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A generalization of a fourth irreducibility theorem of

I. Schur

Martha Allen and Michael Filaseta

Abstract. In a 1929 paper, Issai Schur investigated the irreducibility over the rationals of the polynomials
∑n

j=0 ajx
2j/u2j+2

where the aj ’s are integers with |an| = |a0| = 1 and u2j+2 is the product of the odd numbers less than 2j + 2. We establish a

more general result holds with the condition |an| = 1 relaxed but with finitely many exceptions. A proof is given showing that
also, in some sense, the more general result is best possible.
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1. Introduction

In 1929, I. Schur [Sch29a] showed the following general theorem.

Theorem 1.1. (Schur) Let n be a positive integer, and let a0, a1, . . . , an denote arbitrary integers
with |an| = |a0| = 1. Then

f(x) = an
xn

n!
+ an−1

xn−1

(n− 1)!
+ · · ·+ a2

x2

2!
+ a1x+ a0

is irreducible.

Here, and throughout this paper, irreducibility is over the field of rational numbers.
The second author [Fil96] showed that the condition that |an| = 1 can be relaxed to 0 < |an| < n

provided (an, n) 6∈ {(±5, 6), (±7, 10)}, and that this result is in some sense best possible. More
precisely, there are examples for each pair (an, n) ∈ {(±5, 6), (±7, 10)} where 0 < |an| < n, |a0| = 1
and the polynomial f(x) is reducible, and there are examples of reducible f(x) for each n > 1 with
an = ±n and |a0| = 1.

In a second paper by I. Schur [Sch29b], three other similar irreducibility results were obtained
involving a condition |an| = 1 on part of the leading coefficient as before. Two of these results were
generalized by the authors in [AlFi03, AlFi04] as follows.

Theorem 1.2. For n an integer ≥ 1, define

f(x) =
n∑
j=0

aj
xj

(j + 1)!

where the aj’s are arbitrary integers with |a0| = 1. Let k′ be the integer such that n+ 1 = k′2u where
k′ is odd and u is an integer ≥ 0. Let k′′ be the integer such that (n+1)n = k′′2u3v where (k′′, 6) = 1,
u is an integer ≥ 1, and v is an integer ≥ 0. Let M = min{k′, k′′}. If 0 < |an| < M , then f(x) is
irreducible.
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Theorem 1.3. For j ≥ 0, let u2j = 1× 3× 5× · · · × (2j − 1). For n an integer > 1, define

f(x) =

n∑
j=0

aj
x2j

u2j

where the aj’s are arbitrary integers with |a0| = 1. If 0 < |an| < 2n − 1, then f(x) is irreducible for
all but finitely many pairs (an, n).

In this paper, we generalize the fourth irreducibility theorem of Schur [Sch29b] from 1929 in
which again a condition |an| = 1 on part of the leading coefficient is relaxed. Specifically, we prove
the following.

Theorem 1.4. Let u2j = 1× 3× 5 × · · · × (2j − 1). For n an integer ≥ 1, define

f(x) =

n∑
j=0

aj
x2j

u2j+2
(1.1)

where the aj’s are arbitrary integers with |a0| = 1. Let k′ be the integer such that 2n+ 1 = k′3u where
u is an integer ≥ 0 and (k′, 3) = 1. Let k′′ be the integer such that (2n+ 1)(2n− 1) = k′′3u5v where
u and v are integers ≥ 0 and (k′′, 15) = 1. Let M = min{k′, k′′}. If 0 < |an| < M , then f(x) is
irreducible for all but finitely many pairs (an, n).

In the case of |an| = 1, I. Schur [Sch29b] showed that f(x) above is irreducible unless 2n = 3u− 1
for some integer u ≥ 2. Furthermore, he showed that if f(x) is reducible with |an| = 1, then f(x) is
x2 ± 3 times an irreducible polynomial. Observe that Theorem 1.4 gives no information in the case
that 2n = 3u − 1 as M = k′ = 1. In the case that u = 1 so that f(x) has degree 2, the quadratic
will be irreducible. We will show that if f(x) is as in (1.1) with a0 = 1 and an = M = k′ in general,
then f(x) is either irreducible or divisible by a quadratic polynomial, and the latter can happen. The
value of M is also 1 when k′′ = 1 which occurs only for n ∈ {1, 2, 13}. The case n = 1 corresponds to
f(x) being a quadratic as discussed above. For n = 13, we already know f(x) can have a quadratic
factor since 2 · 13 = 33 − 1. For n ≥ 2 in general, we show that if f(x) is as in (1.1) with a0 = 1 and
an = M = k′′ < k′, then f(x) is either irreducible or divisible by a quartic polynomial, and the latter
can happen. In the case n = 2, the polynomial f(x) is quartic and will be irreducible.

From henceforth, the polynomial f(x) will be as defined in (1.1). Theorem 1.4 goes back to
work associated with the first author’s dissertation [All01]. The result has the weakness over the
prior results stated above in that there are finitely many, possibly zero, exceptional pairs (an, n)
that are not determined. As determining these finitely many pairs seems particularly difficult due
to an application of an ineffective result of Mahler [Mah61], we are left with this less than precise
result. On the other hand, like with the prior results, as noted above, we will show that Theorem 1.4
is best possible in the sense that for each n > 2, if an = M and a0 = 1, then there are integers
an−1, an−2, . . . , a1 such that f(x) is reducible.

Before closing this introduction, we note that recent work related to the fourth irreducibility
theorem of Schur [Sch29b] from 1929 has been done by A. Jakhar [Jak23].

2. The basic strategy

To establish that f(x) is irreducible for all but finitely many pairs (an, n) with 0 < |an| < M , it
suffices to show that f(x) is irreducible for sufficiently large n. We use the following two lemmas in
proving the irreducibility of f(x) when 0 < |an| < M . We explain the proof of Theorem 1.4 based on
these lemmas after we state them. The proofs of the lemmas are in the next two sections.



8 3. Proof of Lemma 2.18 3. Proof of Lemma 2.1

Lemma 2.1. Let a0, a1, . . . , an denote arbitrary integers with |a0| = 1, and let

f(x) =

n∑
j=0

aj
x2j

u2j+2
.

Let k be a positive odd integer ≤ n. Suppose there exists a prime p > k + 2 (so p ≥ k + 4) and a
positive integer r for which

pr|
(
(2n+ 1)(2n− 1)(2n− 3) · · · (2n− k + 2)

)
and pr - an.

Then f(x) cannot have a factor of degree k or k + 1.

Comment. Lemma 2.1 implies that if f(x) has a factor of degree k or k + 1, then∏
pr‖((2n+1)(2n−1)···(2n−k+2))

p≥k+4

pr divides an,

where the notation pr‖m denotes that pr | m and pr+1 - m.

Lemma 2.2. Let n be a sufficiently large integer, and let k be an odd integer in [5, n]. Then∏
pr‖((2n+1)(2n−1)···(2n−k+2))

p≥k+4

pr > 2n+ 1.

Observe that once the above lemmas are established, we can deduce the following consequences
of these lemmas.

• If n is a sufficiently large integer and 0 < |an| ≤ 2n + 1, then f(x) cannot have a factor with
degree ` in [5, n].

• If 0 < |an| < k′′ where k′′ is the integer such that (2n+ 1)(2n− 1) = k′′3u5v with u ≥ 0, v ≥ 0
and (k′′, 15) = 1, then f(x) cannot have a cubic or quartic factor.

• If 0 < |an| < k′ where k′ is the integer such that 2n+ 1 = k′3u with u ≥ 0 and (k′, 3) = 1, then
f(x) cannot have a linear or quadratic factor.

Taking M = min{k′, k′′} as in Theorem 1.4 and noting k′ ≤ 2n+ 1, we obtain that if n is sufficiently
large and 0 < |an| < M , then f(x) is irreducible, completing the proof of Theorem 1.4.

3. Proof of Lemma 2.1

In this section, we use Newton polygons to show that if there is a prime p ≥ k + 4 and a positive
integer r such that pr |

(
(2n+ 1)(2n− 1) · · · (2n− k+ 2)

)
but pr - an, then f(x) cannot have a factor

of degree k or k+ 1. Here k is an odd positive integer ≤ n. Before proceeding with the proof, we give
some notation and background information on Newton polygons that will be useful.

If p is a prime and m is a nonzero integer, we define ν(m) = νp(m) to be the nonnegative integer
such that pν(m) | m and pν(m)+1 - m. Let w(x) =

∑n
j=0 ujx

j ∈ Z[x] with unu0 6= 0, and let p be a
prime. Set

S = {
(
n− i, ν(ui)

)
: ui 6= 0, 0 ≤ j ≤ n}.

Consider the lower edges along the convex hull of these points. The left-most endpoint is
(
0, ν(un)

)
and the right-most endpoint is

(
n, ν(u0)

)
. The endpoints of each edge belong to S, and the slopes of



M. Allen and M. Filaseta, A generalization of a theorem of Schur 9M. Allen and M. Filaseta, A generalization of a theorem of Schur 9

the edges increase from left to right. When referring to the “edges” of a Newton polygon, we shall
not allow two different edges to have the same slope. The polygonal path formed by these edges is
called the Newton polygon of w(x) with respect to the prime p. We will refer to the points in S as
spots of the Newton polygon.

In investigating irreducibility with Newton polygons, we will make use of the following lemma.

Lemma 3.1. (G. Dumas [Dum1906]) Let g(x) and h(x) be in Z[x] with g(0)h(0) 6= 0, and let p
be a prime. Let k be a non-negative integer such that pk divides the leading coefficient of g(x)h(x)
but pk+1 does not. Then the edges of the Newton polygon for g(x)h(x) with respect to p can be formed
by constructing a polygonal path beginning at (0, k) and using translates of the edges in the Newton
polygon for g(x) and h(x) with respect to the prime p (using exactly one translate for each edge).
Necessarily, the translated edges are translated in such a way as to form a polygonal path with the
slopes of the edges increasing.

Proof of Lemma 2.1. Let

F (x) = u2n+2f(x) =
n∑
j=0

aj
u2n+2

u2j+2
x2j =

n∑
j=0

bjx
2j ,

where
bj = aj

u2n+2

u2j+2
= aj(2n+ 1)(2n− 1) · · · (2j + 3).

Note that the coefficients of the odd powers of x in F (x) are all zero. Writing these terms into F (x),
we set

F (x) =
n∑
j=0

bjx
2j =

2n∑
i=0

cix
i.

If i is odd, then ci = 0. On the other hand, if i is even, then i = 2j for some j ∈ {0, 1, . . . , n} and
ci = c2j = bj . We consider the Newton polygon of F (x) with respect to the prime p. The spots of
the Newton polygon are {(

2n− i, ν(ci)
)

: ci 6= 0, 0 ≤ i ≤ 2n
}
.

From the conditions that k is odd and pr |
(
(2n+ 1)(2n− 1) · · · (2n− k + 2)

)
, we deduce that pr | ci

for i ∈ {0, 1, . . . , 2n− (k + 1), 2n− k}. Thus, the right-most spots in

R =
{(

2n− i, ν(ci)
)

: ci 6= 0, 0 ≤ i ≤ 2n− k
}
,

associated with the Newton polygon of F (x) with respect to p, have y-coordinates ≥ r. Since pr - an
and c2n = bn = an, we have pr - c2n. Thus, the left-most endpoint of the Newton polygon of F (x)
with respect to p, which is

(
0, ν(c2n)

)
=
(
0, ν(an)

)
, has y-coordinate < r. Since the slopes of the

edges of a Newton polygon increase from left to right, the spots in R all lie on or above edges of the
Newton polygon of F (x) with respect to p which have a positive slope. We will show next that each
of these positive slopes is < 1/(k + 1) by showing that the right-most edge has slope < 1/(k + 1).

Observe that the slope of the right-most edge of the Newton polygon of F (x) with respect to p is
given by

max
1≤j≤n

{
ν(c0)− ν(c2j)

2j

}
= max

1≤j≤n

{
ν(a0u2n+2)− ν(aju2n+2/u2j+2)

2j

}
.

Since |a0| = 1, we have ν(a0u2n+2) = ν(u2n+2). Also, for 1 ≤ j ≤ n, we see that

ν
(
aj
u2n+2

u2j+2

)
≥ ν

(u2n+2

u2j+2

)
.
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Thus,

ν(a0u2n+2)− ν
(
aj
u2n+2

u2j+2

)
≤ ν(u2n+2)− ν

(u2n+2

u2j+2

)
= ν(u2j+2) ≤ ν((2j + 1)!).

Thus, the right-most slope is

max
1≤j≤n

{
ν(c0)− ν(c2j)

2j

}
≤ max

1≤j≤n

{
ν((2j + 1)!)

2j

}
. (3.2)

To estimate the right-hand side of (3.2) further, we consider the two cases j < (p − 1)/2 and
j ≥ (p − 1)/2. Suppose first j < (p − 1)/2. Then 2j + 1 < p. Since p is a prime, we see that
p - (2j + 1)!. Therefore, ν((2j + 1)!) = 0. Therefore,

ν((2j + 1)!)

2j
= 0 for j < (p− 1)/2. (3.3)

Now, suppose j ≥ (p− 1)/2. In this case, we have

ν((2j + 1)!) =
∞∑
i=1

⌊
2j + 1

pi

⌋
<
∞∑
i=1

2j + 1

pi
=

2j + 1

p− 1
.

Since j ≥ (p− 1)/2 implies 1/(2j) ≤ 1/(p− 1), we obtain

ν((2j + 1)!)

2j
<

2j + 1

2j
· 1

p− 1
=

(
1 +

1

2j

)
1

p− 1

≤
(

1 +
1

p− 1

)
1

p− 1
=

p

(p− 1)2
for j ≥ (p− 1)/2.

(3.4)

Combining (3.2), (3.3) and (3.4), we deduce the right-most slope is

max
1≤j≤n

{
ν(c0)− ν(c2j)

2j

}
<

p

(p− 1)2
.

Recalling that we have the condition p ≥ k + 4 in the statement of Lemma 2.1, one can verify that
p/(p − 1)2 < 1/(k + 1). Therefore, the slope of the right-most edge is < 1/(k + 1), and we deduce
that each edge of the Newton polygon of F (x) with respect to p has slope < 1/(k + 1).

Now, assume F (x) has a factor g(x) ∈ Z[x] with deg g ∈ {k, k+1}. We will show that the translates
of all the edges of the Newton polygon of g(x) with respect to p cannot be found among the edges of
the Newton polygon of F (x) with respect to p. This will imply a contradiction to Lemma 3.1. Hence,
it will follow that F (x) cannot have a factor of degree k.

First, we show that no translate of an edge for g(x) can be found among those edges in the Newton
polygon of F (x) having positive slope. Suppose (a, b) and (c, d) with a < c are two lattice points on
an edge of the Newton polygon of F (x) having positive slope. We know the slope is < 1/(k + 1);
therefore,

1

c− a
≤ d− b
c− a

<
1

k + 1
.

Thus, c− a > k + 1 ≥ deg g so that (a, b) and (c, d) cannot be the endpoints of a translated edge of
the Newton polygon of g(x); therefore, the translates of the edges of the Newton polygon of g(x) with
respect to p must be among the edges of the Newton polygon of F (x) having 0 or negative slope.

Next, we show that not all the translates of the edges for g(x) can be found among the edges of
the Newton polygon of F (x) having 0 or negative slope. Recall that the spots in R all lie on or above
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edges of the Newton polygon of F (x) with respect to p which have a positive slope. Thus, the spots
forming the endpoints of the edges of the Newton polygon of F (x) having 0 or negative slope must
be among the spots

(
2n− i, ν(ci)

)
where 2n−k+ 1 ≤ i ≤ 2n. Since 2n− (2n−k+ 1) = k−1 < deg g,

these edges by themselves cannot consist of a complete collection of translated edges of the Newton
polygon of g(x) with respect to p, and we have a contradiction.

Therefore, F (x) cannot have a factor with degree k or k + 1.

4. Proof of Lemma 2.2

Let n be sufficiently large, and let k be an odd integer in [5, n]. Write

(2n+ 1)(2n− 1) · · · (2n− k + 2) = uv,

where all the prime factors of u are ≤ k + 2 and all the prime factors of v are > k + 2. Then

v =
∏

pr‖((2n+1)(2n−1)···(2n−k+2))
p≥k+4

pr.

To establish Lemma 2.2, we want to show v > 2n + 1. We begin by establishing Lemma 2.2 when
k ≥ 13, and then handle other values of k ≥ 5.

Lemma 4.1. For n a sufficiently large integer and 13 ≤ k ≤ n,∏
pr‖((2n+1)(2n−1)···(2n−k+2))

p≥k+4

pr > 2n+ 1.

Proof. Let T = {2n+1, 2n−1, . . . , 2n−k+2}. In establishing Lemma 4.1, we take n to be sufficiently
large and break up the argument into 3 cases depending on the size of k.

Case 1: n
2
3 < k ≤ n.

We use the following lemma which follows from results on gaps between primes (for example, see
[Hux72]).

Lemma 4.2. For n sufficiently large and n
2
3 < k ≤ n, there is a prime in each of the intervals

I1 =

(
2n− k + 2, 2n+ 1− k − 1

2

]
and I2 =

(
2n+ 1− k − 1

2
, 2n+ 1

]
.

By Lemma 4.2, there exist primes p1 ∈ I1 and p2 ∈ I2. Since

2n+ 1 ≥ p2 > p1 > 2n− k + 2,

p1 and p2 are in T . Since k is odd, p1 ≥ 2n − k + 4. Thus (since k ≤ n), both p1 and p2 are
≥ n+ 4 ≥ k + 4. From the definition of v, we deduce

v ≥ p1p2 > n2 > 2n+ 1.

This establishes Lemma 4.1 for n
2
3 < k ≤ n.

Case 2: k0 < k ≤ n
2
3 for some fixed but sufficiently large k0.

For this case and indirectly later, we will make use of the following lemma which was established
in [AlFi04, Lemma 5].
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Lemma 4.3. Let m, ` and k denote positive integers with k ≥ 2, and let

T = {2m+ 1, 2m+ 3, . . . , 2m+ 2`− 1}.

For each odd prime p ≤ k in turn, remove from T a number divisible by pe where e = e(p) is as large
as possible. Let S denote the set of numbers that are left. Let Np be the exponent in the largest power
of p dividing

∏
t∈S t. Then

∏
p>k

pNp =

∏
t∈S t∏

2<p≤k p
Np
≥ (2m+ 1)`−π(k)+1

(`− 1)!
· 2ν2((`−1))!.

For the moment, we only consider 1 ≤ k ≤ n
2
3 . To apply Lemma 4.3, for each odd prime p ≤ k+2,

consider a number in T = {2n+ 1, 2n− 1, . . . , 2n− k + 2} which is divisible by pe where e = e(p) is
as large as possible. Let ap denote such a number divisible by pe. Note that some of these numbers
may be the same. Dispose of all these numbers, and let S denote the set of numbers in T that are
left.

Let Np be the exponent of the largest power of p dividing
∏
m∈Sm. Observe that

v ≥
∏

p>k+2

pNp .

By Lemma 4.3 (with 2m+ 1 = 2n− k + 2, ` = (k + 1)/2, and k replaced by k + 2), we obtain

v ≥ (2n− k + 2)
k+1
2
−π(k+2)+1(

k−1
2

)
!

· 2ν2((
k−1
2 )!).

Let r = (k + 1)/2− π(k + 2) + 1, and

αk =

(
k−1

2

)
!

2ν2((
k−1
2 )!)

.

One can see that T consists of (k+ 1)/2 numbers, and that we have removed at most π(k+ 2)− 1 of
them to obtain the set S. Thus,

|S| ≥ r. (4.5)

Note that v > 2n+ 1 if
(2n− k + 2)r > αk(2n+ 1). (4.6)

Furthermore, (4.6) holds if

r log(2n− k + 2)− (logαk + log(2n+ 1)) > 0. (4.7)

To reduce showing v > 2n+ 1 to establishing (4.6) or (4.7), we used 1 ≤ k ≤ n2/3.
We show now that (4.7) holds for k0 ≤ k ≤ n2/3 to finish the proof of Lemma 4.1 in this case.

Suppose then that k0 ≤ k ≤ n2/3. By the Prime Number Theorem, since k0 is sufficiently large and
k > k0, we have

π(k + 2) <
1

12
(k + 2).

Hence, we deduce

r =
k + 1

2
− π(k + 2) + 1 >

k + 3

2
− 1

12
(k + 2) >

5

12
(k + 2) >

5

6

(
k − 1

2

)
. (4.8)
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Since k ≤ n
2
3 , we obtain

2n− k + 2 > n. (4.9)

Also, the definition of αk implies

αk ≤
(
k − 1

2

)
! ≤ k

k−1
2 ≤ n

2
3( k−1

2 ). (4.10)

By (4.8) and (4.9), we deduce

r log(2n− k + 2) >
5

6

(
k − 1

2

)
log n. (4.11)

From (4.10), we obtain

logαk ≤
2

3

(
k − 1

2

)
log n. (4.12)

Combining (4.11) and (4.12) with k ≥ k0, we see that

r log(2n− k + 2)− (logαk + log(2n+ 1)) >
1

6

(
k − 1

2

)
log n− log(2n+ 1)

≥ 1

6

(
k0 − 1

2

)
log n− log(2n+ 1).

(4.13)

Since k0 is sufficiently large,

1

6

(
k0 − 1

2

)
log n− log(2n+ 1) > 0.

Hence, (4.7) holds, and v > 2n+ 1.

Case 3: 13 ≤ k ≤ k0.
We show that (4.6) holds, which will establish Lemma 4.1 in this case. First, we obtain a lower

bound for r. Since k ≥ 13, the value of π(k + 2) is less than or equal to the number of even primes
plus the number of odd numbers less than or equal to k + 2 minus the number of odd numbers less
than or equal to 15 that are not prime. Thus,

π(k + 2) ≤ 1 +
k + 3

2
− 3 ≤ k + 3

2
− 2.

Therefore,

r =
k + 1

2
− π(k + 2) + 1 ≥ k + 1

2
− k + 3

2
+ 3 = 2.

By (4.5), we deduce that there are at least two numbers in S when k ≥ 13. Therefore, the left-hand
side of (4.6) is ≥ n2. Observe that

αk ≤
(
k − 1

2

)
! ≤

(
k0 − 1

2

)
!.

Since αk is bounded by a fixed constant, depending only on k0, the right-hand side of (4.6) has order
n. Therefore, for sufficiently large n, we see that (4.6) holds and, hence, v > 2n+ 1.

Lemma 4.4. For k ∈ {7, 9, 11}, we have ∏
pr‖((2n+1)(2n−1)···(2n−k+2))

p≥k+4

pr > 2n+ 1

for all but finitely many positive integers n.
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Proof. The first part of our proof (Case 1 below) will only involve finitely many exceptional n which
are ≤ 13. A direct check verifies the inequality in Lemma 4.4 for 14 ≤ n ≤ 42, and henceforth we only
consider n ≥ 43 throughout the proof of Lemma 4.4. For the second part of the proof (Case 2 below),
the exceptional n can also be made explicit, but we do not do so and allow for these exceptional n to
be somewhat larger.

Following the proof of Lemma 4.1, Case 2, we set

T = {2n+ 1, 2n− 1, . . . , 2n− k + 2},

and apply Lemma 4.3. Thus, for each odd prime p ≤ k + 2, we remove from T a number ap divisible
by pe, where e = e(p) is as large as possible, to obtain a subset S of T satisfying (4.5), where

r = (k + 1)/2− π(k + 2) + 1.

A direct computation shows that r = 1 for k ∈ {7, 9, 11}. Thus, |S| ≥ 1. Fix a number a = a(n, k) in
S.

Case 1: There exists a prime p ≥ k + 4 such that p divides at least 1 of the numbers in T − {a}.
Recall v is the product in Lemma 4.4. If k = 7, then T = {2n + 1, 2n − 1, 2n − 3, 2n − 5}. So

a ≥ 2n − 5 and note that 7 - a and 5 - a since the numbers a5 and a7 were removed from T to form
S. Also, 32 - a. Of the numbers in T − {a}, one of these is divisible by p ≥ 11. Thus,

v ≥ p(2n− 5)

3
≥ 11(2n− 5)

3
.

A direct check shows that 11(2n − 5)/3 > 2n + 1 if and only if n > 29/8. Since n ≥ 43, this last
inequality holds, and v > 2n+ 1.

If k = 9, then T = {2n+ 1, 2n− 1, 2n− 3, 2n− 5, 2n− 7}. So a ≥ 2n− 7. Note that 11 - a, 7 - a,
and 5 - a. Also 32 - a. One of the numbers in T − {a} is divisible by p ≥ 13. Thus,

v ≥ p(2n− 7)

3
≥ 13(2n− 7)

3
.

As 13(2n− 7)/3 > 2n+ 1 if and only if n > 47/10, we deduce again that v > 2n+ 1.
If k = 11, then T = {2n + 1, 2n − 1, 2n − 3, 2n − 5, 2n − 7, 2n − 9}. So a ≥ 2n − 9. Note that

13 - a, 11 - a, 7 - a, 52 - a, and 32 - a. One of the numbers in T − {a} is divisible by p ≥ 17. Thus,

v ≥ p(2n− 9)

3× 5
≥ 17(2n− 9)

15
.

As 17(2n− 9)/15 > 2n+ 1 if and only if n > 42, we see again that v > 2n+ 1.

Case 2: There does not exist a prime p ≥ k + 4 such that p divides at least one of the numbers in
T − {a}.

To finish the proof of Lemma 4.4, we prove that this case occurs for at most finitely many n.
We make use of the following lemma which is a special case of a more general theorem of Thue (see
[Mor69]).

Lemma 4.5. Let a, b, and c be fixed integers with c 6= 0. Then there exist only finitely many integer
pairs (x, y) for which ax3 + by3 = c.

In this case, all the numbers in T − {a} are divisible only by primes p ≤ k + 2. In
particular, at least two of the numbers are powers of primes. More precisely, when k = 7, one
of {2n+ 1, 2n− 1, 2n− 3, 2n− 5} is a power of 3 and another a power of p for some p ∈ {5, 7}; when
k = 9, one of {2n+ 1, 2n− 1, 2n− 3, 2n− 5, 2n− 7} is a power of 3 and another a power of p where
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p ∈ {5, 7, 11}; and when k = 11, one of {2n + 1, 2n − 1, 2n − 3, 2n − 5, 2n − 7, 2n − 9} is a power of
p1 and another a power of p2 where p1 6= p2 and p1, p2 ∈ {3, 5, 7, 11, 13}.

Let q be the greatest prime ≤ k+ 2, and let P = {3, 5, 7, . . . , q} be the set of odd primes ≤ q. Let
2n− i and 2n− j where i 6= j and i, j ∈ {−1, 1, 3, 5, 7, 9} denote two numbers in T −{a} with each a
power of a prime in P . So 2n− i = pu1 and 2n− j = pv2 where p1, p2 ∈ P . We consider the number of
integer solutions u and v to

|pu1 − pv2| = ` where ` ∈ {2, 4, 6, 8, 10}. (4.14)

Note that by letting u = 3q1 + r1 and v = 3q2 + r2 where q1 and q2 are integers and r1, r2 ∈ {0, 1, 2},
we can rewrite the above equation as

|c1x
3 − c2y

3| = ` (4.15)

where c1 and c2 are integers and x = pq11 and y = pq22 . By Lemma 4.5, there are only finitely many
integer solutions x and y to (4.15), and thus finitely many integers q1 and q2. This implies that there
are only finitely many integers u and v that satisfy (4.14). Therefore, there are only finitely many
integers n where no number in T −{a} is divisible by a prime p ≥ k+ 4, completing what we set out
to show for this case.

Finally, we consider the case k = 5. In this case,

v =
∏

pr‖((2n+1)(2n−1)(2n−3))
p≥9

pr.

We establish the following lemma, which will finish the proof of Lemma 2.2. Furthermore, as noted
after the statement of Lemma 2.2, we will have completed the proof of Theorem 1.4.

Lemma 4.6. For n a sufficiently large integer, we have∏
pr‖((2n+1)(2n−1)(2n−3))

p≥9

pr > 2n+ 1.

Proof. We use the following consequence of a theorem of Mahler [Mah61] which is demonstrated in
[Fil96].

Lemma 4.7. Let a be a fixed non-zero integer, and let N be a fixed positive integer. Let ε > 0. If n
is sufficiently large (depending on a, N , and ε), then the largest divisor of n(n+a) which is relatively
prime to N is ≥ n1−ε.

Before proceeding, we note that Lemma 4.7 is ineffective, which in turn makes us unable to
determine the finitely many exceptional pairs (an, n) mentioned in Theorem 1.4.

Since we are only interested in the primes p ≥ 11 that divide the product (2n+1)(2n−1)(2n−3),
we take N = 3× 5× 7 in Lemma 4.7. Let

A =
∏

pr‖(2n+1)
p-N

pr, B =
∏

pr‖(2n−1)
p-N

pr, and C =
∏

pr‖(2n−3)
p-N

pr.

Note that ∏
pr‖((2n+1)(2n−1)(2n−3))

p≥11

pr =
∏

pr‖((2n+1)(2n−1)(2n−3))
p-N

pr = ABC.
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First consider the product (2n + 1)(2n − 1). Take ε = 1/4. Then by Lemma 4.7, the largest divisor
of (2n + 1)(2n − 1) that is relatively prime to N is ≥ (2n + 1)3/4 for n sufficiently large. Thus,
AB ≥ (2n+ 1)3/4. We deduce that either A ≥ (2n+ 1)3/8 or B ≥ (2n+ 1)3/8.

We suppose A ≥ (2n+ 1)3/8 (a similar argument can be done in the case that B ≥ (2n+ 1)3/8).
Next, we consider the product (2n − 1)(2n − 3). Again, take ε = 1/4. By Lemma 4.7, the largest
divisor of (2n − 1)(2n − 3) which is relatively prime to N is ≥ (2n − 1)3/4 for n sufficiently large.
Thus, BC ≥ (2n− 1)3/4, and we deduce∏

pr‖((2n+1)(2n−1)(2n−3))
p≥11

pr = ABC ≥ (2n+ 1)3/8(2n− 1)3/4

> (2n− 1)9/8 > (2n+ 1).

Therefore, for n sufficiently large, we see that the inequality in Lemma 4.6 (and hence in Lemma 2.2)
holds.

5. Establishing sharpness of the results

We have shown that if 0 < |an| < M (where M = min{k′, k′′}), then f(x) is irreducible. We show
that this upper bound on |an| is sharp. More precisely, we show that for n > 2, when an = M and
a0 = 1, there exist integers an−1, an−2, . . . , a1 such that f(x) is reducible.

Either M = k′ ≤ k′′ or M = k′′ < k′. We show the following results.

• If an = k′ and a0 = 1, then there are integers an−1, an−2, . . . , a1 for which f(x) has the irreducible
quadratic factor x2 − 3 (or similarly x2 + 3).

• If an = k′′ < k′ and a0 = 1, then there are integers an−1, an−2, . . . , a1 for which f(x) has the
irreducible quartic factor x4 − 5x2 − 15.

We quickly address the situation where n ≤ 2 before restricting to n > 2. When n = 2, the
polynomial f(x) is a quartic polynomial. Also, k′ = 5 and k′′ = 1. From the comments after the
statement of Lemma 2.2, we deduce that f(x) cannot have a linear or quadratic factor (and, thus,
f(x) is irreducible) whenever n = 2, 0 < |an| < 5 and |a0| = 1. Furthermore, when n = 2, |an| = 5
and |a0| = 1, by the lemma below, there exists an integer a1 such that x2− 3 (or x2 + 3) is a factor of
f(x). When n = 1, we see that k′ = k′′ = 1 and f(x) = a1x

2/3 +a0, which is a quadratic polynomial,
and one can check that it is irreducible for 0 < |a1| < 3 and |a0| = 1. For |a1| = 3 and |a0| = 1, with
a1 and a0 of opposite signs, the quadratic f(x) has the linear factors of x+ 1 and x− 1.

For our goals above, we first show that, for n ≥ 2, there exist integers an−1, an−2, . . . , a1 so that
we can make x2 − 3 or x2 + 3 (whichever we choose) a factor of f(x) when an = k′ and a0 = 1.

Lemma 5.1. Let n be an integer ≥ 2, and let k′ be the integer such that 2n+ 1 = k′3u where u is an
integer ≥ 0 and (k′, 3) = 1. If an = k′ and a0 = 1, then there exist integers an−1, an−2, . . . , a1 such
that x2 − 3 (or x2 + 3) is a factor of f(x).

Proof. Examples showing that the lemma holds for n = 2 are given by

u6f(x) = 5x4 − 20x2 + 15 = 5(x+ 1)(x− 1)(x2 − 3),

u6f(x) = 5x4 + 20x2 + 15 = 5(x2 + 1)(x2 + 3).

We now consider n ≥ 3. Let an = k′, a0 = 1, and an−2 = an−3 = · · · = a2 = 0. Then

u2n+2f(x) = k′x2n + an−1cn−1x
2n−2 + a1c1x

2 + c0
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where cn−1 = 2n + 1 = k′3u, c0 = u2n+2 = 3 × 5 × · · · × (2n − 1) × k′3u, and c1 = u2n+2/3 =
5 × · · · × (2n − 1) × k′3u. Let c = ν3(u2n+2). Since n ≥ 3, we have c > u = ν3(cn−1). Then
c− 1 = ν3(u2n+2/3). Let m be the integer for which c0 = u2n+2 = k′3cm where (3,m) = 1. Note that
k′ and m may not be coprime. Let t = x2 and consider the polynomial F (t) where

F (t) = k′tn + an−1cn−1t
n−1 + a1c1t+ c0.

We will obtain t− 3 as a factor of F (t), and thus x2 − 3 as a factor of f(x), by choosing an−1 and a1

so that F (3) = 0.
First, we show c = ν3(u2n+2) ≤ n− 1. Since n ≥ 3, we have ν3(n!) ≥ 1. Hence, we obtain

c = ν3

(
(2n+ 1)!

)
− ν3

(
2× 4× · · · × (2n)

)
= ν3

(
(2n+ 1)!

)
− ν3

(
n!
)

=
∞∑
j=1

⌊
2n+ 1

3j

⌋
− ν3

(
n!
)

<

∞∑
j=1

2n+ 1

3j
− ν3

(
n!
)

=
2n+ 1

2
− 1 = n− (1/2).

Since c ∈ Z, we deduce c ≤ n− 1.
We are now ready to show that we can choose an−1 and a1 so that F (3) = 0. Setting

m′ = 3n−c +m ∈ Z and using our notation above, we see that

F (3) = k′3n + an−1cn−13n−1 + a1c13 + c0

= k′3n + an−1k
′3n+u−1 + a1k

′3cm+ k′3cm

= k′3c(3n−c + an−13n+u−1−c + a1m+m)

= k′3c(m′ + an−13n+u−1−c + a1m).

Since 3n+u−1−c and m are relatively prime integers, there exist integers s and t such that

3n+u−1−cs+mt = 1.

By taking an−1 = −sm′ and a1 = −tm′, we deduce that F (3) = 0, as we wanted.
By a very similar analysis, one can show x2 + 3 can be a factor of f(x) when an = k′ and a0 = 1,

concluding the proof of Lemma 5.1.

We are left with considering the case that an = k′′ < k′ and a0 = 1. We restrict to n ≥ 3, and
note that k′′ < k′ implies then that n ≥ 12. The definitions of k′ and k′′ further give that if k′′ < k′,
then 5 | (2n+ 1). Also, we see that 3 - (2n+ 1) since otherwise k′ ≤ (2n+ 1)/3 < 2n− 1 ≤ k′′. Hence,
we can write 2n− 1 = 3km and 2n+ 1 = 5`m′ where k is a nonnegative integer and n, `, m, and m′

are positive integers with n ≥ 12 and gcd(mm′, 15) = 1. Observe that k′′ = mm′. With this notation,
set an = mm′. We show that there exist integers an−1, an−2, . . . , a1 such that the polynomial

f(t) = an
x2n

u2n+2
+ an−1

x2n−2

u2n
+ · · ·+ a1

x2

3
+ 1

has the quartic factor x4 − 5x2 − 15. Let t = x2, and let

F (t) = an
tn

u2n+2
+ an−1

tn−1

u2n
+ · · ·+ a1

t

3
+ 1.
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Note that F (x2) = f(x). Thus, it suffices to show that F (t) is divisible by the quadratic
q(t) = t2 − 5t − 15. To do this, we multiply F (t) by u2n+2 and divide through by an = mm′ to
obtain the polynomial

tn + 5`
an−1

m
tn−1 + 5`3kan−2t

n−2 + · · ·+ 5`−13k−1u2n−2a2t
2 + 5`3k−1u2n−2a1t+ 5`3ku2n−2.

Let r, s, y and w be variables representing integers, and take an−1 = mr, an−2 = s, an−3 = an−4 =
· · · = a3 = 0, a2 = −y, and a1 = w + y. The polynomial above becomes

g(t) = tn + 5`rtn−1 + 5`3kstn−2 − 5`−13k−1u2n−2yt
2 + 5`3k−1u2n−2(w + y)t+ 5`3ku2n−2.

It suffices now to show that there exist integers r, s, y, and w such that g(t) is divisible by q(t).
For j ≥ 0, define integers bj and cj by

tj ≡ bjt+ cj (mod q(t)).

Since
tj+1 ≡ 5tj + 15tj−1 (mod q(t)), for j ≥ 1, (5.16)

we deduce
cj+1 = 5cj + 15cj−1 and bj+1 = 5bj + 15bj−1, for j ≥ 1. (5.17)

Letting

A =

(
0 1
15 5

)
,

we obtain from (5.17) and an induction argument that

Aj =

(
cj bj
cj+1 bj+1

)
, for j ≥ 0.

Next, we obtain some results for the values of ν3(cj), ν3(bj), ν5(cj), and ν5(bj). An induction argument
gives that

A2j ≡
(

6 5
3 4

)
(mod 9) and A2j+1 ≡

(
3 4
6 5

)
(mod 9), for j ≥ 1.

Hence, we see that
ν3(cj) = 1 and ν3(bj) = 0, for j ≥ 2. (5.18)

Next, we claim that

ν5(cj) ≥
j

2
and ν5(bj) ≥

j − 1

2
, for j ≥ 2. (5.19)

For j = 2 and j = 3, one checks directly that (5.19) holds. From (5.17), we deduce

ν5(cj+1) ≥ min{ν5(cj), ν5(cj−1)}+ 1

and

ν5(bj+1) ≥ min{ν5(bj), ν5(bj−1)}+ 1.

By induction, we obtain that (5.19) holds.
Using that det(Aj) = det(A)j , we obtain

cjbj+1 − cj+1bj = ±15j . (5.20)
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Given (5.19), we deduce that, for j ≥ 2, at least one of ν5(cj) = j/2 and ν5(cj+1) = (j + 1)/2 holds.
Only one of j/2 and (j + 1)/2 can be an integer. It follows that

ν5(cj) =
j

2
for j ≥ 2 even. (5.21)

Note that parity considerations also imply from (5.19) that ν5(cj) ≥ (j + 1)/2 if j is odd and that
ν5(bj) ≥ j/2 if j is even.

Recall that t2 ≡ 5t+ 15 (mod q(t)). We obtain from the definitions g(t), bj and cj that

g(t) ≡
(
bn + 5`rbn−1 + 5`3ksbn−2 + 5`3k−1wu2n−2

)
t+ cn + 5`rcn−1 + 5`3kscn−2 + 5`3ku2n−2(1− y)

modulo q(t). We will show that for some integers r, s, y, and w, we have

bn + 5`rbn−1 + 5`3ksbn−2 + 5`3k−1wu2n−2 = 0

and
cn + 5`rcn−1 + 5`3kscn−2 + 5`3ku2n−2(1− y) = 0.

It will then follow that g(t) ≡ 0 (mod q(t)).
We first show that there are integers r, s, and y such that

5`rcn−1 + 5`3kscn−2 = −(cn + 5`3ku2n−2(1− y)).

Observe that n ≥ 12 and (5.17) imply cn−1 > 0 and cn−2 > 0. Since in general, the Diophantine
equation ax+ by = c for fixed positive integers a and b and for an ineteger c has solutions in integers
x and y if and only if gcd(a, b) | c, the above equation in r, s, and y will have integer solutions in r
and s if we can choose y so that

gcd(5`cn−1, 5
`3kcn−2) | (cn + 5`3ku2n−2(1− y)). (5.22)

Since 2n+ 1 = 5`m′ and

ν5((2n+ 1)!) <
2n+ 1

5
+

2n+ 1

52
+

2n+ 1

53
+ · · · = 2n+ 1

4
,

we obtain
ν5(5`3ku2n−2) ≤ n/2. (5.23)

Also, (5.19) implies ν5(cn) ≥ n/2. It follows that, by choosing 1− y to satisfy a congruence modulo
a sufficiently large power of 5, there is an integer y such that

ν5

(
cn + 5`3ku2n−2(1− y)

)
≥ `+ min{ν5(cn−1), ν5(cn−2)}.

We may also find such a y with 1− y divisible by 3. Fix such a y. From (5.18), we obtain

ν3

(
cn + 5`3ku2n−2(1− y)

)
≥ 1 = ν3(5`cn−1)

≥ min{ν3(5`cn−1), ν3(5`3kcn−2)}.

Note that (5.20) implies that 3 and 5 are the only prime factors possibly in common with cn−1 and
cn−2. We deduce that (5.22) holds, and therefore there exist integers r0 and s0 such that

cn + 5`r0cn−1 + 5`3ks0cn−2 + 5`3ku2n−2(1− y) = 0. (5.24)

We fix r0 and s0 as above and observe that, for every integer t, we have

cn + 5`cn−1

(
r0 + 3kcn−2t

)
+ 5`3kcn−2

(
s0 − cn−1t

)
+ 5`3ku2n−2(1− y) = 0.
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We set
r = r0 + 3kcn−2t and s = s0 − cn−1t

and seek t and w so that

bn + 5`rbn−1 + 5`3ksbn−2 + 5`3k−1wu2n−2 = 0.

In other words, we want

5`3k−1wu2n−2 + 5`3k
(
cn−2bn−1 − cn−1bn−2

)
t+ bn + 5`r0bn−1 + 5`3ks0bn−2 = 0.

By (5.17), we can rewrite this equation as

5`3k−1wu2n−2 + 5`3k
(
cn−2bn−1 − cn−1bn−2

)
t+ (5`r0 + 5)bn−1 + (5`3ks0 + 15)bn−2 = 0. (5.25)

From (5.17) and (5.24), we obtain

(5`r0 + 5)cn−1 + (5`3ks0 + 15)cn−2 + 5`3ku2n−2(1− y) = 0. (5.26)

From n ≥ 12 and (5.17), we see that each of bn−2, bn−1, cn−2 and cn−1 is nonzero. Multiplying both
sides of (5.25) by cn−1 and both sides of (5.26) by −bn−1 and then adding, we obtain

cn−15`3k−1u2n−2w + cn−15`3k
(
cn−2bn−1 − cn−1bn−2

)
t

− (5`3ks0 + 15)
(
cn−2bn−1 − cn−1bn−2

)
− 5`3ku2n−2(1− y)bn−1 = 0.

(5.27)

Multiplying both sides of (5.25) by cn−2 and both sides of (5.26) by −bn−2 and then adding, we
obtain

cn−25`3k−1u2n−2w + cn−25`3k
(
cn−2bn−1 − cn−1bn−2

)
t

+ (5`r0 + 5)
(
cn−2bn−1 − cn−1bn−2

)
− 5`3ku2n−2(1− y)bn−2 = 0.

(5.28)

Observe that (5.26) implies that if either (5.27) or (5.28) holds, then so does (5.25). Recall (5.21)
and the comment after it. We work with (5.27) if n is odd and make use of ν5(cn−1) = (n − 1)/2,
ν5(cn−2) ≥ (n − 1)/2, and ν5(bn−1) ≥ (n − 1)/2. For n even, we work with (5.28) and make use of
ν5(cn−1) ≥ n/2, ν5(cn−2) = (n− 2)/2, and ν5(bn−2) ≥ (n− 2)/2. We give the details of the argument
in the case that n is odd, and simply note that a similar argument works in the case n is even.

Fix n ≥ 12 odd. Let

c = cn−15`3k−1u2n−2, c′ = cn−15`3k
(
cn−2bn−1 − cn−1bn−2

)
,

c′′ = (5`3ks0 + 15)
(
cn−2bn−1 − cn−1bn−2

)
,

and

c′′′ = 5`3ku2n−2(1− y)bn−1.

From (5.23), we deduce

ν5(c) ≤ n

2
+
n− 1

2
= n− 1

2
=⇒ ν5(c) ≤ n− 1.

Observe that

ν3((2n− 1)!) <
2n− 1

3
+

2n− 1

32
+

2n− 1

33
+ · · · = 2n− 1

2
= n− 1

2
.
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Since 2n− 1 = 3km, we see that

ν3(3k−1u2n−2) = ν3(u2n)− 1

= ν3((2n− 1)!)− ν3(2× 4× · · · × (2n− 2))− 1.

Since n ≥ 12, we have ν3(2× 4× · · · × (2n− 2)) ≥ ν3(2× 4× · · · × 22) = 4. Thus, ν3(3k−1u2n−2) ≤
ν3((2n− 1)!)− 5. From (5.18), we see that

ν3(c) ≤ ν3(cn−1) + ν3(3k−1u2n−2) ≤ ν3((2n− 1)!)− 4 < n− 4.

Since ν3(c) is an integer, we obtain
ν3(c) ≤ n− 5.

Since ` ≥ 1, we have 5 divides 5`3ks0 + 15. We obtain from (5.20) that

ν3(c′′) ≥ n− 2 and ν5(c′′) ≥ n− 1.

Observe that (5.18) implies ν3(c′′′) ≥ ν3(c). Since n is odd, we obtain from (5.21) and the comment
after it that

ν5(bn−1) ≥ n− 1

2
= ν5(cn−1).

Hence, ν5(c′′′) ≥ ν5(c). Combining the above, we deduce

ν3(c′′ + c′′′) ≥ ν3(c) and ν5(c′′ + c′′′) ≥ ν5(c).

We claim that gcd(c, c′) divides c′′ + c′′′. Let p be a prime and u a positive integer for which
pu‖ gcd(c, c′). The above analysis shows that if p = 3 or p = 5, then pu | (c′′+ c′′′). Now, consider the
case that p is not 3 or 5. From (5.20) and the definition of c′, we obtain that pu | cn−1. From (5.26),
we see that pu must also divide(

(5`3ks0 + 15)cn−2 + 5`3ku2n−2(1− y)
)
bn−1 − (5`3ks0 + 15)bn−2cn−1,

which is the same as c′′ + c′′′. Hence, gcd(c, c′) divides c′′ + c′′′.
It now follows that there exist integers w and t for which cw+ c′t = c′′ + c′′′. This establishes the

existence of integers w and t as in (5.25) and, hence, the existence of integers r, s, y, and w for which
g(x) is divisible by x2 − 5x− 15.
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