

5
2

+3kεT λk . We choose T such that
x3

T
∼ x

5
2T λk , i.e., T 1+λk ∼ x

1
2 , i.e.,

T ∼ x
1

2(1+λk) .
So finally, we have

Ek,K3(x)� x
3− 1

2(1+λk)
+3kε

.

This proves the theorem.
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4. Proof of Theorem 3

Let k ≥ 1 be an integer. Now, we consider the sum
∑
n≤x

ak,K3(n)v1(n). We begin by applying Perron’s

formula (see [GrSo14, Chapter 2.4]) to F̃k(s) with η = 3 + ε and 10 ≤ T ≤ x. Thus, we have∑
n≤x

ak,K3(n)v1(n) = 4
∑
n≤x

ak,K3(n)v(n)

=
4

2πi

∫ η+iT

η−iT
F̃k(s)

xs

s
ds+O

(
x3+3ε

T

)
.

We move the line of integration to <(s) = 5
2 + ε. There is no singularity in the rectangle obtained

and the function F̃k(s)
xs

s
is analytic in this region. Thus, using Cauchy’s theorem for rectangles

pertaining to analytic functions, we get∑
n≤x

ak,K3(n)v1(n) = Res
s=3

{
F̃k(s)

xs

s

}
+

4

2πi

{∫ 5
2

+ε+iT

5
2

+ε−iT
+

∫ 5
2

+ε−iT

3+ε−iT
+

∫ 3+ε+iT

5
2

+ε+iT

}
F̃k(s)

xs

s
ds

+O

(
x3+3ε

T

)
=:

4

2πi
(J ′1(k) + J ′2(k) + J ′3(k)) +O

(
x3+3ε

T

)
.

Note that the horizontal lines (J ′2(k) and J ′3(k)) contribute (for any fixed integer k ≥ 1), using
Lemma 9, Lemma 10 and Lemma 6

J ′2(k) + J ′3(k)�
(
x2
)

max
1
2

+ε≤σ≤1+ε
xσT ( k

3
+ 2k

3
)(1−σ)+εT−1

�
(
x2+ε

)
max

1
2

+ε≤σ≤1+ε

( x

T k

)σ
T k−1+ε.

For any fixed k, µ(> 0),
(
x
Tk

)σ
is monotonic as a function of σ for 1

2 + ε ≤ σ ≤ 1 + ε and hence the

maximum is attained at the extremities of the interval
[

1
2 + ε, 1 + ε

]
. Thus,

J ′2(k) + J ′3(k)� x3+3ε

T
+ x

5
2

+3εT
k
2
−1.

Vertical line contributions:

1. For k=1:

J ′1(1) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
F̃1(s)

xs

s
ds.

Using Lemma 9, Lemma 3, Lemma 10 and Cauchy-Schwarz inequality,

J ′1(1)� x
5
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+ε log T

{
max
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) 1
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+ε log T max
1≤U≤T
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1

U
U

1
2

+εU
1
2

+ε

}
� x

5
2

+εT 3ε,
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which dominates over J ′2(1) + J ′3(1).

2. For k=2

J ′1(2) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
F̃2(s)

xs

s
ds.

Note that, by Lemma 4
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+ε.

Using Lemma 4 and Lemma 10,
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}
(using above observation)

� x
5
2

+εT
1
4

+2ε,

which dominates over J ′2(2) + J ′3(2).

3. For k ≥ 3:

J ′1(k) :=

∫ 5
2

+ε+iT

5
2

+ε−iT
F̃k(s)

xs

s
ds.

Using Lemma 8, Cauchy-Schwarz Inequality, Lemma 4, Lemma 5, and Lemma 6 we get
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{
max

1≤U≤T
U

k−2
6

+ k−3
3
−1U

1
2

(1+ε)U
1
2

(2+ε)

}
� x

5
2

+3kεT
k
2
− 5

6 ,

which dominates over J ′2(k) + J ′3(k).
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Therefore, we have (for k ≥ 1) ∑
n≤x

ak,K3(n)v1(n) = E′k,K3
(x),

where E′k,K3
(x) � x3+3ε

T
+ x

5
2

+3kεT λ
′
k . We choose T such that

x3

T
∼ x

5
2T λ

′
k , i.e., T 1+λ′k ∼ x

1
2 , i.e.,

T ∼ x
1

2(1+λ′
k
) .

So finally, we have

E′k,K3
(x)� x

3− 1
2(1+λ′

k
)
+3kε

.

This proves the theorem.
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[Lü12] G. Lü, On general divisor problems involving Hecke eigenvalues. Acta Mathematica Hungarica, 135(1-2) (2012), pp.
148–159.
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