10.46298/hrj.1996.133
https://hrj.episciences.org/133
Ramachandra, K
K
Ramachandra
Sankaranarayanan, A
A
Sankaranarayanan
Srinivas, K
K
Srinivas
Ramanujan's lattice point problem, prime number theory and other remarks.
This paper gives results on four diverse topics. The first result is that the error term for the number of integers $2^u3^v \le n$ is $O((\log n)^{1-\delta})$ with $\delta=(2^{40}(\log3))^{-1}$, using a theorem of A. Baker and G. W\"ustholz. The second result is an averaged explicit formula
\[
\psi(x) = x-\frac{1}{T} \int_{T}^{2T} \left( \sum \limits_{|\gamma| \le
\tau} \frac{x^{\rho}}{\rho} \right) \ d\tau
+ O \left( \frac{\log x}{\log \frac{x}{T}}\cdot \frac{x}{T} \right)
\]
for $x \gg T \gg 1$. It then follows, by the Riemann hypothesis, that $\psi (x+h)-\psi (x)= h+ O \left ( h \lambda^{1/2} \right )$ if $h=\lambda x^{1/2} \log x$. The third theme tightens the $\log$ powers in the zero density bounds of Ingham and Huxley, and gives corollaries for the mean-value of $\psi (x+h)-\psi (x)-h$. The fourth remark concerns a hypothetical improvement in the constant 2 in the Brun-Titchmarsh theorem, averaged over congruence classes, and its consequence for $L \left ( 1,\chi \right )$.
episciences.org
average explicit formula
zero-density bounds
Brun-Titchmarsh Theorem
[MATH] Mathematics [math]
2015-06-12
1996-01-01
1996-01-01
en
journal article
https://hal.archives-ouvertes.fr/hal-01109304v1
2804-7370
https://hrj.episciences.org/133/pdf
VoR
application/pdf
Hardy-Ramanujan Journal
Volume 19 - 1996
Researchers
Students