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Identities among some combinatorial objects involving

special values of multiple zeta functions

Lalit Vaishya

Abstract. In the article, we establish some identities involving special values of multiple zeta functions among the counting

functions of number of representations of an integer by a linear combination of figurate numbers such as triangular numbers,

square numbers, pentagonal numbers, etc. More precisely, we provide our result for δk(n), rk(n) and Na
k (n) (for a fixed a ≥ 3),

the number of representations of n as a sum of k-triangular numbers, as a sum of k-square numbers and as a sum of k-higher

figurate numbers (for a fixed a ≥ 3), respectively. Moreover, these identities also occur when one of δk(n), rk(n) and Na
k (n) is

replaced by the k-colored partition functions.
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1. Preliminaries

We define the q-Pochhammer symbol, also known as the q-shifted factorial, given as the product of
the form

(a; q)n =
n−1∏
k=0

(1− aqk) = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1), (1.1)

with (a; q)0 = 1. It is a q-analogue of the Pochhammer symbol (x)n = x(x + 1) · · · (x + n − 1) for
x ∈ R+ and n ∈ N, in the sense that

lim
q→1

(qx; q)n
(1− q)n

= (x)n. (1.2)

The q-Pochhammer symbol is a major building block in the theory of hypergeometric series and the
theory of integer partitions. The q-Pochhammer symbol can be extended to an infinite product given
by

(a; q)∞ =

∞∏
k=0

(1− aqk). (1.3)

Moreover, for a = q, (a; q)∞ is the Dedekind eta function η(τ) upto a multiple of q-power, where
q = e2πiτ and τ ∈ H (complex upper half-plane), i.e., η(τ) = q1/24(q; q)∞. A product of the form∏
d|N

ηrd(dτ); with rd ∈ Z, is commonly known as a eta-quotient of level N and weight 1
2

∑
d|N

rd, in the

theory of modular forms. These are the building blocks for finding the formulas for rk(n), δk(n) and
N a
k (n)(for a fixed a ≥ 3) (See [RV23]).

For a fixed integer a ≥ 1, we define the nth-figurate number by fa(n) := an2+(a−2)n
2 , following

Ono-Robins-Wahl [ORW95]. Note that the function fa(n) denotes the nth-triangular number (resp.
square number and pentagonal number) when a = 1 (resp. 2 and 3). In the literature, the nth

triangular number is denoted by Tn, and for a fixed a ≥ 3, the integer fa(n) is known as the nth-
higher figurate number. These functions are associated with counting the number of vertices of some
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geometric objects. We denote the generating functions for these figurate numbers as Ψ(τ) (for
triangular numbers), θ(τ) (for square numbers) and Φa(τ) (for a ≥ 3), and they are given respectively
by

θ(τ) :=
∑
n∈Z

qn
2
, Ψ(τ) :=

∞∑
n=0

q
n(n+1)

2 , and for a ≥ 3, Φa(τ) :=
∑
n∈Z

qfa(n). (1.4)

where q ∈ H. It is known from [ORW95, Proposition 1, Theorem 10] that the generating function for
the figurate numbers defined in (1.4) are explicitly obtained from Jacobi triple product identity given
by

θ(τ) =
∞∏
n=1

(1− q2n)5

(1− qn)2(1− q4n)2
=

(q2; q2)5
∞

(q; q)2
∞(q4; q4)2

∞
, Ψ(τ) =

∞∏
n=1

(1− q2n)2

(1− qn)
=

(q2; q2)2
∞

(q; q)∞
(1.5)

and for a ≥ 3,

Φa(τ) =
∞∏
n=1

(1− qan)(1− qan−1)(1− qan−(a−1)) = (qa; qa)∞(q−1; qa)∞(q−(a−1); qa)∞. (1.6)

Let δk(n), rk(n) and N a
k (n)(for a fixed a ≥ 3) denote the number of representations of n as a sum of

k-triangular numbers, as a sum of k-square numbers and as a sum of k-higher figurate numbers (for
a fixed a ≥ 3) respectively, i.e.,

rk(n) = #

{
(x1, x2, . . . , xk) ∈ Zk| n =

k∑
i=1

x2
i

}
,

δk(n) = #

{
(x1, x2, . . . , xk) ∈ Zk| n =

k∑
i=1

xi(xi + 1)

2

}

and for a fixed integer a ≥ 3, N a
k (n) = #

{
(x1, x2, . . . , xk) ∈ Zk| n =

k∑
i=1

fa(xi)

}
.

It is easy to see that

θk(τ) = 1 +
∞∑
n=1

rk(n) qn, Ψk(τ) = 1 +
∞∑
n=1

δk(n) qn and Φk
a(τ) = 1 +

∞∑
n=1

N a
k (n) qn

for a ≥ 3. For more details on these arithmetical functions, we refer to [ORW95] and [RV23].
For positive integers k1, k2, . . . , kw ≥ 2, we define the multiple zeta function as follows:

ζ(k1, k2, . . . , kw) =
∑

m1<m2<···<mw

1

mk1
1 m

k2
2 · · ·m

kw
w

and ζodd(k1, k2, . . . , kw) =
∑

m1<m2<···<mw
mi−odd

1

mk1
1 m

k2
2 · · ·m

kw
w

.
(1.7)

When ki = k for all i, we simply denote it as ζw(k) and ζoddw (k), respectively. By convention, we write
ζ(k) = ζ1(k), ζ0(k) = 1, ζodd(k) = ζodd1 (k) and ζodd0 (k) = 1.
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Trigonometric identities

For each z ∈ C, we have the following trigonometric function with their product expansion and Taylor
series expansion given as follows

sin z = z
∞∏
n=1

(
1− z2

n2π2

)
=

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1,

cos z =

∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
=

∞∑
n=0

(−1)n

(2n)!
z2n,

(1.8)

sin2 z = z2
∞∏
n=1

(
1− z2

n2π2

)2

=
∞∑
n=1

(
n−1∑
r=0

(
2n

2r + 1

))
(−1)n−1

(2n)!
z2n

and cos2 z =

∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)2

=

∞∑
n=0

(
n∑
r=0

(
2n

2r

))
(−1)n

(2n)!
z2n.

(1.9)

Here,
(
n
r

)
denotes the number of ways to choose r objects from a set of n objects.

2. Identities for δk(n), rk(n) and N a
k (n)

In this section, we establish certain identities for rk(n), δk(n) and N a
k (n)(for a fixed a ≥ 3) which

involves the special values of multiple zeta function. We make use of trigonometric functions to
prove our results. Before stating our results, we define the set S(n) as a collection of all possible
compositions of non-zero positive integers {a1, a2, . . . , ar} such that a1 + a2 + · · ·+ ar = n, i.e.,

S(n) = {{a1, a2, . . . , ar} | ai > 0 for all i, and a1 + a2 + · · ·+ ar = n}.

For example, given n = 6, the elements {3, 2, 1}, {2, 3, 1} and {1, 2, 3} are different integer
compositions of S(n).

Now, we present our results.

Theorem 2.1. For a given positive integer n, we have the following identities for rk(n), δk(n) and
N a
k (n)(for a fixed a ≥ 3), respectively involving the special values of multiple zeta function ζk(2) given

by

∞∑
k=0

(−1)k

(2k + 1)!
r2k(n) =

∞∑
k=0

(−1)kζk(2)

π2k
r2k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`
mi−distinct

(−1)`

π2`

r2(s1)r2(s2) · · · r2(s`)

m2
1m

2
2 · · ·m2

`

∏
m 6=m1,m2,...,m`

(
1− 1

m2π2

)
,

(2.10)

∞∑
k=0

(−1)k

(2k + 1)!
δ2k(n) =

∞∑
k=0

(−1)kζk(2)

π2k
δ2k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`
mi−distinct

(−1)`

π2`

δ2(s1)δ2(s2) · · · δ2(s`)

m2
1m

2
2 · · ·m2

`

∏
m6=m1,m2,...,m`

(
1− 1

m2π2

) (2.11)

and
∞∑
k=0

(−1)k

(2k + 1)!
N a

2k(n) =

∞∑
k=0

(−1)kζk(2)

π2k
N a

2k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`
mi−distinct

(−1)`

π2`

N a
2 (s1)N a

2 (s2) · · · N a
2 (s`)

m2
1m

2
2 · · ·m2

`

∏
m 6=m1,m2,...,m`

(
1− 1

m2π2

)
.

(2.12)
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Proof. We prove the above result for rk(.) and other identities can be obtained following similar argu-
ments. Let us consider the product formula of sin z given by

sin z = z
∞∏
n=1

(
1− z2

n2π2

)
. To get the required result, we consider the product

∞∏
n=1

(
1− z2

n2π2

)
and expand it in two different ways by substituting the q-product of generating function for square

numbers, i.e., z =

∞∏
n=1

(1− q2n)5

(1− qn)2(1− q4n)2
(given in (1.5)) and observe that zk =

∞∑
n=0

rk(n)qn. More

precisely, the expansion of
∞∏
n=1

(
1− z2

n2π2

)
gives that

∞∏
n=1

(
1− z2

n2π2

)
= 1 +

∞∑
k=1

(−1)k

π2k

 ∑
n1,n2,...,nk
ni−distinct

1

n2
1n

2
2 · · ·n2

k

 z2k = 1 +
∞∑
k=1

(−1)kζk(2)

π2k
z2k.

Now, we substitute z2k =
∞∑
n=0

r2k(n)qn and see that the constant term (q0-th coefficient) and the

coefficient of qn (n > 0) is given by;

1 +

∞∑
k=1

(−1)kζk(2)

π2k
and

∞∑
k=1

(−1)kζk(2)

π2k
r2k(n), (2.13)

respectively. On the other hand, we first substitute z2 =
∞∑
n=0

r2(n)qn in
∞∏
n=1

(
1− z2

n2π2

)
to get

∞∏
n=1

((
1− 1

n2π2

)
q0 −

∞∑
k=1

r2(k)

n2π2
qk

)
. (2.14)

We expand the product in (2.14) using the Cauchy product of infinite series to obtain the coefficients
of qn. The coefficients of qn in this process is given by∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`
mi−distinct

(−1)`

π2`

r2(s1)r2(s2) · · · r2(s`)

m2
1m

2
2 · · ·m2

`

∏
m6=m1,m2,...,m`

(
1− 1

m2π2

)
. (2.15)

Since the qn-coefficients given in (2.13) and (2.15) are the qn-coefficients of the expansions of the

product

∞∏
n=1

(
1− z2

n2π2

)
by putting the value of z =

∞∏
n=1

(1− q2n)5

(1− qn)2(1− q4n)2
. Hence, we have the

required identity. The first equality is obvious by the Taylor series expansion of sin z. Thus, we have
the required result.

Theorem 2.2. For a given positive integer n, we have the following identities for rk(n), δk(n) and
N a
k (n)(for a fixed a ≥ 3), respectively involving the special values of multiple zeta function ζoddk (2)

given by

∞∑
k=0

(−1)k

(2k)!
r2k(n) =

∞∑
k=0

(−1)k4kζoddk (2)

π2k
r2k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`

mi−odd & distinct

(−4)`

π2`

r2(s1)r2(s2) · · · r2(s`)

m2
1m

2
2 · · ·m2

`

∏
m 6=m1,m2,...,m`

m−odd

(
1− 1

m2π2

)
,

(2.16)
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∞∑
k=0

(−1)k

(2k)!
δ2k(n) =

∞∑
k=0

(−1)k4kζoddk (2)

π2k
δ2k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`

mi−odd & distinct

(−4)`

π2`

δ2(s1)δ2(s2) · · · δ2(s`)

m2
1m

2
2 · · ·m2

`

∏
m 6=m1,m2,...,m`

m−odd

(
1− 1

m2π2

) (2.17)

and

∞∑
k=0

(−1)k

(2k)!
N a

2k(n) =
∞∑
k=0

(−1)k4kζoddk (2)

π2k
N a

2k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`

mi−odd & distinct

(−4)`

π2`

N a
2 (s1)N a

2 (s2) · · · N a
2 (s`)

m2
1m

2
2 · · ·m2

`

∏
m6=m1,m2,...,m`

m−odd

(
1− 1

m2π2

)
.

(2.18)

Proof. We use the same arguments to prove the above result for δk(.) and the other identities. Let

us consider the product formula of cos z given by cos z =
∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
. We expand the

product

∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
in two different ways by substituting the q-product of generating

function for triangular numbers, i.e., z =
∞∏
n=1

(1− q2n)2

(1− qn)
and observe that zk =

∞∑
n=0

δk(n)qn to get the

required result. More precisely, a simple expansion of
∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
gives that

∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
= 1 +

∞∑
k=1

(−1)k4k

π2k

 ∑
n1n2,...,nk

ni−odd & distinct

1

n2
1n

2
2 · · ·n2

k

 z2k

= 1 +

∞∑
k=1

(−1)k4kζoddk (2)

π2k
z2k.

Now, we substitute z2k =
∞∑
n=0

δ2k(n)qn and see that the coefficient of qn is

1 +

∞∑
k=1

(−1)k4kζoddk (2)

π2k
δ2k(n). (2.19)

On the other hand, first we substitute z2 =

∞∑
n=0

δ2(n)qn in

∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
and then we expand

the product to obtain the coefficients of qn. The coefficients of qn in this process is given by∑
{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`

mi−odd&distinct

(−4)`

π2`

δ2(s1)δ2(s2) · · · δ2(s`)

m2
1m

2
2 · · ·m2

`

∏
m 6=m1,m2,...,m`

m−odd

(
1− 1

m2π2

)
. (2.20)

Hence, comparing the qn- coefficients of the expansions of the product
∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
(in two

ways) by substituting z = (q2;q2)2∞
(q;q)∞

, we obtain the required result. The first equality is obvious from
the Taylor series expansion of cos z.
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Following the same arguments and using the product and sum expression for sin2 z and cos2 z
respectively (given in (1.9)), we have the following results.

Theorem 2.3. For a given positive integer n, we have the following identities for rk(n), δk(n) and
N a
k (n)(for a fixed a ≥ 3) respectively.

∞∑
k=0

(
k−1∑
r=0

(
2k

2r + 1

))
(−1)k−1

(2k)!
r2k(n)

=

n∑
f=1

r2(f)
∑∗

 ∏
1≤e≤`

(
− 2

π2m2
e

r2(se) +
1

π4m4
e

r2(se)

) ∏
m 6=m1,m2,...,m`

(
1− 2

m2π2
+

1

m4π4

) ,

(2.21)

∞∑
k=0

(
k−1∑
r=0

(
2k

2r + 1

))
(−1)k−1

(2k)!
δ2k(n)

=

n∑
f=1

δ2(f)
∑∗

 ∏
1≤e≤`

(
− 2

π2m2
e

δ2(se) +
1

π4m4
e

δ2(se)

) ∏
m 6=m1,m2,...,m`

(
1− 2

m2π2
+

1

m4π4

) ,

(2.22)

and
∞∑

k=0

(
k−1∑
r=0

(
2k

2r + 1

))
(−1)k−1

(2k)!
N a

2k(n)

=

n∑
f=1

N a
2 (f)

∑∗

 ∏
1≤e≤`

(
− 2

π2m2
e

N a
2 (se) +

1

π4m4
e

N a
2 (se)

) ∏
m 6=m1,m2,...,m`

(
1− 2

m2π2
+

1

m4π4

) .

(2.23)

where
∑∗ denotes the double summation

∑
{s1,s2,...,s`}∈S(n−f)

∑
m1,m2,...,m`
mi−distinct

.

Theorem 2.4. For a given positive integer n, we have the following identities for rk(n), δk(n) and
N a
k (n)(for a fixed a ≥ 3) respectively.

∞∑
k=0

(
k∑
r=0

(
2k

2r

))
(−1)k

(2k)!
r2k(n)

=
∑# ∏

1≤e≤`

(
− 2

π2m2
e

r2(se) +
1

π4m4
e

r2(se)

) ∏
m 6=m1,m2,...,m`

m−odd

(
1− 2

m2π2
+

1

m4π4

)
,

(2.24)

∞∑
k=0

(
k∑
r=0

(
2k

2r

))
(−1)k

(2k)!
δ2k(n)

=
∑# ∏

1≤e≤`

(
− 2

π2m2
e

δ2(se) +
1

π4m4
e

δ2(se)

) ∏
m 6=m1,m2,...,m`

m−odd

(
1− 2

m2π2
+

1

m4π4

)
.

(2.25)

and

∞∑
k=0

(
k∑
r=0

(
2k

2r

))
(−1)k

(2k)!
N a

2k(n)

=
∑#

 ∏
1≤e≤`

(
− 2

π2m2
e

N a
2 (se) +

1

π4m4
e

N a
2 (se)

) ∏
m 6=m1,m2,...,m`

m−odd

(
1− 2

m2π2
+

1

m4π4

) .

(2.26)

where
∑# denotes the summation

∑
{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`

mi−odd & distinct

.
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3. Identities for k-colored partition functions:

Let n be a positive integer. For each k ≥ 1, let pk(n) denote the number of k-colored partition of n.
For k = 1, it is the usual partition function p(n), first considered by Ramanujan. We define pk(n), as
the counting function for the number of k-colored over-partition of a positive integer n, and pdk(n)
denotes the number of k-colored partition of n into distinct parts, and pok(n) denotes the number of
k-colored partition of n into odd parts. The generating function for these k-colored partition functions
is given in terms of q-product as follows.

∞∑
n=0

pk(n)qn =

∞∏
n=1

1

(1− qn)k
= (q; q)−k∞ ,

∞∑
n=0

pk(n)qn =
∞∏
n=1

(1 + qn)k

(1− qn)k
=

(−q; q)k∞
(q; q)k∞

,

∞∑
n=0

pdk(n)qn =

∞∏
n=1

(1 + qn)k = (−q; q)k∞,

and

∞∑
n=0

pok(n)qn =

∞∏
n=1

1

(1− q2n−1)k
= (q−1; q2)k∞.

(3.27)

For details on the partition functions and their combinatorial interpretations, we refer to [And98].
Similar identities obtained in Theorem 2.1 and Theorem 2.2, can be given for these k-colored partition
functions. The proof of these identities take place by substituting z = (−q; q)∞ ( for pdk(n)),

z = (q−1; q2)∞ (for pok(n)), z = 1
(q;q)∞

( for pk(n)) and z = (−q;q)∞
(q;q)∞

(for pk(n)) in the expression of
sin z and cos z and following the same arguments as in the proofs of Theorem 2.1 and Theorem 2.2.
Below, we state these identities only for pdk(n), and identities for others can be stated analogously.

Theorem 3.1. For a given positive integer n, we have the following identities for pdk(n) involving
the special values of multiple zeta function ζk(2) given by

∞∑
k=0

(−1)k

(2k + 1)!
pd2k(n) =

∞∑
k=0

(−1)kζk(2)

π2k
pd2k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`
mi−distinct

(−1)`

π2`

pd2(s1)pd2(s2) · · · pd2(s`)

m2
1m

2
2 · · ·m2

`

∏
m6=m1,m2,...,m`

(
1− 1

m2π2

)
.

(3.28)

These identities also valid if pdk(n) is replaced by one of these k-colored partition functions among
pk(n), pk(n) and pok(n).

Theorem 3.2. For a given positive integer n, we have the following identities for pdk(n) involving
the special values of multiple zeta function ζoddk (2) given by

∞∑
k=0

(−1)k

(2k)!
pd2k(n) =

∞∑
k=0

(−1)k4kζoddk (2)

π2k
pd2k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`

mi−odd & distinct

(−4)`

π2`

pd2(s1)pd2(s2) · · · pd2(s`)

m2
1m

2
2 · · ·m2

`

∏
m 6=m1,m2,...,m`

m−odd

(
1− 1

m2π2

)
.

(3.29)

These identities also valid if pdk(n) is replaced by one of these k-colored partition functions among
pk(n), pk(n) and pok(n).

Remark 3.1. The identities appearing in the Theorem 2.3 and Theorem 2.4 can be given for each
of these k-colored partition functions pk(n), pk(n), pdk(n) and pok(n) by replacing the arithmetical
function rk(n) by one of the above k-colored partition functions.
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3.A. k-colored identities associated to Rogers-Ramanujan partition functions:

For a positive integer n, Let [λ1, λ2, · · · , λr] such that n = λ1 + λ2 + · · · + λr, r ∈ N and each
λi ≥ λi+1 > 0, denote a partition of n. We define the following partition functions given by

RR(n) := #{partiton [λ1, λ2, . . . , λr] of n | λi − λi+1 ≥ 2 for each i} and

RS(n) := #{partiton [λ1, λ2, . . . , λr] of n | λi − λi+1 ≥ 2, and λi ≥ 2 for each i}.
(3.30)

The generating function for these is given by

∞∑
n=0

RR(n)qn =

∞∑
n=0

qn
2

(q, q)n
and

∞∑
n=0

RS(n)qn =

∞∑
n=0

qn
2+n

(q, q)n
. (3.31)

Let R1(n) denote the numbers of partition [λ1, λ2, . . . , λr] of n such that each λi ≡ ±1(mod 5),
and R2(n) denote the numbers of partition [λ1, λ2, . . . , λr] of n such that each λi ≡ ±2(mod 5),
respectively. The generating function of these is given by

∞∑
n=0

R1(n)qn =
∞∏
m=1

1

(1− q5m−4)(1− q5m−1)
=

1

(q; q5)∞(q4; q5)∞

and

∞∑
n=0

R2(n)qn =

∞∏
m=1

1

(1− q5m−2)(1− q5m−3)
=

1

(q2; q5)∞(q3; q5)∞
,

(3.32)

respectively. Then, Rogers-Ramanujan identities say that

RR(n) = R1(n) and RS(n) = R2(n). (3.33)

To prove the Rogers-Ramanujan identities, it is equivalent to show the following

∞∑
n=0

qn
2

(q, q)n
=

1

(q; q5)∞(q4; q5)∞
and

∞∑
n=0

qn
2+n

(q, q)n
=

1

(q2; q5)∞(q3; q5)∞
, (3.34)

respectively. For details, we refer to [And98]. Now, we define the following k-colored Rogers-
Ramanujan type partitioned functions as follows: R1k(n) denote the numbers of partition [λ1, λ2, . . . , λr]
of n such that each λi ≡ ±1(mod 5) and its part is colored by at most k-colours, and R2k(n) denote
the numbers of partition [λ1, λ2, . . . , λr] of n such that each λi ≡ ±2(mod 5) and its part is colored
by at most k-colours, respectively. The generating functions are given by

∞∑
n=0

R1k(n)qn =
1

(q; q5)k∞(q4; q5)k∞
and

∞∑
n=0

R2k(n)qn =
1

(q2; q5)k∞(q3; q5)k∞
, (3.35)

respectively. Here, we state our result without proof as it follows exactly the same arguments as in
the proofs of Theorem 2.1 and Theorem 2.2, respectively.

Theorem 3.3. For a given positive integer n, we have the following identities for R1k(n) involving
the special values of multiple zeta function ζk(2) given by

∞∑
k=0

(−1)k

(2k + 1)!
R12k(n) =

∞∑
k=0

(−1)kζk(2)

π2k
R12k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`
mi−distinct

(−1)`

π2`

R12(s1)R12(s2) · · ·R12(s`)

m2
1m

2
2 · · ·m2

`

∏
m6=m1,m2,...,m`

(
1− 1

m2π2

)
.

(3.36)

These identities also valid if R1k(n) is replaced by R2k(n).
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Theorem 3.4. For a given positive integer n, we have the following identities for R1k(n) involving
the special values of multiple zeta function ζoddk (2) given by

∞∑
k=0

(−1)k

(2k)!
R12k(n) =

∞∑
k=0

(−1)k4kζoddk (2)

π2k
R12k(n)

=
∑

{s1,s2,...,s`}∈S(n)

∑
m1,m2,...,m`

mi−odd & distinct

(−4)`

π2`

R12(s1)R12(s2) · · ·R12(s`)

m2
1m

2
2 · · ·m2

`

∏
m 6=m1,m2,...,m`

m−odd

(
1− 1

m2π2

)
.

(3.37)

These identities also valid if R1k(n) is replaced by R2k(n).

Remark 3.2. The identities appearing in the Theorem 2.3 and Theorem 2.4 can be given for R1k(n)
and R2k(n).
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