Infinite families of congruences modulo 2 for (ℓ, k)-regular partitions

T. Kathiravan, Dipramit Majumdar and Usha K. Sangale

Abstract

Let $b_{\ell, k}(n)$ denote the number of (ℓ, k)-regular partition of n. Recently, some congruences modulo 2 for $(3,8),(4,7)$ regular partition and modulo 8 , modulo 9 and modulo 12 for (4,9)-regular partition have been studied. In this paper, we use theta function identities and Newman results to prove some infinite families of congruences modulo 2 for $(2,7),(5,8),(4,11)$-regular partition and modulo 4 for $(4,5)$-regular partition.

Keywords. partition function, regular-partition, Ramanujan congruences.
2010 Mathematics Subject Classification. 11P83, 05A17.

1. Introduction

We shall use the following standard notation throughout the paper: for complex numbers a, q with $|q|<1$, define

$$
f_{i}:=\left(q^{i} ; q^{i}\right)_{\infty}, \quad i=1,2,3, \ldots, \text { where }(a ; q)_{\infty}=\prod_{m=0}^{\infty}\left(1-a q^{m}\right)
$$

Recall that a partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. An ℓ-regular partition is a partition in which none of the parts is divisible by ℓ. Denote by $b_{\ell}(n)$ the number of ℓ-regular partitions of n with the convention $b_{\ell}(0)=1$. Then the generating function for $b_{\ell}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{\ell}(n) q^{n}=\frac{f_{\ell}}{f_{1}} . \tag{1.1}
\end{equation*}
$$

Recently, Kathiravan, Srinivas and Usha [KSS] studied the (ℓ, k)-regular partition denoted by $b_{\ell, k}(n)$, which count the number of partition of n if none of the parts is divisible by ℓ or k. Then the generating function for $b_{\ell, k}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{\ell, k}(n) q^{n}=\frac{f_{\ell} f_{k}}{f_{1} f_{\ell k}} . \tag{1.2}
\end{equation*}
$$

They proved infinite families of congruences modulo 2 for (3, 8), (4, 7)-regular partitions and modulo 8,9 and 12 for (4,9)-regular partition. For example, the authors have shown that for $n \geq 0$,

$$
\begin{align*}
b_{4,9}(16 n+15) & \equiv 0 \quad(\bmod 8) \tag{1.3}\\
b_{4,7}(14(7 n+j)+13) & \equiv 0 \quad(\bmod 2), \quad 1 \leq j \leq 6 \tag{1.4}
\end{align*}
$$

In [MHS16], Naika, Hemanthkumar and Bharadwaj have proved infinite families of congruences modulo 2 for $b_{3,5}(n)$-regular partition. For example, they showed that [MHS16, Theorem 1.1] if p is an odd prime $\left(\frac{-15}{p}\right)_{L}=1,1 \leq i \leq p-1$ and $j, n \geq 0$,

$$
b_{3,5}\left(2 \times p^{2 j+2} n+\frac{(6 i+2 p) \times p^{2 j+1}+1}{3}\right) \equiv 0 \quad(\bmod 2) .
$$

The aim of this paper is to prove several infinite families of congruences modulo 2 for $(2,7)$ and $(5,8)$-regular partitions, and modulo 4 for $(4,5)$-regular partition. The following are our main results

Theorem 1.1. Let $a(n)$ be defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(n) q^{n}=f_{1}^{2} f_{7} \tag{1.5}
\end{equation*}
$$

Let $p \geq 5$ be a prime and let $\left(\frac{\star}{p}\right)$ denote the Legendre symbol. Define

$$
\begin{equation*}
\omega(p):=a\left(\frac{3}{8}\left(p^{2}-1\right)\right)+\left(\frac{-14}{p}\right)\left(\frac{-\frac{3}{8}\left(p^{2}-1\right)}{p}\right) \tag{1.6}
\end{equation*}
$$

(i) If $\omega(p) \equiv 0(\bmod 2)$, then for $n, j \geq 0$, if $p \nmid n$, we have

$$
\begin{equation*}
b_{2,7}\left(2 p^{4 j+3} n+\frac{3}{4} p^{4 j+4}+\frac{1}{4}\right) \equiv 0 \quad(\bmod 2) \tag{1.7}
\end{equation*}
$$

(ii) If $\omega(p) \not \equiv 0(\bmod 2)$, then for $n, j \geq 0$,
(a) if $p \nmid n$, we have

$$
\begin{equation*}
b_{2,7}\left(2 p^{6 j+5} n+\frac{3}{4} p^{6 j+6}+\frac{1}{4}\right) \equiv 0 \quad(\bmod 2) \tag{1.8}
\end{equation*}
$$

(b) if $p \nmid(8 n+3)$ and $p \neq 7$, we have

$$
\begin{equation*}
b_{2,7}\left(2 p^{6 j+2} n+\frac{3}{4} p^{6 j+2}+\frac{1}{4}\right) \equiv 0 \quad(\bmod 2) \tag{1.9}
\end{equation*}
$$

(c) if $7 \nmid(8 n+3)$, we have

$$
\begin{equation*}
b_{2,7}\left(2 \cdot 7^{6 j+4} n+\frac{3}{4} 7^{6 j+4}+\frac{1}{4}\right) \equiv 0 \quad(\bmod 2) \tag{1.10}
\end{equation*}
$$

Remark 1. Using mathematica, we find that $a(9) \equiv 1(\bmod 2)$. Using Theorem 1.1 with $p=5$, we see that $\omega(5) \equiv 0(\bmod 2)$ and hence by Theorem 1.1[(i)] we obtain that for any integer not divisible by 5 , we have $b_{2,7}(250 n+469) \equiv 0(\bmod 2)$.

Theorem 1.2. Let $b(n)$ be defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} b(n) q^{n}=f_{1}^{2} f_{5} \tag{1.11}
\end{equation*}
$$

Let $p \geq 5$ be a prime and let $\left(\frac{\star}{p}\right)$ denote the Legendre symbol. Define

$$
\begin{equation*}
\omega(p):=b\left(7\left(p^{2}-1\right) / 24\right)+\left(\frac{-10}{p}\right)\left(\frac{-7\left(p^{2}-1\right) / 24}{p}\right) \tag{1.12}
\end{equation*}
$$

(i) If $\omega(p) \equiv 0(\bmod 2)$, then for n such that $p \nmid n$ and for all $j \geq 0$, we have

$$
\begin{equation*}
b_{5,8}\left(20 p^{4 j+3} n+\frac{35}{6} p^{4 j+4}+\frac{7}{6}\right) \equiv 0 \quad(\bmod 2) \tag{1.13}
\end{equation*}
$$

(ii) If $\omega(p) \not \equiv 0(\bmod 2)$, then for all $j \geq 0$,
(a) if $p \nmid n$, we have

$$
\begin{equation*}
b_{5,8}\left(20 p^{6 j+5} n+35 p^{6 j+6} / 6+7 / 6\right) \equiv 0 \quad(\bmod 2) . \tag{1.14}
\end{equation*}
$$

(b) if $p \nmid 24 n+7$ and $p \neq 5$, we have

$$
\begin{equation*}
b_{5,8}\left(20 p^{6 j+2} n+\frac{35}{6} p^{6 j+2}+\frac{7}{6}\right) \equiv 0 \quad(\bmod 2), \tag{1.15}
\end{equation*}
$$

(c) if $5 \nmid 24 n+7$, we have

$$
\begin{equation*}
b_{5,8}\left(4 \cdot 5^{6 j+5} n+\frac{7}{6} 5^{6 j+5}+\frac{7}{6}\right) \equiv 0 \quad(\bmod 2), \tag{1.16}
\end{equation*}
$$

Remark 2. Using mathematica, we find that $b(14)=0$. Using Theorem 1.2 with $p=7$, we see that $\omega(7)=0$ and hence by Theorem 1.2[(i)] we obtain that for any integer n not divisible by 7 , we have $b_{5,8}(6860 n+14007) \equiv 0(\bmod 2)$.

Theorem 1.3. For $n, k \geq 0$ and $m \in\{2,4\}$, we have

$$
\begin{align*}
b_{4,5}\left(4 \cdot 5^{4 k} n+\frac{5^{4 k}+1}{2}\right) & \equiv b_{4,5}(4 n+1)(\bmod 4), \tag{1.17}\\
b_{4,5}\left(4 \cdot 5^{4 k+1} n+\frac{5^{4 k}(8 m+1)+1}{2}\right) & \equiv 0(\bmod 4), \tag{1.18}\\
b_{4,5}\left(4 \cdot 5^{4 k+3} n+\frac{5^{4 k+2}(8 m+1)+1}{2}\right) & \equiv 0(\bmod 4) . \tag{1.19}
\end{align*}
$$

2. Preliminaries

In this section, we collect some lemmas to prove our main results. We recall that for $|a b|<1$, Ramanujan's general theta function $f(a, b)$ is defined as

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} . \tag{2.20}
\end{equation*}
$$

Now from Jacobi's triple product identity [Ber91, Entry 19, p. 35]

$$
\begin{equation*}
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty}, \tag{2.21}
\end{equation*}
$$

it follows that (see [Ber91, Entry 22, p.36])

$$
\begin{gather*}
\varphi(q):=f(q, q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}}=\left(-q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}=\frac{f_{2}^{5}}{f_{1}^{2} f_{4}^{2}}, \tag{2.22}\\
\psi(q):=f\left(q ; q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}=\frac{f_{2}^{2}}{f_{1}}, \tag{2.23}
\end{gather*}
$$

and

$$
\begin{equation*}
f(-q):=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=(q ; q)_{\infty}=f_{1} . \tag{2.24}
\end{equation*}
$$

Now we shall state few lemmas which will be required for the proof of our results.

Lemma 2.1. (Hirschhorn and Sellers [HiSe10, Theorem 1]) The following 2-dissection holds

$$
\begin{equation*}
\frac{f_{5}}{f_{1}}=\frac{f_{8} f_{20}^{2}}{f_{2}^{2} f_{40}}+q \frac{f_{4}^{3} f_{10} f_{40}}{f_{2}^{3} f_{8} f_{20}} \tag{2.25}
\end{equation*}
$$

Lemma 2.2. The following 2-dissection holds (See [Ber91, p.315]):

$$
\begin{align*}
& f_{1} f_{5}^{3}=f_{2}^{3} f_{10}-q \frac{f_{2}^{2} f_{10}^{2} f_{20}}{f_{4}}+2 q^{2} f_{4} f_{20}^{3}-2 q^{3} \frac{f_{4}^{4} f_{40}^{2} f_{10}}{f_{2} f_{8}^{2}} \tag{2.26}\\
& f_{1}^{3} f_{5}=\frac{f_{2}^{2} f_{4} f_{10}^{2}}{f_{20}}+2 q f_{4}^{3} f_{20}-5 q f_{2} f_{10}^{3}+2 q^{2} \frac{f_{4}^{6} f_{10} f_{40}^{2}}{f_{2} f_{8}^{2} f_{20}^{2}} \tag{2.27}
\end{align*}
$$

Lemma 2.3. (Baruah and Ahmed [AhBa15, Eqn. (2.4)])

$$
\begin{equation*}
\frac{1}{f_{1} f_{11}}=\frac{f_{24}^{2} f_{132}^{5}}{f_{2}^{2} f_{12} f_{22}^{2} f_{66}^{2} f_{264}^{2}}+q \frac{f_{4}^{2} f_{6} f_{24} f_{88} f_{132}^{2}}{f_{2}^{3} f_{8} f_{12} f_{22}^{2} f_{44} f_{264}}+q^{6} \frac{f_{8} f_{12}^{2} f_{44}^{2} f_{66} f_{264}}{f_{2}^{2} f_{4} f_{22}^{3} f_{24} f_{88} f_{132}}+q^{15} \frac{f_{15}^{5} f_{264}^{2}}{f_{2}^{2} f_{6}^{2} f_{22}^{2} f_{24}^{2} f_{132}} \tag{2.28}
\end{equation*}
$$

Lemma 2.4. The following 5 -dissection holds:

$$
\begin{equation*}
f_{1}=f_{25}\left(\frac{1}{F\left(q^{5}\right)}-q-q^{2} F\left(q^{5}\right)\right) \tag{2.29}
\end{equation*}
$$

as well as the identities

$$
\begin{equation*}
\frac{f_{1}^{6}}{f_{5}^{6}}=\left(\frac{1}{R^{5}}-11 q-q^{2} R^{5}\right) \tag{2.30}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{f_{1}}= & \frac{f_{25}^{5}}{f_{5}^{6}}\left(F^{4}\left(q^{5}\right)+q F^{3}\left(q^{5}\right)+2 q^{2} F^{2}\left(q^{5}\right)+3 q^{3} F\left(q^{5}\right)+5 q^{4}-3 q^{5} F^{-1}\left(q^{5}\right)+2 q^{6} F^{-2}\left(q^{5}\right)\right. \\
& \left.-q^{7} F^{-3}\left(q^{5}\right)+q^{8} F^{-4}\left(q^{5}\right)\right) \tag{2.31}
\end{align*}
$$

where $F(q):=q^{-1 / 5} R(q)$ and $R(q)$ is the Rogers-Ramanujan continued fraction defined, for $|q|<1$, by

$$
R(q):=\frac{q^{1 / 5}}{1}+\frac{q}{1}+\frac{q^{2}}{1}+\ldots
$$

The identities (2.29), (2.30) and (2.31) are same as (8.4.1), (8.4.3) and (8.4.4) respectively in [Hir17].

Lemma 2.5. [CuGu13, Theorem 2.2] Let $p \geq 5$ be a prime such that

$$
\frac{ \pm p-1}{6}:= \begin{cases}\frac{p-1}{6}, & \text { if } p \equiv 1 \quad(\bmod 6) \\ \frac{-p-1}{6}, & \text { if } p \equiv-1 \quad(\bmod 6)\end{cases}
$$

With the notations as defined in (2.20) and (2.24), we have

$$
f_{1}=\sum_{\substack{k=-\frac{p-1}{2} \\ k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right)+(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f_{p^{2}} .
$$

Furthermore, if $-\frac{p-1}{2} \leq k \leq \frac{p-1}{2}, k \neq \pm p-1$, then $\frac{3 k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{24}(\bmod p)$.

Lemma 2.6. (Ahmed and Baruah [AhBa16, Lemma 2.3]) If $p \geq 3$ is prime, then

$$
f_{1}^{3}=\sum_{\substack{k=0 \\ k \neq \frac{p-1}{2}}}^{p-1}(-1)^{k} q^{\frac{k(k+1)}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 k+1) q^{p n \cdot \frac{p n+2 k+1}{2}}+p(-1)^{\frac{p-1}{2}} q^{\frac{p^{2}-1}{8}} f_{p^{2}}^{3} .
$$

Furthermore, if $k \neq \frac{p-1}{2}, 0 \leq k \leq p-1$, then $\frac{k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{8}(\bmod p)$.

The following result of M. Newman [New62, Theorem 3] will play a crucial role in the proof of our theorems, therefore we shall quote is as a lemma. Following the notations of Newman's paper, we shall let p, q denote distinct primes, let r, s be integers such that $r, s \neq 0, r \not \equiv s(\bmod 2)$. Set

$$
\begin{equation*}
\phi(\tau)=\prod\left(1-x^{n}\right)^{r}\left(1-x^{n q}\right)^{s}=\sum c(n) x^{n}, \tag{2.32}
\end{equation*}
$$

$\varepsilon=\frac{1}{2}(r+s), t=(r+s q) / 24, \Delta=t\left(p^{2}-1\right), \theta=(-1)^{\frac{1}{2}-\varepsilon} 2 q^{s},\left(\frac{\star}{p}\right)$ is the well-known Legendre symbol. Then the result is as follows.

Lemma 2.7. With the notations defined as above, the coefficients $c(n)$ of $\phi(\tau)$ satisfy

$$
\begin{equation*}
c\left(n p^{2}+\Delta\right)-\gamma(n) c(n)+p^{2 \varepsilon-2} c\left((n-\Delta) / p^{2}\right)=0 \tag{2.33}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma(n)=p^{2 \varepsilon-2} c-\left(\frac{\theta}{p}\right) p^{\varepsilon-3 / 2}\left(\frac{n-\Delta}{p}\right) . \tag{2.34}
\end{equation*}
$$

3. Proof of Theorems

3.A. Proof of Theorem 1.1

By definition

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{2,7}(n) q^{n}=\frac{f_{2} f_{7}}{f_{1} f_{14}} \equiv \frac{f_{2}}{f_{1} f_{7}} \quad(\bmod 2) . \tag{3.35}
\end{equation*}
$$

Now from [Yao14, Lemma 2.1], we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{\left[1^{1} 7^{1}\right]}(2 n+1) q^{n}=\frac{f_{2}^{2} f_{14}^{2}}{f_{1}^{3} f_{7}^{3}}, \tag{3.36}
\end{equation*}
$$

where $p_{\left[1^{1} 7^{1}\right]}(n)$ is defined by

$$
\sum_{n=0}^{\infty} p_{\left[1^{1} 7^{1}\right]}(n) q^{n}=\frac{1}{f_{1} f_{7}} .
$$

From (3.36) and (3.35), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{2,7}(2 n+1) q^{n} \equiv f_{1}^{2} f_{7} \quad(\bmod 2) \tag{3.37}
\end{equation*}
$$

By hypothesis of the theorem and equation (3.37), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(n) q^{n}=f_{1}^{2} f_{7} \equiv \sum_{n=0}^{\infty} b_{2,7}(2 n+1) q^{n} \quad(\bmod 2) . \tag{3.38}
\end{equation*}
$$

Putting $r=2, q=7$ and $s=1$ in (2.32), we have by Lemma 2.7, for any $n \geq 0$

$$
\begin{equation*}
a\left(p^{2} n+\frac{3}{8}\left(p^{2}-1\right)\right)=\gamma(n) a(n)-p a\left(\frac{1}{p^{2}}\left(n-\frac{3}{8}\left(p^{2}-1\right)\right)\right), \tag{3.39}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma(n)=p c-\left(\frac{-14}{p}\right)\left(\frac{n-\frac{3}{8}\left(p^{2}-1\right)}{p}\right) \tag{3.40}
\end{equation*}
$$

and c is a constant. Setting $n=0$ in (3.39) and using the facts that $a(0)=1$ and $a\left(\frac{-3\left(p^{2}-1\right) / 8}{p^{2}}\right)=0$, we obtain

$$
\begin{equation*}
a\left(\frac{3}{8}\left(p^{2}-1\right)\right)=\gamma(0) . \tag{3.41}
\end{equation*}
$$

Setting $n=0$ in (3.40) and using (3.41), we obtain

$$
\begin{equation*}
p c=a\left(\frac{3}{8}\left(p^{2}-1\right)\right)+\left(\frac{-14}{p}\right)\left(\frac{-\frac{3}{8}\left(p^{2}-1\right)}{p}\right):=\omega(p) . \tag{3.42}
\end{equation*}
$$

Now rewriting the equation (3.39), by referring (3.40) and (3.42), we obtain

$$
\begin{equation*}
a\left(p^{2} n+\frac{3}{8}\left(p^{2}-1\right)\right)=\left(\omega(p)-\left(\frac{-14}{p}\right)\left(\frac{n-\frac{3}{8}\left(p^{2}-1\right)}{p}\right)\right) a(n)-p a\left(\frac{1}{p^{2}}\left(n-\frac{3}{8}\left(p^{2}-1\right)\right)\right), \tag{3.43}
\end{equation*}
$$

Now, replacing n by $p n+\frac{3}{8}\left(p^{2}-1\right)$ in (3.43), we obtain

$$
\begin{equation*}
a\left(p^{3} n+\frac{3}{8}\left(p^{4}-1\right)\right)=\omega(p) a\left(p n+\frac{3}{8}\left(p^{2}-1\right)\right)-p a\left(\frac{n}{p}\right) . \tag{3.44}
\end{equation*}
$$

Case - 1: $\omega(p) \equiv 0(\bmod 2)$
Since $\omega(p) \equiv 0(\bmod 2)$, from equation (3.44) we obtain

$$
\begin{equation*}
a\left(p^{3} n+3\left(p^{4}-1\right) / 8\right) \equiv p a(n / p) \quad(\bmod 2) . \tag{3.45}
\end{equation*}
$$

Now, replacing n by $p n$ in (3.45), we obtain

$$
\begin{equation*}
a\left(p^{4} n+\frac{3}{8}\left(p^{4}-1\right)\right) \equiv p a(n) \equiv a(n) \quad(\bmod 2) . \tag{3.46}
\end{equation*}
$$

Since $p^{4 j} n+\frac{3}{8}\left(p^{4 j}-1\right)=p^{4}\left(p^{4 j-4} n+\frac{3}{8}\left(p^{4 j-4}-1\right)\right)+\frac{3}{8}\left(p^{4}-1\right)$, using equation (3.45), we obtain that for every integer $j \geq 1$,

$$
\begin{equation*}
a\left(p^{4 j} n+\frac{3}{8}\left(p^{4 j}-1\right)\right) \equiv a\left(p^{4 j-4} n+\frac{3}{8}\left(p^{4 j-4}-1\right)\right) \equiv a(n) \quad(\bmod 2) . \tag{3.47}
\end{equation*}
$$

Now if $p \nmid n$, then (3.45) yields

$$
\begin{equation*}
a\left(p^{3} n+\frac{3}{8}\left(p^{4}-1\right)\right) \equiv 0 \quad(\bmod 2) . \tag{3.48}
\end{equation*}
$$

Replacing n by $p^{3} n+3\left(p^{4}-1\right) / 8$ in (3.47) and using (3.48), we obtain

$$
\begin{equation*}
a\left(p^{4 j+3} n+\frac{3}{8}\left(p^{4 j+4}-1\right)\right) \equiv 0 \quad(\bmod 2) . \tag{3.49}
\end{equation*}
$$

Case - 2: $\omega(p) \not \equiv 0(\bmod 2)$

$$
\begin{align*}
a\left(p^{5} n+\frac{3}{8}\left(p^{6}-1\right)\right) & =a\left(p^{3}\left(p^{2} n+\frac{3}{8} p\left(p^{2}-1\right)\right)+\frac{3}{8}\left(p^{4}-1\right)\right) \\
& \equiv \omega(p) a\left(p^{3} n+\frac{3}{8}\left(p^{4}-1\right)\right)-p a\left(p n+\frac{3}{8}\left(p^{2}-1\right)\right) \\
& \equiv\left[\omega^{2}(p)-p\right] a\left(p n+\frac{3}{8}\left(p^{2}-1\right)\right)-p \omega(p) a\left(\frac{n}{p}\right) \tag{3.50}
\end{align*}
$$

Now, as $\omega(p) \not \equiv 0(\bmod 2)$, we have $\omega^{2}(p)-p \equiv 0(\bmod 2)$, and therefore (3.50) becomes

$$
\begin{equation*}
a\left(p^{5} n+\frac{3}{8}\left(p^{6}-1\right)\right) \equiv a(n / p) \quad(\bmod 2) \tag{3.51}
\end{equation*}
$$

Replacing n by $p n$ in (3.51), we obtain

$$
\begin{equation*}
a\left(p^{6} n+3\left(p^{6}-1\right) / 8\right) \equiv a(n) \quad(\bmod 2) \tag{3.52}
\end{equation*}
$$

Using equation (3.52) repeatedly, we see that for every integer $j \geq 1$,

$$
\begin{equation*}
a\left(p^{6 j} n+3\left(p^{6 j}-1\right) / 8\right) \equiv a(n) \quad(\bmod 2) \tag{3.53}
\end{equation*}
$$

Observe that if $p \nmid n$, then $a(n / p)=0$. Thus (3.51) yields

$$
\begin{equation*}
a\left(p^{5} n+\frac{3}{8}\left(p^{6}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.54}
\end{equation*}
$$

Replacing n by $p^{5} n+3\left(p^{6}-1\right) / 8$ in (3.53) and using (3.54), we obtain

$$
\begin{equation*}
a\left(p^{6 j+5} n+\frac{3}{8}\left(p^{6 j+6}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.55}
\end{equation*}
$$

Assume that $p \nmid(8 n+3)$, then $n \not \equiv-\frac{3}{8}(\bmod p)$ and hence $p \nmid n-\frac{3}{8}\left(p^{2}-1\right)$, which in-turn implies that $a\left(\frac{1}{p^{2}}\left(n-\frac{3}{8}\left(p^{2}-1\right)\right)\right)=0$ and $\left(\frac{n-\frac{3}{8}\left(p^{2}-1\right)}{p}\right) \neq 0$. Thus for $p \geq 5$ and $p \neq 7$, from equation (3.43) we obtain

$$
\begin{equation*}
a\left(p^{2} n+\frac{3}{8}\left(p^{2}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.56}
\end{equation*}
$$

Replacing n by $p^{2} n+3\left(p^{2}-1\right) / 8$ in (3.53) and using (3.56), we obtain

$$
\begin{equation*}
a\left(p^{6 j+2} n+\frac{3}{8}\left(p^{6 j+2}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.57}
\end{equation*}
$$

Finally, assume that $p=7$ and $p \nmid(8 n+3)$, that is $7 \nmid(n-18)$. From (3.44) we obtain

$$
\begin{align*}
a\left(7^{4} n+\frac{3}{8}\left(7^{4}-1\right)\right) & =a\left(7^{2}\left(7^{2} n+\frac{3}{8}\left(7^{2}-1\right)\right)+\frac{3}{8}\left(7^{2}-1\right)\right) \\
& \equiv a\left(7^{2} n+\frac{3}{8}\left(7^{2}-1\right)\right)+a(n) \quad(\bmod 2) \\
& \equiv 2 a(n)+a\left(\frac{n-18}{49}\right) \equiv 0 \quad(\bmod 2) \tag{3.58}
\end{align*}
$$

Replacing n by $7^{4} n+7\left(7^{4}-1\right) / 24$ in (3.53) and using (3.58), we obtain

$$
\begin{equation*}
a\left(7^{6 j+4} n+\frac{3}{8}\left(7^{6 j+4}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.59}
\end{equation*}
$$

The proof of Theorem 1.1 follows from the fact that $b_{2,7}(2 n+1) \equiv a(n)(\bmod 2)$.

3.B. Proof of Theorem 1.2

By definition

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5,8}(n) q^{n}=\frac{f_{5} f_{8}}{f_{1} f_{40}} \equiv \frac{f_{1}^{3} f_{5} f_{4}}{f_{40}} \quad(\bmod 2) \tag{3.60}
\end{equation*}
$$

Substituting (2.27) into (3.60) and extracting terms involving $q^{2 n+1}$ from both sides, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5,8}(2 n+1) q^{2 n+1} \equiv q \frac{f_{2} f_{4} f_{10}^{3}}{f_{40}} \quad(\bmod 2) \tag{3.61}
\end{equation*}
$$

Cancelling q from both sides, then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5,8}(2 n+1) q^{n} \equiv \frac{f_{1} f_{5}^{3} f_{2}}{f_{20}} \equiv \frac{f_{1}^{3} f_{5}}{f_{10}} \quad(\bmod 2) \tag{3.62}
\end{equation*}
$$

Again substituting (2.27) into (3.62) and extracting terms involving $q^{2 n+1}$ and cancelling q from both sides, then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5,8}(4 n+3) q^{n} \equiv f_{1} f_{5}^{2} \quad(\bmod 2) \tag{3.63}
\end{equation*}
$$

Now substituting (2.29) into (3.63) and extracting terms involving $q^{5 n+1}$ and cancelling q from both sides, then replacing q^{5} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5,8}(20 n+7) q^{n} \equiv f_{1}^{2} f_{5} \quad(\bmod 2) \tag{3.64}
\end{equation*}
$$

By the notation in the theorem, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} b(n) q^{n}=f_{1}^{2} f_{5} \equiv \sum_{n=0}^{\infty} b_{5,8}(20 n+7) q^{n} \quad(\bmod 2) \tag{3.65}
\end{equation*}
$$

Putting $r=2, q=5$ and $s=1$ in (2.32), we have by Lemma 2.7, for any $n \geq 0$

$$
\begin{equation*}
b\left(p^{2} n+\frac{7}{24}\left(p^{2}-1\right)\right)=\gamma(n) b(n)-p b\left(\frac{1}{p^{2}}\left(n-\frac{7}{24}\left(p^{2}-1\right)\right)\right) \tag{3.66}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma(n)=p c-\left(\frac{-10}{p}\right)\left(\frac{n-\frac{7}{24}\left(p^{2}-1\right)}{p}\right) \tag{3.67}
\end{equation*}
$$

and c is a constant. Setting $n=0$ in (3.66) and using the facts that $b(0)=1$ and $b\left(\frac{-7\left(p^{2}-1\right) / 24}{p^{2}}\right)=0$, we obtain

$$
\begin{equation*}
b\left(\frac{7}{24}\left(p^{2}-1\right)\right)=\gamma(0) \tag{3.68}
\end{equation*}
$$

Setting $n=0$ in (3.67) and using (3.68), we obtain

$$
\begin{equation*}
p c=b\left(\frac{7}{24}\left(p^{2}-1\right)\right)+\left(\frac{-10}{p}\right)\left(\frac{-\frac{7}{24}\left(p^{2}-1\right)}{p}\right):=\omega(p) . \tag{3.69}
\end{equation*}
$$

Now rewriting the equation (3.66), by referring (3.67) and (3.69), we obtain

$$
\begin{equation*}
b\left(p^{2} n+\frac{7}{24}\left(p^{2}-1\right)\right)=\left(\omega(p)-\left(\frac{-10}{p}\right)\left(\frac{n-\frac{7}{24}\left(p^{2}-1\right)}{p}\right)\right) b(n)-p b\left(\frac{1}{p^{2}}\left(n-\frac{7}{24}\left(p^{2}-1\right)\right)\right) \tag{3.70}
\end{equation*}
$$

Now, replacing n by $p n+7\left(p^{2}-1\right) / 24$ in (3.70), we obtain

$$
\begin{equation*}
b\left(p^{3} n+\frac{7}{24}\left(p^{4}-1\right)\right)=\omega(p) b\left(p n+\frac{7}{24}\left(p^{2}-1\right)\right)-p b\left(\frac{n}{p}\right) \tag{3.71}
\end{equation*}
$$

Case - 1: $\omega(p) \equiv 0(\bmod 2)$
Since $\omega(p) \equiv 0(\bmod 2)$, we have

$$
\begin{equation*}
b\left(p^{3} n+\frac{7}{24}\left(p^{4}-1\right)\right) \equiv p b\left(\frac{n}{p}\right) \quad(\bmod 2) \tag{3.72}
\end{equation*}
$$

Replacing n by $p n$ in (3.72) we obtain

$$
\begin{equation*}
b\left(p^{4} n+\frac{7}{24}\left(p^{4}-1\right)\right) \equiv p b(n) \equiv b(n) \quad(\bmod 2) \tag{3.73}
\end{equation*}
$$

Using equation (3.73) repeatedly, we see that for every integer $j \geq 1$,

$$
\begin{equation*}
b\left(p^{4 j} n+\frac{7}{24}\left(p^{4 j}-1\right)\right) \equiv b(n) \quad(\bmod 2) \tag{3.74}
\end{equation*}
$$

Now as $p \nmid n$, then (3.72) yields

$$
\begin{equation*}
b\left(p^{3} n+\frac{7}{24}\left(p^{4}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.75}
\end{equation*}
$$

Replacing n by $p^{3} n+7\left(p^{4}-1\right) / 24$ in (3.74) and utilizing (3.75), we obtain

$$
\begin{equation*}
b\left(p^{4 j+3} n+\frac{7}{24}\left(p^{4 j+4}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.76}
\end{equation*}
$$

Case - 2: $\omega(p) \not \equiv 0(\bmod 2)$
First note that $b(14)=0$, which implies $\omega(7)=0$ and hence we can assume that $p \neq 7$.
Now, in order to prove part (ii), we first replace n by $p^{2} n+\frac{7}{24} p\left(p^{2}-1\right)$ in (3.71) to obtain

$$
\begin{align*}
b\left(p^{5} n+\frac{7}{24}\left(p^{6}-1\right)\right) & \equiv \omega(p) b\left(p^{3} n+\frac{7}{24}\left(p^{4}-1\right)\right)-p b\left(p n+\frac{7}{24}\left(p^{2}-1\right)\right) \\
& \equiv\left[\omega^{2}(p)-p\right] b\left(p n+\frac{7}{24}\left(p^{2}-1\right)\right)-p \omega(p) b\left(\frac{n}{p}\right) \tag{3.77}
\end{align*}
$$

Since $\omega(p) \not \equiv 0(\bmod 2)$, we have $\omega^{2}(p)-p \equiv 0(\bmod 2)$, and therefore (3.77) becomes

$$
\begin{equation*}
b\left(p^{5} n+\frac{7}{24}\left(p^{6}-1\right)\right) \equiv b\left(\frac{n}{p}\right) \quad(\bmod 2) \tag{3.78}
\end{equation*}
$$

Replacing n by $p n$ in (3.78), we obtain

$$
\begin{equation*}
b\left(p^{6} n+\frac{7}{24}\left(p^{6}-1\right)\right) \equiv b(n) \quad(\bmod 2) \tag{3.79}
\end{equation*}
$$

Using equation (3.79) repeatedly, we see that for every integer $j \geq 1$,

$$
\begin{equation*}
b\left(p^{6 j} n+\frac{7}{24}\left(p^{6 j}-1\right)\right) \equiv b(n) \quad(\bmod 2) \tag{3.80}
\end{equation*}
$$

Observe that if $p \nmid n$, then $b(n / p)=0$. Thus (3.78) yields

$$
\begin{equation*}
b\left(p^{5} n+\frac{7}{24}\left(p^{6}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.81}
\end{equation*}
$$

Replacing n by $p^{5} n+7\left(p^{6}-1\right) / 24$ in (3.80) and using (3.81), we obtain

$$
\begin{equation*}
b\left(p^{6 j+5} n+\frac{7}{24}\left(p^{6 j+6}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.82}
\end{equation*}
$$

Now assume that $p \nmid(24 n+7)$, then $n \not \equiv-\frac{7}{24}(\bmod p)$ and hence $p \nmid n-\frac{7}{24}\left(p^{2}-1\right)$, which in-turn implies that $b\left(\frac{1}{p^{2}}\left(n-\frac{7}{24}\left(p^{2}-1\right)\right)\right)=0$ and $\left(\frac{n-\frac{7}{24}\left(p^{2}-1\right)}{p}\right) \neq 0$. Thus for $p>5$, from equation (3.70) we obtain

$$
\begin{equation*}
b\left(p^{2} n+\frac{7}{24}\left(p^{2}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.83}
\end{equation*}
$$

Replacing n by $p^{2} n+7\left(p^{2}-1\right) / 24$ in (3.80) and using (3.83), we obtain

$$
\begin{equation*}
b\left(p^{6 j+2} n+\frac{7}{24}\left(p^{6 j+2}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.84}
\end{equation*}
$$

Finally, assume that $p=5$ and $p \nmid(24 n+7)$, that is $5 \nmid(n-7)$. From (3.70) we obtain

$$
\begin{align*}
b\left(5^{4} n+\frac{7}{24}\left(5^{4}-1\right)\right) & =b\left(5^{2}\left(5^{2} n+\frac{7}{24}\left(5^{2}-1\right)\right)+\frac{7}{24}\left(5^{2}-1\right)\right) \\
& \equiv b\left(5^{2} n+\frac{7}{24}\left(5^{2}-1\right)\right)+b(n) \\
& \equiv 2 b(n)+b\left(\frac{n-7}{25}\right) \equiv 0 \quad(\bmod 2) \tag{3.85}
\end{align*}
$$

Replacing n by $5^{4} n+7\left(5^{4}-1\right) / 24$ in (3.80) and using (3.85), we obtain

$$
\begin{equation*}
b\left(5^{6 j+4} n+\frac{7}{24}\left(p^{6 j+4}-1\right)\right) \equiv 0 \quad(\bmod 2) \tag{3.86}
\end{equation*}
$$

The proof of Theorem 1.2 follows from the fact that $b_{5,8}(20 n+7) \equiv b(n)(\bmod 2)$.

3.C. Proof of Theorem 1.3

We shall need the following result, which we present as a proposition, to prove the theorem.
Proposition 3.1. For any non-negative integer k, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,5}\left(4 \cdot 5^{4 k} n+\frac{5^{4 k}+1}{2}\right) q^{n} \equiv 2 f_{1}^{3}+2 q f_{2} f_{5}^{5} \quad(\bmod 4) \tag{3.87}
\end{equation*}
$$

Proof. By definition

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,5}(n) q^{n} \equiv \frac{f_{1}^{3} f_{5}}{f_{20}} \quad(\bmod 2) \tag{3.88}
\end{equation*}
$$

Substituting (2.27) in (3.88) and extracting terms involving $q^{2 n+1}$ and cancelling q from both sides, then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,5}(2 n+1) q^{n} \equiv 2 f_{2}^{3}+3 \frac{f_{1} f_{5}^{3}}{f_{10}} \quad(\bmod 4) \tag{3.89}
\end{equation*}
$$

Substituting (2.26) in (3.89) and extracting terms involving $q^{2 n}$ and then replacing q^{2} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,5}(4 n+1) q^{n} \equiv 2 f_{1}^{3}+2 q f_{2} f_{5}^{5} \quad(\bmod 4) \tag{3.90}
\end{equation*}
$$

which is the $k=0$ case of (3.87). Now suppose that (3.87) holds for some $k \geq 0$. Substituting (2.29) in (3.90) and extracting terms involving $q^{5 n+3}$ and cancelling q^{3} from both sides, then replacing q^{5} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,5}\left(4 \cdot 5^{4 k+1} n+\frac{5^{4 k+2}+1}{2}\right) q^{n} \equiv 2 f_{5}^{3}+2 f_{1}^{5} f_{10} \quad(\bmod 4) \tag{3.91}
\end{equation*}
$$

Again substituting (2.29) in (3.91) and extracting terms involving $q^{5 n}$ and then replacing q^{5} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,5}\left(4 \cdot 5^{4 k+2} n+\frac{5^{4 k+2}+1}{2}\right) q^{n} \equiv 2 f_{1}^{3}+2 \frac{f_{8}}{f_{5}} \quad(\bmod 4) \tag{3.92}
\end{equation*}
$$

Again substituting (2.29) in (3.92) and extracting terms involving $q^{5 n+3}$ and cancelling q^{3} from both sides, then replacing q^{5} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,5}\left(4 \cdot 5^{4 k+3} n+\frac{5^{4 k+4}+1}{2}\right) q^{n} \equiv 2 f_{5}^{3}+2 q \frac{f_{40}}{f_{1}} \quad(\bmod 4) \tag{3.93}
\end{equation*}
$$

Substituting (2.31) in (3.93) and extracting terms involving $q^{5 n}$ and then replacing q^{5} by q, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,5}\left(4 \cdot 5^{4 k+4} n+\frac{5^{4 k+4}+1}{2}\right) q^{n} \equiv 2 f_{1}^{3}+2 q f_{2} f_{5}^{5} \quad(\bmod 4) \tag{3.94}
\end{equation*}
$$

Thus, by induction hypothesis (3.87) is established.
Now, the proof of theorem is a direct application of the proposition which can be seen as follows. Proof of (1.17) follows by comparing equation (3.90) and (3.94). Proof of (1.18) and (1.19) follows by substituting (2.29) in (3.91) and (3.93) respectively, and then equating the coefficients of $q^{5 n+m}$ for $m=2$ and $m=4$.

Theorem 3.2. For all $n \geq 0$,

$$
\begin{equation*}
b_{4,11}(22 n+2 m) \equiv 0 \quad(\bmod 2), \quad \text { where } m=\{1,4,8,9,10\} \tag{3.95}
\end{equation*}
$$

Proof. By definition

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,11}(n) q^{n} \equiv \frac{f_{2}^{2}}{f_{1} f_{11} f_{22}} \quad(\bmod 2) \tag{3.96}
\end{equation*}
$$

Substituting (2.28) in (3.96) and extracting the terms involving $q^{2 n}$ from both sides of the congruence and then replacing q^{2} by q, we have

$$
\begin{align*}
\sum_{n=0}^{\infty} b_{4,11}(2 n) q^{n} & \equiv \frac{1}{f_{11}^{3}}\left(\frac{f_{12}^{2}}{f_{6}}+q^{3} \frac{f_{33}^{3} f_{2}}{f_{11}}\right) \quad(\bmod 2) \\
& \equiv \frac{f_{6}^{3}}{f_{11}^{3}}+q^{3} \frac{f_{33}^{3} f_{2}}{f_{11}^{4}}(\bmod 2) \tag{3.97}
\end{align*}
$$

Taking $p=11$ in (2.5), and q replacing by q^{2}, we get

$$
\begin{equation*}
f_{2}=\left(\sum_{\substack{k=-5 \\ k \neq-2}}^{5}(-1)^{k} q^{3 k^{2}+k} f\left(-q^{22(17+3 k)},-q^{22(16-3 k)}\right)+q^{10} f_{242}\right) \tag{3.98}
\end{equation*}
$$

Note that for $-5 \leq k \leq 5$ and $k \neq-2$,

$$
3 k^{2}+k \not \equiv 5 \quad(\bmod 11)
$$

Also taking $p=11$ in (2.5), and q replacing by q^{6}, we get

$$
\begin{equation*}
f_{6}^{3}=\sum_{\substack{k=0 \\ k \neq 5}}^{10}(-1)^{k} q^{3 k(k+1)} \sum_{n=0}^{\infty}(-1)^{n}(22 n+2 k+1) q^{33 n \cdot(11 n+2 k+1)}-11 q^{90} f_{726}^{3} . \tag{3.99}
\end{equation*}
$$

Furthermore, if $k \neq 5,0 \leq k \leq 10$, then $\frac{k^{2}+k}{2} \not \equiv 15(\bmod 11)$.
Employing (3.99) and (3.98) in (3.97), observe that the right-hand side doesn't contain terms of the form $q^{11 n+m}$ for $m \in S=\{1,4,8,9,10\}$. Thus

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{4,11}(22 n+2 m) q^{n} \equiv 0 \quad(\bmod 2) \tag{3.100}
\end{equation*}
$$

Completes the proof of theorem follows from (3.100).

References

[AhBa16] Zakir Ahmed and N.D. Baruah, New congruences for ℓ-regular partitions for $\ell \in\{5,6,7,49\}$, Ramanujan J. 40 (2016), pp. 649-668.
[AhBa15] N.D. Baruah and Z. Ahmed, Congruences modulo p^{2} and p^{3} for k dots bracelet partitions with $k=m p^{s}$, J. Number Theory 151 (2015), 129-146.
[Ber91] B.C. Berndt, Ramanujan's Notebooks, Part III Springer, New York, 1991.
[CuGu13] S.P. Cui and N.S.S. Gu, Arithmetic properties of ℓ-regular partitions, Adv. Appl. Math. 51 (2013), 507-523.
[Hir17] M.D. Hirschhorn, The powers of q, Developments in Mathematics, 49, Springer International Publishing AG 2017.
[HiSe10] M.D. Hirschhorn and J.A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc., 81 (2010), 58-63.
[KSS] T. Kathiravan, K. Srinivas and Usha K. Sangale, Some congruences for (ℓ, k)-regular partitions, (accepted in JRMS): arXiv:2303.13906.
[MHS16] M.S. Mahadeva Naika, B. Hemanthkumar and H.S. Sumanth Bharadwaj, Congruences modulo 2 for certain partition functions, Bull. Aust. Math. Soc., 93 (2016), 400-409.
[New62] M. Newman, Modular forms whose coefficients possess multiplicative properties, II, Ann. Math., 75 (1962), 242-250.
[Yao14] O.X.M. Yao, New parity results for broken 11-diamond partitions, J. Number Theory, 140 (2014), 267-276.

T. Kathiravan

Department of Mathematics, IIT Madras
Chennai 600 036, India
e-mail: kkathiravan98@gmail.com

Dipramit Majumdar

Department of Mathematics, IIT Madras
Chennai 600 036, India
e-mail: dipramit@iitm.ac.in

Usha K. Sangale

SRTM University, Vishnupuri
Nanded 431 606, India
e-mail: ushas073@gmail.com

