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On a general divisor problem related to a certain
Dedekind zeta-function over a specific sequence of
positive integers

Anubhav Sharma and Ayyadurai Sankaranarayanan

Abstract. We investigate the average behavior of coefficients of the Dirichlet series of positive integral power of the Dedekind
zeta-function (g, (s) of a non-normal cubic extension K3 of Q over a certain sequence of positive integers. More precisely, we prove
an asymptotic formula with an error term for the sum
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6
(a1,a2,a3,a4,a5,a6)€Z

where (Ck, (s))F = Zw.
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1. Introduction

Let K be an algebraic extension of degree m of rational field Q. Define

Gels) = ) e

«

for R(s) > 1, where the summation is running over all the integral ideals @ of K and norm of integral
ideal « is denoted by N(«). The function (k(s) can also be written as

Gels) = Y20
n=1

where ax (n) denotes the number of integral ideals of K with norm m. It is shown (by Chandrasekharan
and Good [ChGo83]) that these coefficients are multiplicative and satisfies the upper bound

ag(n) < d(n)™,

where m is the degree of extension, i.e., m = [K: Q] and d(n) is the number of divisors of n.
In 1949, Landau [Lan49] showed that

S astn) = er 0 (s,

n<x

where ¢ is the residue of (k(s) at its simple pole at s = 1, which is further improved to

E ax(n) =cx + O (a?% log% a:) ,

n<lz
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for quadratic field by Huxley and Watt [HuWa00]. Some further improvement is also available for
cubic fields by Miiller [Miil88]. In 1993, W.G. Nowak [Now93] established that

ZaK(n) =cx + )

n<z 0] (xlfﬁJr# log% x) for m > 7.

1_24_# 10
O (a: m T m(Em+2) Jog Fm+2 3:) for 3 <m <6,

We also have some significant results (by Chandrasekharan and Narasimhan [ChNa63] and by
Chandrasekharan and Good [ChGo83]) of ZaK(n)k for some higher powers k, if K is the Galois

n<x
extension of Q.
If h is the class number of K and [K : Q] = r1 + 2rg, where r1 is the number of real conjugate
fields and 279 is the number of complex conjugate fields, then we can write

ZaK(n) = hAz + E(x),

n<x

where
9ri+r2 R

wlap
Here, w is the number of roots of unity in K; R is the regulator of K and A is the discriminant of K.
When [K: Q] =m > 10, B. Paul and A. Sankaranarayanan proved that

E(r) < :z:l_mi%ﬂ,

where implied constants depend only on K and e (see [PaSa20]).
Also, if K = Q((;), where [ is some positive integer and [K : Q] = m > 8, then,

E(r) < xl_mi%ﬁ,

where the implied constants depend only on K and e (see [PaSa20]).

It is of great interest to study the L-functions related to primitive holomorphic cusp forms. For
many years, it has been a profound area in which many authors have contributed.

Let L(s, f) be the L-function connected with the primitive holomorphic cusp form f of weight w
for the full modular group SL(2,Z) and Af(n) are the normalized n'* Fourier coefficients of Fourier
expansion of f(z) at the cusp oo, i.e.,

FR)= ) Aslmn*s e
n=1

where (z) > 0, then the L-function attached to A¢(n) is defined as

o

Do, 1) = 0,

n=1

for R(s) > 1, where A\¢(n) are Hecke eigenvalues of Hecke operators T,.

Also,
I E )
e £(m
k(sa f) = k’fs( )
n=1

n
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where

Mop) = D> A(m)Ag(na) . Ap(ng).

n=ninz..ng

In 2012, Kanemitsu, Sankaranarayanan and Tanigawa [KST02] proved that for k > 2,

3
E A p(n) < a'” 73t

n<x

where implied constant depends only on f and €, which is further improved by Lii in [Liil2].

For such divisor problems connected to holomorphic cusp forms, see the work of H.F. Liu [Liul§],
[LiuZhal9] and Lii [Lii12]. Recently, several authors considered the average behavior of Ay, (1)
over certain sequences of positive integers and established some interesting asymptotic formulas (see,
for instance [ShSa22a, ShSa22b, ShSa22c¢, Hua22]).

For k > 2, let Ap(x) denotes the error term in the asymptotic formula for ) _ d(n), where

¢k(s) = 32°°  di.(n)n*. The estimation of Ag(z) is popularly known as the general Dirichlet divisor

k—2

problem. From elementary arguments, one can get Ag(z) < e log" “x. For k = 2, we have

As(z) < 21657¢ see [Ivil2]. For k = 3, As(z) < 257 is the best result available, due to G.
Kolesnik [Kol79]. We may define the order ay, of Ag(z) as the least number such that Ay(x) < x®*¢
for every € > 0. The following results are known (see [Titch86]):

-1
akSL for k=2,3,...
k
and
<k; for k=2,3
o < =2,3,....

But the exact value of oy has not been determined for any value of k. For an extensive literature and
detailed discussion of general divisor problem, see [Titch86, Chapter 12].

Estimating the average behavior of some special functions over polynomial values has been of
interest since the early 1950s. In 1952, Erdos [Erd52] proved that

crlogr < Zd(f(k:)) < cpxlogx
k=1

and

S d(f(p) < =,

p<z

where f(z) € Z[x] and ¢1, c2 are some positive constants. For a quadratic polynomial f(z), McKee
[Mck95, McK99] proved that

> d(f(k)) ~ A(f)zlog,
k=1

where A\(f) can be written in terms of Hurwitz class numbers. No similar results have been established
for polynomials that have higher degrees. Then, Titchmarsh considered the linear polynomials
f(z) = a+ 2 (a # 0) and observed the average behavior of divisor function over shifted primes.
More precisely, he proved that

> d(p+a) ~ C(a)z,

p<w
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where C(a) is some constant depending upon a. Motivated by the previous result of Titchmarsh,
many authors studied the problem of finding an optimal error term of Zp< » d(ny), where the n,’s are
quantities of arithmetic significance, for instance see [Pol16, AkDr12, Chi22].

One topic that has drawn a lot of attention involves figuring out the average order of di(n) over
sparse sequences of values taken by polynomials, i.e.,

Di(f(z1, 29, ..., 2p), ) = > dllf(zr,wa, ).

[f(z1,22,.. 70 ) |<z

For f(x1,z2) a binary irreducible cubic form, Greaves [Gre70] proved that there exist real constants
c1 > 0 and ¢ depending only on f(z1,z2), such that

Do(f(x1,@2,...,2p),2) = S log z + 313 + 0 (96%+6) ,
for any € > 0 as * — oo. If f(x1,22) is an irreducible quartic form, Daniel [Dan99] proved that
Do(f(x1,29,...,20),2) = cla:% logxz + O (wé loglogx) ,

where ¢; > 0 is a constant depending only on f. More related work can be found in [LaZh21].
In 1998, Friedlander and Iwaniec [FrIw98] established the asymptotic formula for the distribution
of prime values of a* 4+ b2. More precisely, they proved

4 log 1
>3- = bt (140 (VL))
T log =
a=1 b=1
a?+bi<z

where £ is some constant. Motivated from the above result, they [FrIw06] replaced A by dj and
established the following asymptotic formula for ds(a® + b?):

[e.9] (e 9]

Zng(a6 +b%) = %(log:c) +0 (:L‘%(loga:)g(loglogx)%) ,

a=1b=1

a2+b4§z

(a,b)=1
where ¢ and k are some constants. For irreducible binary definite quadratic forms f, Daniel [Dan97]
proved an asymptotic formula for Dy(f(x1,x9,...,2,),x) for any k& > 2. With the help of circle
method, Sun and Zhang [SuZh16] proved that

S ds(ad +af+ad) = cra(log)? + cprlog + ey + O (2577),

1<ai,a2,a3<z

where ¢y, cg, c3 are some constants and € is any positive number. Finally, Blomer [Blo18] proved an
asymptotic formula for Dg(f(z1,x9,...,2,),z) for any k > 2 where f(x1,22,...,2,) is a form of
degree k in n = k—1 variables, coming from incomplete norm form. Very recently, Lapkova and Zhou
[LaZh21] investigated the average sum of the kth divisor function over values of quadratic polynomials
f, not necessarily homogenous, in n > 3 variables for any k& > 2.

Let K3 be a non-normal cubic extension of a rational field Q given by an irreducible polynomial
f(x) = 23 + ax® + bz + ¢ of discriminant D(< 0). It is natural to study the k" integral power of

Dedekind zeta function, i.e.,
o)
E :akK
(Cks(s ., (1.1)
n=1
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for R(s) > 1, where ayg,(n) = Z ags(n1)ag,(n2) ... ag, (ng).

n=ning...ng
In 2012, Lii [Lii13] was able to refine the previously known results (by Fomenko [Fom08]) of mean
square and third power of ak,(n) to

E aKs (n)2 = a1z logx + asx + O (:p%"f)
n<x
where a; and as are constants and
E aKs (n)3 =zP3(logz) + O <x%+e) ,
n<z

where P3(t) is a suitable polynomial in t of degree 4.

In this paper, we will consider the average of the Dirichlet coefficients ay, k,(n) of the k" power
(Ck,(8))* of the Dedekind zeta-function of a non-normal cubic extension K3 of Q over the sequence
of values of a binary quadratic form F(x1,x2,...,26) = 22:1 x2. More precisely, we are interested
in the asymptotic formula for the sum

E ahKS(a%%—a%%—a%+ai+a§+a%),

a%+a%+a§+ai+ag+a% <z
(a1,a2,a3,a4,05,a6) EZ5

for any integer k > 1, where

aeia(m) = Y ax,(m)ag, (n2) . ag, (ng).

n=ning..ng

Note that, a1 k,(n) = ax,(n).
First, we make the following remark.

Remark 1. Let |t/ > 1 and € > 0 be any small constant. Then we have
1
¢ (2 + z’t> < (Jt] + 1)re,
where p = pu( %) Moreover, Phragmén Lindel6f principle leads to

(o + it) < (|t] + 1))t
uniformly for % <o <1and|t| >1.

For any integer k£ > 1, writing,

E ak Ks (a% + a% + a% + ai + a% + aé) = E ag ks (n) E 1

a%+a%+a§+az+a§+a§§z n<z a%+a%+a§+az+ag+a%§z
6 6
b
(a1,a2,a3,a4,a5,a6)EZ (a1,a2,a3,a4,a5,a6)E€EZ
= E ag s (1)76(n) (1.2)
n<x

where My g, (z) is the main term which is of the form x3P;_1(log x), where Py_1(t) is a polynomial
in t of degree k — 1. We prove the following theorem.
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Theorem 1. Let ¢ > 0 (be any small constant) and define (for k > 1) Ay = max (A, Ay.), where Ay,
X, are defined in Theorems 2, 3 resp. Then we have for any integer k > 1,

~ +3ke
B g, (z) < I

To prove Theorem 1, first, we demonstrate the following theorems:

Theorem 2. Let ¢ > 0 (be any small constant) and define \y = 3¢, Ay = min (2u, i), Az =
min (p + 2,§) A —mm(2u+ 2.1), As :min(3u+1,%) and \j :u(k—()‘)—i—%fork > 6.
Then we have for any integer k > 1,

3— 5 —~+3ke
B g, (7) <2 205w 70

where

D ons (M) = Mige, (2) + Bey ()

n<x
and l1(n) is defined in Section 2.

Remark 2. From [Boul7] of Bourgain, we can very well take u = g. Thus, the theorem is
13

unconditional with p = g7.

Theorem 3. Let e > 0 (be any small constant) and define X; = 3¢, Xy = 1, and N}, = % fork > 3.
Then we have for any integer k > 1,

—— 7~ +3ke
EI/c7K3(33)<<$ R ,

where

D ari, (i (n) = By, (@),

n<x

and v1(n) is defined in Section 2.

From (1.2), one can easily see that the proof of Theorem 1 follows from the proof of Theorems 2
and 3.
2. Preliminaries and some important lemmas

Let 7i(n) :== #{(n1,n2,...,nx) € Z¥ : n3 + n +--- + n? = n} allowing zeros, distinguishing signs,
and order. We will be concerned with the function r¢(n).

Lemma 1. For any positive integer n, we have
) =16 E x(d)d® — 4 E x(d (2.3)
dn dn
where dd' = n, and x is the non-principal Dirichlet character modulo 4, i.e.,

1 ifn=1 (mod4)
x(n) =< -1 ifn=-1 (mod4).
0 ifn=0 (mod?2)
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Proof. See, for instance, Lemma 1 of [ShSa22c]|.

We can reframe the equation (2.3) as

ro(n) =16 ()7 —4Y x(d)d?
dn

din
=:16l(n) — 4v(n).

We write {1(n) = 16l(n), and vi(n) = 4v(n).
2 2

n n
The functions x(d) and 2 are completely multiplicative functions. This implies that x(d)— is

2
multiplicative. If g(d) is any multiplicative function, then > g(d) is also multiplicative. Therefore,
din
I[(n) is a multiplicative function. Similarly, v(n) is also multiplicative.
Note that
I(p) = p* + x(p),
1(p*) = p* + 1" x(p) + x(P°),
and

v(p) =1+ p*x(p),
v(p®) = 1+ p*x(p) + p'x (%)
Lemma 2. ([Lii13]) For R(s) > 1, we have
(ks (s) = C(s)L(s, f),

where f is a holomorphic cusp form of weight 1 with respect to the congruence group I'o(|D|) and
D(< 0) be the discriminant of f(x) = 2% + ax?® + bz + c.

axy(n) = 3 _As(d).

d|n

From Lemma 2, we can write

Also, note that
ags(p) = 14 As(p).

Lemma 3. For any € > 0, we have

T 4 T(log T)*
— +iat)| dt ~ —————— 2.4
| G +in = (24)
and
T 1 12
/ C(5 +it) dt < T*e (2.5)
1

uniformly for T'> 1.

Proof. For the proof of (2.4) see (Theorem 5.1 of [Ivil2]), and (2.5) result is due to Heath-Brown
[Hea78].



30 2. Preliminaries and some important lemmas

Lemma 4. ([Go82]) For any € > 0, we have
/ ot
) 5 (29 ¢

Lo + it, x) < (14 [¢])s0)Fe,

2
dt < TlogT,

uniformly for T > 1 and

uniformly for £ <o <14¢, and |t| >ty (where ty is sufficiently large).
2

Lemma 5. ([Rama44]) For any € > 0, we have
L= “+1
. 2 » X

Lemma 6. For any € > 0 and for any T > 1 uniformly, we have

r
r

Proof. Proofs of (2.6) and (2.7) follow by A. Good [Go82] and Jutila [Jut87], respectively.

4
dt < T,

uniformly for T'> 1.

2

1
L(§ +it, f)| dt ~cTlogT (2.6)

and

6

1
Lz +it, f) dt < T (2.7)

Lemma 7. For any € > 0, we have

2(1-0)

Lo +it, f) < (1 + [t])max(T5 0+

uniformly for % <o<2,|t|>1.

Proof. Proof follows from a result of A. Good [Go82] on using maximum-modulus principle to a
suitable function.

Lemma 8. Let f be defined as in Lemma 2 and aj x,(n) be defined as in equation (1.1). If

o

Py = § " s (ml(n),
for R(s) > 3, then
Fk(s) = Gk(S)Hk(S),
where
Gr(s) = (s — 2)*L(s,x)*L(s — 2, f)FL(s, f @ )",

and x 1is the non-principal character modulo 4. Here, Hy(s) is a Dirichlet series which converges
uniformly and absolutely in the half plane R(s) > 3, and Hy(s) # 0 on R(s) = 3.
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Proof. We observe that ay k,(n)l(n) is multiplicative, and hence

Fk(s):H<1+CWW+...+W+...>.

pS pms
Note that

agxs (n)l(p) = kax,(p)l(p)
=k(1+ () (p° + x(p))
= kp® + kx(p) + kp®As(p) + kAf(p)x(p)
=: b(p).

From the structure of b(p), we define the coefficients b(n) as

[e.e]

S U s - 2 L5 0P L(s — 2,0 Lis, f 9 3

nS

n=1
which is absolutely convergent in R(s) > 3. We also note that

H<1+b2(f?+---+bgz:)+--->

= (s = 2)"L(s, )" L(s — 2, /)*L(s, f @ )"
=: Gi(s),

for R(s) > 3. Observe that b(n) <. n?T¢ for any small positive constant e.
Now, we note that in the half plane R(s) > 3 + 2¢, we have

< p(3+25)m
m=1
0

=2 s
o p(1+e)m

m=1
1
p1+e
B 1
1- p1+6
1
p1+6 _ 1

<1.

Let us write

b(p)

ks (PIP) | akxa (P")IP™)
pS

A: S ms
p p

4., and B=

From the above calculations, we observe that |B| < 1 in R(s) > 3 + 2e.
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We note that in the half plane R(s) > 3 + 2¢, we have

1+ A 9 3
——=(1+A)(1-B+B“-B
=+ A -B+ o)
=1+ A — B — AB + higher terms
a 21 2 —-b 2 - m
. k,K3<p>p<i> (p)+~-+cp5il)+-- |

with ¢ (n) < n?*<. So, we have (in the half plane R(s) > 3)

1—[ (i;ﬁ:g) _ H (1 n ak,Ks(p2)lp(2p;2) — b(pz) 4t cm (p™) 4. >
< 1.

Thus, we have (in the half plane R(s) > 3)

and also H(s) # 0 on R(s) = 3.

Lemma 9. Let f be defined as in Lemma 2 and ay x,(n) be defined as in equation (1.1). If

Fi(s) = Y eialmeln),
n=1

for R(s) > 3, then N L
Fk(s) = Gk(s)Hk(S),

where

ék(s) = C(S)kL(S - 2a X)kL(Sa f)kL(s - 27 f & X)ky

and x is the non-principal character modulo 4. Here, ffﬁ(s) 1s a Dirichlet series which converges
uniformly and absolutely in the half plane R(s) > %, and Hy(s) #0 on R(s) = 3.

Proof. The proof of Lemma 9 follows along similar lines as the proof of Lemma 8.

d

m,n

Lemma 10. ([JiLiil4]) Let x be a primitive character modulo q and £
L-function of degree 2A. For any € > 0, we have

(s,x) be a general

2T 2
/ lﬂfnm(a +it,y)| dt < (qT)ZA(l_”)J“,
T
uniformly for % <o<1l+4e¢ andT >1. Also,

ed (o +it,x) < (g(1 + |t]))mextat=a)ire.

uniformly for —e <o <1+e.
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3. Proof of Theorem 2

Let k£ > 1 be an integer. Firstly, we consider the sum Zak,Ks (n)l1(n). We begin by applying Perron’s

n<x

formula (see [GrSol4, Chapter 2.4]) to Fi(s) with n =3 + € and 10 < T < z. Thus, we have

D ki ()l (n) = 16 Y _api, (0)i(n)

n<lz n<lz
16 n+iT s ZE3+3€
= — Fi(s)—ds+ O )
2mi Syt S T
We move the line of integration to R(s) = % + e. By Cauchy’s residue theorem there is only one

pole at s = 3 of order k, coming from the factor ((s — 2).

So, we obtain

e 16 SpetiT Se—iT 3+e+iT e
D st =Res { Ry gm0 [0 T | (o) s

+e—iT +e—iT +e+iT
n<x
343e¢
X
+0
T

. 23D (logz) + %(Jl(k) + Jo(k) + J3(k)) + O <x3;36> |

where P;_1(t) is a polynomial in ¢ of degree k — 1.
Note that the horizontal lines (J2(k) and J3(k)) contribute (for any fixed integer & > 1), using
Lemma 6, Lemma 7 and Remark 1

Jo(k) + J3(k) < (:1:2) max Lot 2 (1=0)+ep—1

%+e§o’§1+e
2+€ T 7 2ku+%—1+e
< (m ) max —r T 3 .
Ite<o<ite \T2knt3

g
For any fixed k, pu(> 0), (ﬁ) is monotonic as a function of ¢ for % 4+ e <o <1+ ¢ and hence
T2ket S

the maximum is attained at the extremities of the interval [% +¢€ 14+ e]. Thus,

3+3e
T 5 1 2k
pat3eps (2kpt %) -1

Jo(k) + J3(k) <

Vertical line contributions:

1. For k=1:
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3. Proof of Theorem 2

Using Lemma 5, Lemma 6, Lemma 7 and Cauchy-Schwarz inequality,

1 U
7,
2
1
< 3t logT { max

U
1<U<T 5 ﬁQJ

< 22+ log T max {1U%+€Ué+€}
1<u<T | U

<Lz g +ET3€’

max

1 3+ log T
J1(1) < x27log {1§U§T

(5 +it

‘L(; +z’t,f)'dt}

W) ([

N|=

(5 + it

L(% +it, f)

2
dt)

which dominates over Ja(1) + J3(1).
2. For k=2:

J1(2)

%—i—e—l—iT 5
Fy(s)—ds.
g—f—e—iT s

Using Lemma 7, Remark 1 and Lemma 5,

U
5., 1 1
J1(2) € x2 logT{linUai(T U[QJ

C(§+it)

L(% Fit, f)

2
dt}

Ste Lot

L x? longgmUaLécT{UU UlogU}

< patep2utie

Note that, by Lemma 5

L(% Lt )

r

2

4 U
dt<<</
U

Also, we have

max
1<U<T

J1(2) <€ zate logT {

8
[k

2tlog T L
2 —
Lz og IISI%]EL%(T U

< 3t longmax
< pateritie

Thus, we have

L(% Lt f)

1
C(§

Cx +it)

NG
D=

2
dt)

L(% Lt f)

(k

6
)

211
+it)| | L5 +it. )

4dt>%<[;

2
dt}

L(% Lt f)

2

1
4 2
dt)

1
{U%-FGU%@‘*‘E)} (using Lemma 2 and above observation)
<v<t |U

J1 (2) < x%+4eTmin (2;;,%) ’

which dominates over J2(2) + J3(2).
3. For k=3:

J1(3) :
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3
dt}

Using Lemma 2, Lemma 5, Cauchy-Schwarz Inequality and Remark 1,

g‘(;ﬂ't) L<;+it,f>

NN
<<2+Zt> dt)

3

U
§+61 T l
J1(3) < z2"log {lg%]a%(T v )y

1 U

<zt logT{ max —UMT¢ (/
u

Bl

<<t U
1
U 6 2
X (/ dt)
U

Lo
: L<2+Zt,f>

< 3t log T max {1U“+6U%(1+6)U%(2+6)}
<ot | U

5 1
< patierrts,

Also, we have (using Lemma 2, Lemma 5 and above observation)

1 . 12 % U
C (2 + Zt) dt) (é

< z3te logT max {1U%+€Uz(g+6)}
<u<T | U

5 1 v
J1(3) € 227¢logT{ max — /

L(;Ht,f)

1<u<T U U

3
4 1
dt)

< 23 t5TR,
Thus, we have
J1 (3) < x%+5eTmin(,u+%,g)7

which dominates over Ja(3) + J3(3).
4. For k=4: First we observe, (using Lemma 2 and Cauchy-Schwarz inequality)

U 8 U 4 % U 12 %
LG as ([ leGra) ) (koo o)

< U%(1+E)U%(2+E)

< Uste,
Now,
U 1 6 U 1 4 % U 1 8 %
/ C<+it> dt < (/ C<+it> dt) (/ C<+it> dt)
U 2 u 2 U 2
2 2 2
< U%(H—s)T%(%—I—e)
< Uite,
Now,
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Using Lemma 2, Lemma 5, Holder’s inequality and Remark 1,
4

5 1 v /1 1
7+€ - . - .
J1(4) < x2 IOgT{nga%{T Ué (<2—|—zt> L<2+zt,f)
S+ L oopse v 1 ‘ '
3*log T ot 2e S
< 2" ¢log 1r§nUa%<T UU /g ‘C (2 —i—zt) dt

6 \ 3
x(ﬁU L(;—H’t,f) dt)

1
< w3t logT max {U2“+26U§(Z+E)U§(2+E)} (using above observation)
1<u<T (U

5 3
<< $§ +56T2H+Z .

4
dt}

Also, we have (using Lemma 7, Lemma 2, Lemma 5, and Hélder’s inequality)

12 % U
()] o) (e (3 )

< 23 log T max {1U§<2+6>U§(2+6>}
<u<T | U

5 1 v
4 2% log T —
J1(4) < x27log 1I§nUa%<T i (ﬁj

2
6 3
dt)

< 3T,

Thus, we have
Ji (4) < x%+5eTmin(2u+%,l)7
which dominates over J(4) + J3(4).

5. For k=5:
SpetiT

Ji(5) == /5 Fy(s) = ds.

+e—iT S

Using Lemma 2, Lemma 5, Holder’s inequality and Remark 1,
1 1
() Je (B s
1
1 12 6
¢ (2 + it) dt)

5

U
51 1
Ji(5) < z27log T {1I§nUa§T i [2]

1 U
<zt log7{ max —U>3+t3e (/
U

<<t U
5
U 1 6 3
x(/ L(—i—it,f) dt)
g 2

< 23+ log T max {1U3u+35Ué(2+e)Ug(2+e)}

5
dt}

1<u<T | U

< potbedutl



A. Sharma and A. Sankaranarayanan, On a general divisor problem 37

Also, we have

J1(5) < pite logT

<<xg+€logT{ max —UBCOyBREIyT.

< x%+56T%.

Thus, we have

fars

) \
\_/

max -
<<t U (

1

\I‘m
Wl
<Rl
+
)
o
——

1<u<t U

Jl (5) < x%+5eTmin(3u+1,%) 7

which dominates over Ja(5) + J3(5).

6. For k > 6:

5 .
3 +e+iT

Jl(k> = / Fk(S)de.

5 . S
5+571T

Using Lemma 2, Cauchy-Schwarz Inequality, Lemma 5, Lemma 6, and Remark 1 we get

1 U
J1 (k:)<<x2+510gT /

5 1 6 1 3
3+e€ = rr(k—6)(ute)rr(k— 3)( = .
L x2 { I<nUaL§T UU U ‘C ( —|—zt> L <2 +Zt,f> dt}
5 1 U 1 12 %
< g2t?ke ! max  pHk-O+z(R-3)-1 C(=+at)] dt
1<ULT u 2

2

<:x§+%x{

(/

k

1<U<T U

I
C<2+Zt>

I
L<2+’Lt,f>

k
q

2

, o\ b
L<2+z’t,f> ) dt

max | [HE—6)+1 (k= >1Ué<2+€>Ué<2+€>}

1<U<T

< pot3kepu(k—6)+%

Define

for k > 6, then

)\k::,u(k—(i)—i——

Ji(k) < z3t3kepAe

Therefore, we have (for k£ > 1)

D ki ()is(n) = 2 Py (log ) + By, (x),

n<x

$3+3e 3

where Ej g, (z) <

1
T ~ 20435

So finally, we have

5 x 5 . 1,
+ 223k We choose T such that T~ z2TH, e, T ~ 22 ie.,

____1
Ei iy () < o700 T

This proves the theorem.
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4. Proof of Theorem 3

Let & > 1 be an integer. Now, we consider the sum Zath (n)vi(n). We begin by applying Perron’s
n<lz

formula (see [GrSol4, Chapter 2.4]) to Fi(s) with =3 + ¢ and 10 < T < z. Thus, we have

Zak’K3 (n)vi(n) = 4Zak’K3 (n)v(n)

n<x n<lx
4 n+il s p3t3e
= — Fi(s)—ds+ O .
2ri Jo i ks)Sds + < T )

We move the line of integration to R(s) = % + €. There is no singularity in the rectangle obtained

~ :L'S
and the function Fj(s)— is analytic in this region. Thus, using Cauchy’s theorem for rectangles

pertaining to analytic functions, we get

IO 4 StetiT Ste—iT BretiT) _ s
D awsin) = Reg (R gy [0 [ e s

+e—iT +e—iT +e+iT
n<lz
3+3e
X
+0
T

3 +3e
= ;m,(,]{(k)JrJé(k)JrJg(k))JrO( i )

Note that the horizontal lines (J5(k) and J5(k)) contribute (for any fixed integer k£ > 1), using
Lemma 9, Lemma 10 and Lemma 6

Jy(k) + J4(k) < (z?)  max 2o T(5+%)(1-0)+ep—1

%-{—egagl—l—e
TN\O
< (:1:2+E) max ( k) Th—1+e,
Ite<o<ite \T

For any fixed k, u(> 0), (%)U is monotonic as a function of o for 3 +¢€ < o < 1+ € and hence the
maximum is attained at the extremities of the interval [% +e6 1+ e]. Thus,

$3+3€

Ty (k) + Jh(k) < gt

Vertical line contributions:

1. For k=1:

SretiT _ s
Ji(1) ::/ Fi(s)—ds.
5 . s
5t+e—il

Using Lemma 9, Lemma 3, Lemma 10 and Cauchy-Schwarz inequality,

U
! é—i—& l 1 y } 3
Ji(1) € z2 logT{lgnL%(T U/g L(2—|—zt,x)HL(2+zt,f®x) dt
5.4 1 v
L z2"%ogT ¢ max —

1
2 2 U
1<u<T U U dt) ([QJ

N =

1
L(= +it, x)

1
L(= 41t

2
dt
1<U<T

1
< 23+ log T max {UUéJ“CU%*e}

< {Eg+€T3€,
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which dominates over J5(1) + J5(1).
2. For k=2

Note that, by Lemma 4

[

L(1+it,f®><) L(1+z‘t,f®><) L(1+z‘t,f®><)

1
6 2
dt)

th>;</;

4 U
e (]
U
2

2 2 2
2
< Uste,
Using Lemma 4 and Lemma 10,
, 5y 1 Y1 211 ?
5., 1 r . .
J1(2) < 22" logT Jax = /‘2] L(2 +it, x) L(2 +it, f®@x)| dt
1 1
- 1 Ul 4 2 Uloq 4 2
< x2"logT 1ISmUeL%(T i [] L(§ +it, x)| dt /QJ L(§ +it, f®x)| dt

1
< w3t log T max {U%+€U%(g+e)} (using above observation)
1<u<T | U
< :L,g-i-eTi—i-QE’
which dominates over J5(2) + J5(2).

3. For k > 3:

, g—&—e-l—iT . s
(k) = / Fu(s) S ds.
5t+e—il S

Using Lemma 8, Cauchy-Schwarz Inequality, Lemma 4, Lemma 5, and Lemma 6 we get

1 k

54 1 k—2)1-0) ?(k-3)(1_a)/ .
L x2 {lgnUaécT UU Us L 2+zt,f®x

k

U
/ S+e 1
Ji(k) < z27logT {lg}]a%(T i é

L<;+it,f®x>

U 1 .

v L<2+Zt,x>
40\ 2
dt>

2

3
dt}

2

1

1<ULT

(/

2

2

) 6\ 2
L(2+it,f®x) ) dt

< got2he ) oy iR 1 st i 2+e)
1<U<T

U
5 k—2 | k—3
< g2t max U T3 ! (/
U

5 k_5
S+3keps—2
KL x2 T2 6,

which dominates over Jy(k) + J5(k).
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Therefore, we have (for £ > 1)

D ari, (e (n) = B, (@),

n<x

3+3e 3 ,

5 xr 5 . 1,

where E,;KB’ (x) < T + x23keTAL . We choose T such that T~ xiT)‘Gv, ie., T ~ 22, ie.,
S S

T ~ xz(ux%) )

So finally, we have

3——1  _43ke
g, (2) <z 200

This proves the theorem.
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