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§ 1. INTRODUCTION. The present paper consists·of four useful main 

remarks which are not worth publishing separately, but we hope that taken 

together they are of sufficient interest. The first concerns the problem of 

S. Ramanujan (see Chapter V of [G.H.HJ) of finding an asymptotic fomlU­

la (with a good error term) for the number of integers of the form 2"3v 

less than n where u and t1 are non-negative integers. This problem has been 

solved satisfactorily (in view ofthe work ofK.F. Roth (K.F.R] and the more 

ROCeived by the editors on 15.12.1994. 
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recent results of [N.I.F] and here reference may be made to a paper by A. 

Baker and G. WusthOlz [A.B.,G.W] for latest contribution and explicit re­

sults with good economical constants) by G.H.Hardy and J.E. Littlewood 

(see Chapter IX, page 105 of [J.F.K]). Thus in a way we update the infor-

mation on this .problem of S. Ramanujan. 

The second' is a contribution to the explicit formula in prime number 

theory. This essentially removes the factor (log z)2 in the error term and 

so "improves" an old classical result of E. Landau [E.L]. There are also 

contributions to density estimates in the neighbourhood I u- i I~ D ~~:1':/ 'r 

(D > 0 arbitrary constant) of i· We improve Ingham's result to 

N(u, T) <v (T log T loglog T) 
3

\
1

~;> (log T)2(loglog T)-1 

and Huxley's result to 

(b .. -3)(1-.. ) H. • 
N(u, T) <.v T .. •+ .. -1 (log T) s (loglog T)6, 

(see Appendix and Postscript); in fact the first estimate is valid even in I u­

! I~ ~-b); which are not very impreosive, but we need them in our results. 

Thus for example we are able to prove things like (t/1( z) = L L log p) 
tn;:>:l p-~., ' 

~ J:x (t/l(z+H)-t/l(z)-H)2dz = O(H2(log X)-£1 ), H = Xi(log X)10l+.: 

(e1 > 0 is a constant depending on e) and 

1 rx 
X Jx (t/l(z +H)- '1/;(z)- H)2dz = O(H2(log X)-l-£1 

), (e1 as before) 
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1 1219 H = Xi(log X) 24+e. 

(See also Remarks 1 ,2 and 3 at the end of the proof of Theorem 4 of the 

post-script for improvements). These have applications to Diophantine ap-

proximations and there are other results which we will establish in § 3. For 

the earlier results in this direction (due to A. Ivic, Y. Motohashi, G. Har­

man) see the book of A. Ivic [A.I]. Harman's results are better in some 

ways and our results are better from some other points of view. It must 

be mentioned that the result involving h is not better than that of D .R. 

Heath-Brown, (see [D.R.H-B]) who proves more powerful results by using 

his new method which is deeper. In fact by his method he proves things like 

t/J(x +h)- t/J(x)"' h even when h = xh-e(z) where E(x) is any function of 

x which tends to zero as x -. oo. 

There has been another set of deep ideas to deal with the difference 

between consecutive primes. These ideas founded by H. Iwaniec and M. 

Jutila (H.I,M.J] have been developed in several papers by D.R. Heath-Brown, 

H. Iwaniec, J. Pintz (for these see (A.I]). The latest result is due to S.-t. Lou 

1 1 
and Qi Yao which states that with h = x:~+;n+e we have 

1r(x +h)- 1r(x) > h(log x)-1
. 

(see (S.-t.L, Q.Y]). But what we have presented here is the limit of the 

Hoheisel-Ingham-Selberg method (one of the new things in our results being 

an improvement of the error term in Landau's explicit formula). A full 
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generalisation of the Hoheisel- Ingham-Selberg method with an ingenious 

contribution by Hooley and Huxley was given by K. Rarnachandra in (KR]t. 

This is continued in (K.R, A.Sa, K.S] (to appear) by K. Ramachandra, A. 

Sankaranarayanan and K. Srinivas. We quote two samples in the reference 

to the three authors mentioned. They are 

""" I ~+ 4 L.J p(n) = O(h e:z:p( -c(log z)s)), h = zn ••••·• • 

and 

1 /2X 1 l -•-' -
X]) I L p(n) 1

2 dz = O(H2 ezp(-c'(log X)s),H = x6+,., •• , X 

X x$n$x+H 

(here c > O,c' > O,d > O,d' > 0 are constants). These results use lo-

calised versions of some results of J .E . Littlewood and A. Selberg, due to K. 

Rarnachandra and A. Sankaranarayanan. 

The third is a simple proof that LJ.I.(n) = O(z ezp( -c(log z)a)) with 
n<:r: 

constants c and a satisfying c > 0 and-0 < a < 1, implies that (1 - /3) - 1 = 

O((log('y + 2))~- 1 ) for all zeros /3 + i7,7 > 0, of ((s). There is a lengthy 

proof of this in [L.B-D]. Our proof is based on ideas which we owe to H.L. 

Montgomery (H.L.M] . For the proof of the well-known result that the upper 

bounds for (1-/3)-1 imply the corresponding upper bounds. for LIL(n) (see 
n< :r: 

(K.R)I. Here Lemmas 5 and 6 on pages 313-329 give a method of obtaining 

upper bounds for I (( s) 1-1 and etc. which are necesaacy to prove this) . In 

(L.B-D] there is a simple proof due to A.E. Ingham in the appendix by E. 
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Bombieri of obta.ittlng bounds for '¢( z)- z starting from bounds for ~).t( n). 
n<z 

It will be nice to obtain a simple proof of the other way implication-:-

The fourth and the last is what we call (2 - 5)-hypothesis and its conse-

quence that for real non-principal characters x(mod k) we have L(1,x) ~ 

(log k)-1 . {For a result of Rodosskij in this direction see [H.-E.R] p.101). 

We now state 

(2- 5)-Hypothesis (A). Let k ~ 2, (l, k) = 1. Then given any constant 5 > 0, 

there ezists a constant D > 0 such that for all X ~ kD we have, 

L: 1~2-/ L: 1. 
X~p~2X,p::l(mod k) cp( ) X~p~2X 

The sieve method of A. Selberg (for references see (K.P], [H.H, H.-E.R] and 

(H.-E.R]) gives 2 + 5 in place of 2 - 5. Thus A. Selberg's result misses the 

(2- 5)-hypothesis by a narrow margin. There is another method due to 

H.L. Montgomery and R.C. Vaughan (see (H.L.M] and also the chapter on 

Brun-Titchmarsh theorem in [H.E.R]) of dealing with this problem. But 

this method (although more powerful) also misses the (2 - 6)-hypothesis 

by roughly the same narrow margin. Actually the following hypothesis is a 

consequence of the (2- 6)-hypothesis. This hypothesis suffices to prove the 

lower bound for L(1, X) stated above. 

(2- 5)-hypothesis (B). We have 

t L: 1 < 
2
-/ E 1 ( )

2 ( )2 
l=l,(l,k)=l X$p$2X,p:l(modlt) - cp( ) X~p9X 
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under the same conditions on 5, D and X as before. 

§ 2. RAMANUJAN'S LATTICE POINT PROBLEM. Ramanujan's 

lattice point problem 2u3v :-::;; n (which is clearly equivalent to 0 :-::;; u log 2 + 

vlog 3 :-::;;log n) asserts that the number oflattice points (u, v)(u 2: 0, v 2: 0) 

is 

. (log n)2 log n log n 
1 --:.c._.::._,.,._+--+--+ o( og n). 

2 log 2 log 3 2 log 2 2 log 3 

Ramanujan appears to have had no proof of this. In Chapter V of (G.H.H]), 

Hardy considers the problem of lattice points (u, v) satisfying 0 :-::;; uw+vw' :-::;; 

71 where w,w' are positive real constants such that fJ:::::: w' /w is irrational and 

proves that the number of such lattice points is (as 71 -+ oo) 

1 ( 71
2 

71 71) - - + - + - + E(71) 
2ww' w w' 

where E(17) = o(71). In fact G.H. Hardy and J.E. Littlewood proved some 

finer theorems on an assumption on the convergents ~ to the simple con­

tinued fraction expansion of 8. More specifically let qm+l = O(q~) where ao 

is a constant satisfying 1 ::; a 0 < 1. Then their theorem (see page 105 of 

(J.F.K], here the dominant term is l{f12w-1w'-1 - f/W-1 - flW'- 1) since the 

lattice points on u = 0 and also those on v = 0 are excluded} runs as follows 

THEOREM 2.1. If a 0 = 1 then E(fl) = O(log fl)i otherwise E(71) = 
0.: ( 71l-ai)'+.:) for every e > 0. 

COROLLARY. (i) If 8 is a quadratic irrationality then E(fl) = O(log 71). 
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(ii) If(} is any algebraic irrationality of degree :::: 3, then E(17) = 0!('7c) 

for every E > 0. 

(iii) If 8 = (log 3)(/og 2)-1, then E(17) = 0, ( 171-"'o' H) where a0 = 

240log 3 and E > 0 is arbitrary. 

REMARK 1. The 0-constant in (ii) is not effective. In (i) and (iii) it is 

effective. 

REMARK 2. Instead of (log 3)(log 2)-1 in (iii) we can take any irrational 

0 = (log a)(log b)-1 where a and b are two positive integers such that 0 is 

irrational. Then a 0 will depend on a and b. 

PROOF OF THE COROLLARY. Note that I 0- ~ I< q,:;.1 q~~ 1 and 

so 

Thus we need a lower bound for I qmO - Pm I of the type > q;;.ao . This 

may not be satisfied by all real irrationalities 8. But by well-known results 

on quadratic irrationalities we know that this holds with ao = 1. Thus (i) 

follows. By a famous result ofK.F. Roth [K.F.R] this is true for all algebraic 

irrationalities 0 of degree :::: 3 and a 0 can be taken to be any constant > 1. 

Thls proves (ii). In Ramanujan's case N .I. Feldman fN .I. F) has shown that 

a 0 exists . However by the explicit results of A. Baker and G. WasthOlz [A.B, 

G.W] it follows that we can take o:0 = 240log 3. This proves (iii) . 

§ 3. PRIME NUMBER THEORY (EXPLICIT FORMULA, 
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DENSITY RESULTS AND APPLICATIONS). The main object of 

this section is to prove the following theorem and to apply it to study the 

difference between consecutive primes which in turn we will apply to a prob-

lemon Diophantine approximations. (For density results see sections A.2 

and A.3 of the appendix). 

THEOREM 3.1. LetT ?. 10, :c ?. 10, f ?. 10. Then 

· 1 h2
T ( zP) (log :c :c) t,/J(z) = :C-- ~ - dT + 0 -- ·-

T L p log '£ T ' 
T i'~O.I-rl$r T 

where t9(z) = Llog p, t,b(:c) = L t9(z;!q, t,b0 (:c) = !{t,b(:c + 0) + t,b(:c- 0)), 
p<z m>l 

and p runs ove~ all the zeros o{ (( s) with the restrictions indicated. The 

constant implied by the 0-symbol is absolute. We note that f(log ~q- 1 

exceeds a positive constant. 

We now draw an immediate corollary. The first part of the corollary 

seems to be new. The second part is a well-known result due to H. Cramer. 

COROLLARY. Let 10 ~ f ~ 
1 

:c<, and h d(log x)f. Then on R.H 

(Riemann hypothesis) we have 

t,b(:c + h)-- t,b(:c)- h = o(hr~), 

and so on R.H, 

1 

Pn+I - Pn <t: P~log Pn· 
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REMARK 1. All that we need for the proof of this theorem is Vinogradov 's 

zero-free region, Euler product and the functional equation (it may also be 

noted that functional equation is not essential). Thus it can be extended 

to more general situations (like zeta and L-frmctions of algebraic number 

fields} where these are available. We can also establish analogues of this 

theorem to error estimations of A. Weil's explicit formulae, [A.WJ, (see also 

[S.L]). These will be treated elsewhere. 

REMARK 2. Trivially if T ~ z' for some fixed e > 0 then the 0-term 

is O(T)· Otherwise it can still be replaced by O(xc;x)} (where C(X}(~ 1} 

is any constant or a frmction tending to infinity we assume C(z) ;::: C(X) 

provided ~ 2 log X, if we are content with O(X(C(X)}- 1
) exceptions of 

integers [x] in X :'S: x :'S: 2X. This can be seen as follows ~ Clearly our proof 

of this theorem shows that what we want are upper bormds for (we assume 

hQ 2 log X and write A(n) = log p if n = pm(m 2 1) and zero otherwise) 

S1(x) = L A(n) and S2(z) ::c.: L A(n)(n - :z:)-2
. Clearly S2(z) 

\n-'-z\$ho ho$\n-o:\5 j 
is of the same order of magnitude as 

1 " 1 " S3(z) = h2 L..-~ A(n) + (2ho)2 ~ A(n) + · · · 
0 hoS\n- a:\9ho 2ho$1n-zl$4ho 

where the RHS has an obvious termination. The imperfection which arises 

due to the application of Brun's sieve can be corrected as follows (of course 

with 0( · · ·) exceptions mentioned above) . Note that S1(z) and S2(z) are 
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non-negative. It can be easily seen that by prime number theorem we have 

1: S1([z]) < Xho 
xg.,]~2X 

since there are cancellations on LHS. Hence S1(z) ~ C(X)ho with at most 

O(X(C(x))-1) exceptions. Similarly S2(z) ~ C(X)h0
1 with at most the 

same number of exceptions. We put ho = zT-1 and recover the bound 

O((C(X))-1XT-1) in the theorem with the number of exceptions just re-

ferred to. Note that for 1 ~ h ~ z we have 

l<hX 

These ideas lead to the following (conditional) theorem of A. S~b~g [4\,.S~L 

(We quote only an impressive special case). 

THEOREM 3.2. (A. SELBERG). Let ~(z) = (log z)2logloglog z. (As­

sume Riemann's hypothesis i.e. /3 ~ 0 implies /3 = ~). Then in' 'tit~ interval 

X ~ [z] ~ 2X we have 

1r(z + ~(z))- 1r(z),..., l~(z) 
og z 

for all integers [z] with o(X) ezceptions. 

REMARK 3. Our later arguments (used by us to prove the unconditional 

Theorem 3.5) show how to prove the theorem of A. Selberg. We leave the 

details for the reader. 

To prove Theorem 3.1 we need a few leiDirias which are of independent 

interest. We begin with Lemma 1, which is well-known. 
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LEMMA 1. For y > 0 and c > 0 we have, 

1 r+iT1I" _ (. ( 'Uc c)) 
2'll"i lc-iT sd~- b(1l) + 0 mm T jlog y J ' 11 

where 5(y) = 0, ~ or 1 according as y < 1, y = 1 or y > 1. 

REMARK. The a-constant can be proved to be absolute. But we do not 

need this fact. 

PROOF. The proof is standard. (If 11 > 1 move the line of integration to 

u = -oo. Ify = 1 move it to u = -T. Ify < 1 move it to u = oo). Note 

that we can always move it to u = ±T. 

LEMMA 2. Let 11 > 0, c > 0. Then 

1 rT ( 1 rc+iT y• ) ( • ( 'UC c)) 
T Jr 2'Ki lc-i.,. -;ds- o(y) dr = 0 mzn T2(log y)2' 'U • 

PROOF. We have by Lemma 1, 

1 [c+iao y• 
-. -d~ = o(y), 
2'1!"1 c-iao 8 

provided y o1 1. (It is not difficult to uphold this even for y = 1). If y = 1 

consider 

~ (lc-iT dB + rc+ioo d~) 
2'Kl c-ioo 8 J c+ir 8 

= ~ (1-T ~ + 100 ~) = __!__ 1"" (-1 + _1 ) dt = 0 .!_ • 
2'Ki _

00 
C + it .,. C + it 2-x- .,. C - it C + it ( T) 

Next put ~1 = c + ir and integrating by parts we have 

IT = -rU--- ""+ d~ =- +0 f.c+ioo y• y• 1.= y• y•I ( 'Uc ) 
( ) - ., 8 - 8 log 71]., ., s2 logy 81 logy r 2(log y)2 · 
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The a-estimate follows by observing that on u = e, t ~ T, ~ = (i.;)' + 

O(r-3), and using the f~t that r-2 is monotonic. Integrating by parts 

again and using 

1 {2T . ( 1 {'"' f 00 

) ( . 7/ ) T JT I(r)dr = T JT ... - J2T . . . = 0 T 2(log y)2 ' 

the lemma follows. 

LEMMA 3. Let c = 1 +(log z)-1. Then 

1 12
T ( 1 ic+i.,. ( C'(s)) z• ) (log z z) - -. --- -ds- t/Jo(z) dr = 0 --,. · -

T T 2n c-iT ((s) s logT T 

provided T ~ 10, z ~ 10, f ~ 10. 

PROOF. By Lemma 2, LHS is 

00 

< LA(n)min {(~)c, (~yr-2 (log !)-2 } 

n"'l 

< L A(n) + ~ L A(n)(z- n) - 2 

iz-nl$/>o fj;n$ \!-.lz_:_ril~l>o 

z "' A(n) z "' A(n~ . 
+T'" L n(log ~)2 + T'" ·~ n(log ~)2' 

n$f n~\f-

(by using I log~ I= -log(1- {1 - ~)) > 1 - ~ for x < n and a similar 

treatment for z > n) 

To estimate :E1 we use Brun's result (see (K.P]) in the form ~(z + ho) -

~(z) = 0 (log(t::+l)) where ~(x) = Ll. To estimate E2 we split it up 
p<z 
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into ho <I z- n I~ 2ho, 2ho <I z- n I~ 4ho · · · and so on and to estimate 

each subsum we use Brun's result again. To estimate l:a we split it into 

i < n ~ ~' ~ < n ~ i ···and so on and in each use 7r(z) = O(z(log z)- 1 
). 

To estimate "L4 we adopt a similar procedure. Thus we obtain 

choosing ho = f we obtain the lemma. 

LEMMA 4. There exists a constant c1 > 0, such that ((s) :f. 0 for r:r ~ 

1- Ct(log T)-~-E, It I~ ~T, and we have tf;f = O((log T)~+<'). Here e,e' 

are arbitrary positive constants, of which e' > e. 

PROOF. This is a famous result due to I.M. Vinogradov. For example see 

[K.R]t . 

LEMMA 5. We have, with r:r0 = 1- c1(log T)-~-<, and ~0 ~ T < -fi>, 

1ao+iT ( ~'"'( )) , I - -"-8
- ~ds I= 0 (~(log z)-~+<') 

c+i-r ((8) 8 T 

PROOF. The proof follows from Lemma 4. 

LEMMA 6. In Lemma 3 the integrand with respect to integration by r can 

be replaced by 

1 1"o+i-r ( ('(&)) z•d 0 (z(l )- !.+<') - . --- - 8 + - og z 3 • 
2n cro-i-r ((s) 8 T 

Furthermore the error in changing r to any real number r' = r + 0(1) is 
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PRO 0 F. The first assertion follows by applying Cauchy's theorem of residues 

and using Lemma 5. The second follows by Lemma 4 and the expression 

for tro-

LEMMA 1. The integral in Lemma 6 is the same as 

PROOF. It is well-known that for every integer m ? 10 there are lines 

see [A.E.I]. We use Lemma 6 and Cauchy's theorem ofresidues as in (A.E.I) 

and use that L zPp-1 = 0(1). This and the fact that ('(O)(((o))-1 is 
~<0,hl5.,.' 

a constant prove Lemma 7. 

PROOF OF THEOREM 3.1. Lemma 1 to 7 complete the proof of 

Theorem 3.1. 

The following theorem (the first part due to I.M. Vinogradov, see [ A.A.K, 

S.M.V], the second part due to A.E. Ingham, see (E.C.Tj; the third part due 

to M.N. Huxley (see [A.I) also [M.N.H]) who improved on a fundamental 

theorem of H.L. Montgomery, see (H.L.M]) is essential in proving the un­

conditional Theorems 3.4 and 3.5 to follow. 

THEOREM 3.3. Let 0 $ v $ 1 and let N(v,T)) denote the number of 

zeros (counted with multiplicit11) of (( s) in tT ? v, 0 5 t $ T). Then 

N(tr, T} = 0 for u? 1-c2(1og 7')-i (loglog T)-k, (e2 > 0 is a constant), 
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where A1(u) = 3(2- cr)- 1 and A2(u) == (5u- 3)(u2 + u -1)-1. Also 

N(O,T+ 1)- N(O,T) = O(log T), and 

N(u, T) < T 2(t-")log T(O ~ u ~ ~ ). 

NOTE. In the second and the third assertions of Theorem 3.3 we have 

replaced the log factors in the range I cr- i I~ D l:'? T (D any positive 

constant) by (log T)1f and (log T)8(loglog T)l respectively. See§ A2 and 

§ A3 in the appendix. These improvements are essential for proving Theo­

rems 3.4 and 3.5. As stated in the introduction these results can be improved 

further (see the Appendix and the Post-script). 

REMARK. Note that A1(u) is increasing and A2(u) is decreasing and also 

that At(~)= A2(~) = lf. 

THEOREM 3.4. Let h = zf2(log z)8 where . B(> ' sH) is a constant. 

Then 

t?(z+h)- t9(z) = h + O(h(log z)-c) 

where e(> 0) i! a constant depending on B . 
. ~ .. if 

REMARK L Note that '¢(z) = L L log p,19(z) = .Llog p, and that 

for 1 ~ h ~ z, we have 

,,.E.· .·. E zogp< E''!"'.((~)~- (~J;!;+l) 
m~2 :r:~p"'$:r:+h \ ' , m.~2 
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<log z L ~ (~ (;';-) ;{,-1 + 1) <log z loglog z + hz-!. 
m~2 

17 

REMARK 2. Actually our proof gives a better result with (log z)8 re­

placed by (log z )8H times a certain "small function of z" which goes to 

infinity with z. 

REMARK 3. See sections A2 and A3 of the appendix at the end for im-

provem.ents of Theorem 3.3. 

PROOF. Fiom Theorem 3.1, we have 

f/l(z +h)- f/l(z) = h + 0 ( t L (z + v)~-1dv) + 0 (::g:. ~). 
· Jo ~~O,hi$2T g T 

We putT= zA (log z)-B+E and we find that the second 0-termis O(h(log z)-' 

Now uniformly in 0 :<S; v :<S; h, we have 

L (z + v)~- 1 < L z~-1 = - J0
1 z"-1dN(u, 2T) 

<t: z-1T log T + O(log z(M1 + M2 + M 3(loglog z)(log z)-1 )) 

where 

and 
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Here D > _0 is a large constant. By choosing D suitably we can g~ ¥ 1 + 

M2 = O(h(log z)-1000), a result easy to verify. All that remains to be 

proved is M3 = O(h(log z)-•). This and another estimate for the quantity 

M3 (which occurs in the proof of Theorem 3.5)) will be established at the 

end of proof of Theorem 3.5. 

THEOREM_ 3.5. Let H = Xi(log X)B' where B'(> 0) is a constant. If 

B' > lOi then 

_!_ f
2

x (1?(z +H)- O(z)- H)2dz < H 2(log z)-" 
X lx 

where e(> 0) is a constant depending only on B'. Also if B' > 12~ we have 

wh-ere e(> 0) is a constant depending only on B'. 

PROOF. In view of Remark 1 below Theorem 3.4 it suffices to prove the 

theorem with fjJ in place of(}. By Theorem 3.1, there holds (unifonnly in 

f ~ z ~ s; ) the inequality (hereafter we suppress the condition fJ 2: 0 in __ , 

the sum over p) 

1 h2T (z + H)P- zP X log X 
I f/;(z +H)- t/l(z)- HI< T I L · I dr + T -,--x 

T h·l~.,. p og "'!' 

and so 

lf/J(z+H)-fj;(z)-H 12< ~ {2T I L (z+H)P-zP 12dr+(~ ;ogi):z 
JT hi~.,. P ·-. og 1' 

Note that 
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I L ···1 2 ~ 9(12:;1 12 t II:2I2 +I Lsl2
) 

l-rJ:<£r 

wher~ .2::1 , 2:;2 and 2::3 are the sums restricted to 

{3 < ~ _ D loglog T {3 > ~ D loglog T and I {3 _ ~ I< D loglog T 
- 4 log T . . ' - 4+ · log T 4 - log T 

respectively. We treat the integral 

19 

and the other two mean values involving I 2:;1 1
2 and I 2:;2 1

2 .can be 

treated similarly. In fact the last two mean values together make up only 

O(H2(log x)-1000) as can be verified by following the method of treatment 

of the one involving I 2:;8 12 . For this it will be advantageous to use: the 

upper bound (note that the integrand is non-negative), 

..!._ /2X ... ~ ~ (f (..!._ f2X+J ..!_ rT I L 12 d-rdz) df == J say. 
X lx X lo X lx-J T lr 3 

This method of averaging has been first used by K. Ra.machandra in [K.R]2. 

Put T == xl(log x)-8 " where B" < B' is a constant. We now split up 

2::3 into O(loglog T) abutting [3-intervals I== I(u) of length (log T)"":l,u 

denoting the left hand end point. Thus 

I 2::3 12< (Ioglog T)L I L(z+Hr-~p 12 

1 . fJEI 

<:: (loglog T)HL f0H I L(z + v)p-- 1 12 dv. 
1 {JEI 

Ag'lin (remember that I== I(u)) 
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~ J;-:_;J I ~)z + v)P- 1 
1
2 dz 

fJEI 

_ .l.""' ""'(2X+JJPt+h - l-(X-J)PJ+h- t 
- X L.. L.. PI +p, 1 . 

Pt El P7El 

Note that the innermost summand here is O(X2"-1). We use this bound for 

a.ll pairs (Pl, P2) of zeros (which figure) which satisfy I Pl +p2 -1 I~ 10 and we 

find the total contribution from these pairs to be O(X 217- 2 N(u, 2T)log T). 

For zeros with I p1 + p2 - 1 I> 10 we use the average with respect to the 

additional parameter f and obtain the bound 

L X 2.,._
2 I Pl + P2- 1 l-2« X 2"-2 N(u, 2T)log T. 

[Pt +h-1[>10 

With these explanations we see that 

where M3 = maz(N(u,2T)x217 - 2) , the maximum being taken over 

I (]"-~ I~ lOOD(loglog X)(log x)- 1
. Note that T =xi (log x)- 8 " and so 

ib = X~(logX)28",(B" < B'). Wewillnowprovethat M3 = O({logz)-' ), 

if B > 8~, as promised already and also M3 = O((log x)- 1- ') if B' > 10~ 

and further M3 = O((log X) _2_' if B' > 12~. Here e is a certain fixed 

positive constant depending only on B' . 

We begin with the study of M3 . We have by Theorem 3.3, (taken with 

A.2 and A.3 of appendix) 
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where M(1) is the maximum of (TAI(.,.)z-1)1- 17 in ;! - 100D loglog"' < u < 
3 4 logz - -

;! + D 11oglog z and M(2) is the maximum of (TA2 (.,.)z-1 )1-<T in l! + Dt loglog z < 
4 iog z 3 4 log z -

u :5 ~ + D ::':11 "', where D1 > 0 is a constant. We choose D1 such that 

MJ1l and MJ2
> have nearly the same bound. Clearly (note that we have 

chosen T = zft(log z)-B+e) we have 

and 

Write u = ~ + ~ where I ~ 1:5 100 ~o!"!:log "'. (Note that log T <: log z <: 

log T). We have 

Hence the exponent of z is an increasing function of ~ and so 

where >. = D,loglog "'. Also 
1 log z 

_ (~. 5(f+A)-3 _ ') 1. _ 
- 12 (f+A)•+(hA)-1 l ( 4 >.) 
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= {.!_(5..\ + l!.)- Jt- 3.\ - ..\2- l!. - ..\ + 1} { Jt + l!.- 1 + 5.\ + ..\2}-1 12 4 . . 16 2 4. 16 4 2 

x(~ - ..\) 

- ..\ {ll _ M _ g _ ..\} {.!_ + 5.\ + ..\2}-1 (! ') 
- 12 12 12 16 2 4 - "' 

= ..\ {--A - ..\} { !f} { 1 + 8..\ + 16t r 1 < l - ..\ > 

Hence the exponent of z is a decreasing function of ..\ and so 

C.h D ch th t QJ.. + QJ.. - 8 19 - 21 • QJ.. - 63 H oos.e 1 su a 3 6 - - 5 - 5 I.e. 5 - 40 . . ence 

Now ~ + ¥ -f(B- e) < 0 for some£ > 0 if B > 8~. (This com­

pletes the proof of Theorem 3.4). In a similar manner we recall that T = 
l B" Xe (log X)- . So we have 

where M'(t) =maximum of (xlAt (<7)-2) t-.,. taken over l!.- IOOD 10111og X < 
3 . 4 log X -

u $ ! + Dtl<:'1 X and M~(2) = maximum of (x iA2 (.,.)-
2 r-.,. taken over 
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i + D,
1'/!QJ! x ~ u .. ~ .! + 100~o!,"~u x. (The constant D1 appearing in 

the inequality just mentioned should not be confused with the earlier one). 

Hence by the previous calculations involving .X, we have 

2~ 19 2~ lB" < M~ ~{X a (log X)T + x- 3 (log X)8 )(log X)-s (loglog X)1> 

~·to 'B" < 
~(log X) s +-s-5 (loglog X)s 

provided we choose D 1 such that ~ + ~ = -~ + 8 i.e. ~(1 + ~) = ¥-
2D 63 I (1 ) 83 + 19 3 B" ( ( ) 1 • d i.e. T = 40· Thus M3 < og X 40 -s-5 ~ log X - -" provide 

B' > B" > 10~), and this proves the first part of Theorem 3.5). Also tor 

the second part of Theorem 3.5 (we need B" < 2B'- 1- e) and 

63 t9 lB" ( 2 • 1 19) M~ ~(log X)w+-s- s ~(log X)- -e provided B' > B" + - > 12- . 
2 . 24 

This proves Theorem 3.5 completely. 

COROLLARIES TO THEOREMS 3.2, 3.4 AND 3.5. Let a > 0 and 

fJ > 0 be any two constants. Then 

{i) For every prime p there exists a prime q such that 0 < ap- {Jq < 

p&(log p)8H+t. 

(ii) There are infinitely many pairs (p, q) of primes p, q such that 0 < 

ap- {Jq < p~(log P)J?~+e. 
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(iii) On Riemann hypothesis (R.H) there are infinitely many pairs (p, q) of 

primes p, q such that 0 < ap- {3q < (log p)100. 

REMARK 1. (R.H) implies Lindelof hypothesis (L.H. which states that 

for every fixed e > 0 we have r£((l +it)--+ 0 as t--+ oo) gives p£ in place 

of (log p)100. (100 can certainly be improved). 

REMARK 2. We leave the deduction of these corollaries to the reader as 

an exercise. These corollaries are not the best known. For latest results see 

a forthcoming paper announced in § A.1 of the appendix. 

REMARK 3. H we want the same results as precise as (iii) they are 

available unconditionally, but they prove the existence of some a, {3 out of 

some sets of pairs. lienee they can be considered not the main part of this 

paper. For this reason only one such result will be briefly mentioned in § 

A.l of the appendix at the end of this paper. 

§ 4. A REMARK THAT MONTGOMERY MISSED. In this section 

we sketch (using ideas ofii.L. Montgomery (H.L.M]) a short and simple proof 

that 2:t£(n) = O(:t ezp(-c(log z)a)) (where c(> 0) and a (0 <a< 1) are 
n<z 

const~ts) implies (1- {3)-1 <(log -y1)!-1 (with -y1 == -y + 100) for any zero 

p::::: /3 + i-y(-y ~ 0,1 ~ /3 ~ 1~) of ((s). Put Mx(s) = l:t£(n)n-•, F(s) = 
n~X 

((s)Mx(s). We have F(s) == 1 + 2: ann-• for Res> 1, where I an I:$ d(n), 
n>X 

d( n) being the number of divisors ( ~ 1) of n. We first prove a lemma. 



Ramanujan 's lattice point problem 25 

LEMMA. We have (under the hypothesis made on Mx(s)) the estimate 

3 I 1 I Mx( 4 +it) I< (I t I +lO)X• ezp(- 2c( log Xt). 

PROOF. We have with 1J == i +it and M(u) == Mu(O), 

M (1) = JX+O u-•dM(u) = M(u) ]X+O + s Jx M&~ldu 
X 1-0 u• 1-0 1 u• 

I X I d 
== O(X•ezp( -c(log X)0

) + 0((1 t I +10) ]1 u4ezp( -c(log u)0
) ;:) 

I 
= O(X•(I t I +lO)ezp( -c(log X) 0 )log X) 

since max (ulezp(-c(log u)0
)) == O(xtezp(-c(log X)0

)). Thus the lem-
1:<.:;u:<.:;X 

ma is proved. 

We next write with X ~ 10, w = u + iv, Y == (lo:x?, the identity 

1 12+ioo 1 " 
-. F(p+w)Ywr(w)dw=ezp(-:y)+ L:a..n-Pe-v 
2:n 2-ioo n~X 

where clearly RHS is 1 + o(1) uniformly in p. In the integral in LHS we move 

the line of integration to u given by {3 + u = ~. Since our choice of X will be 

subject to X :.:; exp((log(l; I +lOW-' D) (where D(> 0) is a constant) and 

I r(1- p) I< e-hl the contribution from the pole of ((1 + w) at w == 1- p 

is o(1). The integral has no pole at w = 0 since ((p) = 0. The integral on 

the .line u = i - {3 is (by the lemma above) 

x e:r.p(- I v l)dv 
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We put X= ezp((log 71 )~D) and obtain finally 

1 + o(l} < 1l ezp(6D log lt)ezp( -~cD"log 71) 

2+6D-lcD• = 71 
4 = o(1) if 5 = iJ and Dis large. 

This contradiction proves the required result . 

§ 5. THE PROOF THAT (2- 6)(B) HYPOTHESIS IMPLIES 

L(l, x) > (log k)-1 . We begin with a lemma. 

LEMMA. The 2-6 hypothesis (B) implies that 

E (1 + x(p)) > 6 E 1 > 6X(log x)-1 

X :$p:$2X X :$p:$2X 

for any real character x( mod k). 

PROOF. It suffices to prove that if 1 ~ l 1 < l2 < 

r = i~P(k) residue classes mod k coprime to A:, then 

<4~kare 

"' "' 1< 1--- "' 1. 
r ( 6 ) . 

L...J L...J - 100 L...J 
i=l XSJ>:$2X,p:lj(mod ") X:$p:$2X 

LHS is~ ...fi· ~ L 1 by Holder's inequality. We note that r = i~P(k) 
X:$p:$2X 

J 

and so (r ~) 2 ::: (1- n! ~ 1- 1~. Hence we apply this observation to 

the liPCk) residue classes l; for which x(l;) = -1. It follows that the total 

number of primes p with X~ p ~ 2X for which x(p) = 1 is 

> 6 L 1. This proves the lemma. 
X:$p<2X 
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00 

Next we define G(4) = ((4)L(4,X) = Ea..n-• and verify that a,.~ 0 
n=l 

and ap = 1 + x(p) ~ 1 for all primes p with x(P) = 0 or 1. Thus 

6X L a.. ~ L ap > IX when X = kc(.s) where c(6)(> 0) 
X~n~2X X~p~2X og 

is a constant which depends only on 6. Hence 

~ L P-ta,(e-2'Y-e-i)>,/x>(logktl. 
x~~2x g 

But in the integral involving G( w) we move the line of integration to u = - ~. 

Note the estimates I ((i +it) 1~1 t I +10 and I L(i +it) I~ lOOk(! t I +10) 

and that the pole at w = 0 of ((1 + w) contributes the residue L(1, x)log 2. 

This completes the proof that 

1 1 
log k < log X < L(l, X)+ 

1
00 3 . 1 +i 1 1 . 1 

+ -oo I G(4+•v) II (2-i "-1) I x-· I r(-4+sv) I d.v = L(1,x)+O((log .1:)2) 

by choosing a large e(6) say required by the 2- 6 hypothesis. We have 

used I r( -~ + iv) I< ezp(- I v 1). (Note that a result of the type (2- 6) 

hypothesis is welcome even with 6 = k-1- (provided all the constants are 

explicit), or a result with a constant 6 > 0 and X = ezp(kl). This would 

imply an effective result L(1,x) > ,~:-t(log k)-1). 

REMARK. In connection with this section we may note the result (due 
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to C.L. Siegel [C.L.S]) that L(l,x) > C(£)k-< holds for every t > 0 and a 

slit able constant C(t )(> 0), depending only on t. But unfortunately when 

t < !,C(e) is ineffective (i.e. it cannot be calculated). See also [K.Rh for a 

simple proof of Siegel's theorem. 
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APPENDIX 

§ A.l The following result (due to K. Ramachandra) is Theorem 1 of his 

paper [KRk 

Let E be any positive constant < 1 and N any natural number > 2E-1 . 

Let a 1, · · ·, aN be any given positive real numbers no two of which are equal. 

Then there exist two of the numbers a; say {3 and 7, such that the inequality 

O<lfJp--yqi<P' 

holds for infinitely many prime pairs (p, q). The proof is based on Selberg 

Sieve. These and other improvements will form the subject matter of a 

forthcoming paper (problems and results on ap - {jq) by us where the latest 

results on this subject and also the history of the subject are contained. 

§ A.2 The object of this section is to prove the following theorem. 

THEOREM. Let ~ + 5 ~ u . ~ 1 - 5, where 5 > 0 is any small constant. 

Then 
3(1-.) !±!:. 

N(u, T) < T •- • (log T)•-•. 

REMARK. By a more complicated proof we may cover the range ~ ~ u ~ 

1. 

COROLLARY. In the neigh~urhood I u- i I~ D ~'(!/"/ T of i, we can 

·take the power of log T to be ~IT= i} = ~· 

We now sketch the proof of the theorem just mentioned. 
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PROOF. Let p = P + i; be any zero of((-') where!+ 5 $ {3 $ 1- 6, T $ .. . 
; $ 2T. Put F(8) = ((8)Mr(s) -1, where Mr(s) = ·L(p(n)n-•).ltis not 

n~T 
hard to prove that 

{3T 1 • . . rT 
h.r I F(2 +it) 13 dt < T(log T)2 and h.r I F(1+ it) 12 dt <(log T) 4

• 

2 2 

We apply Cauchy's theorem and obtain (~ith w = u + iv) 

1 ~ - • · dw l =.1 F(p) l$1 -
2 

. F(p + w)ew X"'-· I 
. ?rl w 

where the contour is the rectangle bounded by the lines u :;;:: ! - {3, u = 

1- {3," = -!T," = T, provided X lies between two constant powers ofT. 

We may ignore the horizontal line contributions and we obtain 

1 < x!-<1 f i F(p + w)ew
2 
dw I +X1

-" f I F(p+ w)e"'" dw I 
~!~ ~1~ 

where we have assumed that {3 belongs to the interval ( u - Ia: T, u + tO: T) . 
Thus by Holder's inequality we have 

1 < xl-<1 (Iu=t-IJ I F(p + w) It I ew• II dw 1)~ + 
l 

+X1-" (Ju=l~tl I F(p + w) 121 ew• II dw lr 
l l 1 

< x2-" It + x 1-"Il 
J 

{where h and I1 here have the obvious meaning), 
• 
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(by a suitable choice of X, the conditions on X being statisfied if we increase 

h and It by r-tooo). Note that 
2 

·~.)! < :E j IF(~+ iv') 1t e-<7 -v')
2 
dv' < T(log T)3

, 

p p 

(by a· 'change of variable). Similarly }.::: It < (log T)5 . 

p 

We fix Vi and vl by the condition that v,!<t-... ) X vt-! equals a small 
2 2 

constant:· Also 

:Et = :E 1 < '.f(log T)3V( and :E2 = :E 1 < (log T)5vtt 
p,I~;?:V~ p,I,~Vt 

Thus the number of zeros in question is 

< (log T)s ( ~ + (lottt> 2
) <: (log T)3 ( ~ + (log T)2V f~~) 

< (log T)3 ( vZ-1 +(log T)2v3-S...) 

(by a change of notation) 

<(log T)3 (T3-s...(log T)2(2.,.-t>)<2-.,.>-' 

(by a proper choice of V) 

3(1-.. ) ... -2 3(1-.. ) . . !±Jr. 
<:(log T)3T ,_, (log T)~ < T 2-.. (log T)2-... 

(This is the bound for the number of zeros with ( u - ,,; T ::::; P ::::; u + ,,; T , 

T::::; 7::::; 2T). Here replacing u by u + ~,u + ,,;T,u + tO:T• .. ·(The 

greatest not exceeding 1 - i6 we can use the Ingham bound for u ?: 1 - i6) 

and adding we obtain 

N(u,2T)- N(u,T) < T11J."~:1 (log T)~. 
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and so the same bound holds for N(u, 2T). Replacing T by !T we obtain 

the theorem. 

§ A.3. It is the object of the section to prove the following theorem. 

THEOREM. For i :5 u :5 1, we have, forT ~ 20, 

We first state a fundamental result of H.L. Montgomery (Theorem 8.4 with 

8 = 0 of [H.L.M] taken with the last result of appendix II therein) . We state 

it as Lemma 1. We recall the usual terminology. Let S* be a set of complex 

numbers. (We denote the number of elements of S* by I S* i). It is said to 

be well-spaced if the differences of the imaginary parts of any two of them 

is ~ 1 in absolute value. 

LEMMA 1. (H.L. MONTGOMERY). Let N ~ 1 be an integer and S(s) = 
2N 
L a,.n- • where aN, · · · , a2N are any complex numbers. Put 
n=N 

Mo(T) = max/_00 

I ((it+ iv) I e-lvldv. 
iti~T -co 

Suppose s• is a finite well spaced set of complex numbers each of which has 

real part ~ u0 . Then 

2N 

L IS(&) 12< (N +IS* I Mo(4T)) L I a,. /2 n_ 2
.,.0 

n=N 

where T is the difference of the maximum and the minimum of the imaginary 

parts of the complex numbers & E S*. 
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REMARK. Lemma. 1 follows on noting the fact that 

I ((2N)'"- N'")r(iv) I< e-1"1. 

LEMMA 2. (R. BALASUBRAMANIAN, A. IVIC and K. RAMACHAN-

DRA). For It I~ 2, we have 

1
t+1 

t ! ((1 + ir) I dr <(log It l)t. 

PROOF. Follows from Theorem 1 of [R.B, A.I, K.R]. 

LEMMA 3. With the notation of Lemma1, we have forT~ 2, 

2N 

L I S(s) 1
2< (N+ I S*l Ti(log T)t) L I a, 1

2 n- 2000
• 

n=N 

PROOF. Follows from the functional equation for((-') and Lemma 2. 

LEMMA 4. With the notation of Lemma 1, we have 

2N 

where G = L I a, 1
2 n-2

u 0 and N ~(log T)!. 

! l 

PROOF. Define To by T0
2 (log T)•G = eV2 where e(> 0) is a small con-

stant. Then the number of numbers s of S* contained in any t interval of 

length To is < GNV-2 by Lemma. 3. We need T0 ~ 2. llowever if this is 

not satisfied, we have (GV- 2(log T)l)- 2 is small and so G3v-6(log T)i is 

big and hence 
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which renders the required estimate trivial. Hence, we may ignore this 

condition and we have in any case the bound 

From now on, we introduce the following notation. For real numbers 

M, N with M ~ 1, N ~ 1, st(·. ·) will mean that L a,..n-• where a,.. 
M<n<N 

are any complex numbers. In applications the a,, will be obviously more 

precise. 

LEMMA 5. We have for any constant A > 0, 

PROOF. We break up the sum sN N (·. ·) into maximum number of 
(lo1 N)A 

disjoint sums of the type S'tFC· · ·) (U running over powers of 2 i.e. 2"(n ~ 

0), (logNN)A ~ U ~ N. One or two may be a part there of, but we can define 

some a,..'s to be 0. (Several times, we use such a splitting without stating it 

explicitly). We then use 

and apply Lemma 3. 

LEMMA 6. We have 

N 

L I sf(·.·) 12< log NL I a.-.12 n-2
" 0 ( n + T~(log T)t Is· I). 

•ES* n=l 
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PROOF. Similar to that of Lemma 5. 

LEMMA 7. Let d(n) denote the number of positive integers dividing n. 

Then for n ~ 2, we have 

PROOF. This is well-known. 

LEMMA. 8. With the notation of Lemma 1, we have for N ~ (log T)!, 

y ~ 1, 

y4i 
I {sl s E S*, I S(s) I~ V} I< N 2

_
2.,.ov-2(log N)3 N 4i 

+T N 4-&-ov-6(log T)t(log N)9( ~ ) 12i. 

provided that I a,. I< d(n)(~)2i (j = 0 or 1). 

PROOF. Follows from Lemmas 4 and 7. 

The next three lemmas deal with the set I {s I s E s•, I Sf(s) I~ 
N 

V} I where (Sf(s) = L;a..n-•), I a,. I:S 1 and uo = ~- Clearly this set is 
n=l 

contained in the union of the two sets 

s; = { sl s E S*,l S1' ... NN)A(· ··)I~ ~v} 

and 

s; = {s 1 s E s· 1 sN N (· • ·) 1~ -
2
1v}. 

{I•• NjA 

As a preparation to get bounds for I s; I and I s; I, we restate Lemmas 5 

and 6. R.H.S of Lemma 5 (with S* = Si) is 

< N loglog N + (loglog N)2Tl(log T)t Is· i. 
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LEMMA 9. We have 

I S21< N(loglog N)V-2 + TN(loglog N)5(log T)~v-6 , 

provided N ~ (log T). 

I ! 
PROOF. Define To by (loglog N) 2(log T)iTri = eV2 for a small constant 

e(> 0). i.e., To = (eV2(loglog N) - 2(log T)-~)2 . If To ~ 4 then V2 ~ 

2e-1(loglog N)2(log T)t and so v-6 ~ (2e- 1 )-3(1oglog N)-6(/og T)-L 

Thus RHS in the lemma is > T N(loglog N)- 1(log T) - t which is a trivial 

upper bound for I s; I . Thus in any case, 

I s; I <t: N(loglog N)V-2 (1 + lo) 
<t: N(loglog N)v- 2 + TN(loglog N)5(log T)~v-6 . 

Thus the lemma is proved. 

NOTE. R.H.S of Lemma 6 is <t: N log N +T~(log N) 2(log T)t Is· I · We 

recall that we now apply the lemma to s· = s;. 

LEMMA 10. We have 

I s; I< (N(log N)v-2 +TN( log N)5(log T)tv-6 )(log N)-A 

provided N ~log T . 

I ! 
PROOF. Define To by (log N) 2(log T)<Tri = eV2 where e(> 0) is a small 

constant i.e. To= (eV2(log N)- 2(log T)- i)2 . Thus 
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and so the term 

TN(log N) 5(log T)~V-6 ~ TN(log N) 11(log T)-t 

leads to a trivial estimate for I Si I . 

LEMMA 11. We have, for N C: log T, 

I {sis E S*,-1 sf'(·.·) IC: V} I< N(loglogN)V- 2 +N(loglogN)5(logT)~v-6 . 

PROOF. Combining Lemmas 9 and 10, we obtain the lemma by choosing 

A= 100. 

From now on, we introduce four positive parameters X, V, Vt. U which 

depend on T in such a way that their logarithms lie between two constant 

multiples of log T. Moreover U C: X. We collect together the results of 

Halasz-Turan-Montgomery theory which we use in later sections. 

LEMMA 12. We have 

I {sl Res= l,s E S*,l :~:::><n)n-•le: vl} I 
n:SX 

Also; Lemma 8 gives (with Y > 0), 

I {"IRes C: u, s E s•, I~ ~I C: V} I 
<: u2-2u(log T)3V-2(1J)4i +TU4-6u(log T)g~v-a(tJ)12i 



38 K. Ramar.handra et al 

provided I a... I< d(n), Ibn I< (~)2i(j = 0 or 1). 

We are now in a position to prove the main theorem of this section i.e. to 

improve the Huxley's constant 9 (Theorem 3.3). We denote by p = /3+i1, a 

typical zero of ((1)in {i- 5 ~ u :<:; 1, T :<:; t ~ 2T} with I /3- u 1::; (log T)- 1 

where T is assumed to exceed a large absolute constant. t1 will be fixed and 

the 0 -constants will he independent of tT. 

STEP 1. We put R(w) = ezp ( (1in 1~i) ,Mx(s) = 2:1-'(n)n-•, F(s) = 
n~X 

((.9)Mx(-') -1 = L a,.n- • (the series being absolutely convergent in u > 1) 
n>X 

where I a,.. I::; d(n):-We have for Y ~ 1 and a complex variable w = u+ iv, 

y 1 h2+ioo dw 
}:a...n-•Ll(-)=-

2
. F(s+w)YwR(w)-

n2:X n ?1"1 2-ioo W 

where Ll( ~) == 2;.. J:~f:(~ )"' R(w)'!:'. Prom the representation of Ll( ~ ), it 

follows by moving the line of integration to u = - 2 (resp. by taking absolute 

value of the integrand on u == 2 itself} that Ll(~) == 1 +0((y)2) or 0((~)2 ) 

according as n ~ Y or n ~ Y. 

STEP II. Let p be a zero in question. Obviously we have F(p) = -1 and 

so by first truncating the integral by neglecting I v I~ c loglog T {c, a large 

constant) moving the line of integration to u given by /3 + u = ~, we obtain 

I:a...n-PLl(~) = -l+o(1)+0 (y!-.,. f (\ F(~ + i-y + iv) I +1)e-lvldv)· 
n2:X n }jv(~c loglog T 

The integral in the 0 -estimate is 

< ( max I Mx(l + i1 + iv) 1) (J1.,1<c IO(Jlog T (I ({l + i-y + iv) I +1) e-l•l 
,lvl~c loglog T -
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= Mx(l + i1')I(1)(say). 

STEP III. Noting that 11-1' ~~ cloglogT,N(O,T+l)-N(O,T) < logT, 

we see (by using the first part of lemma) that the number of zeros p with 

1 Mx(i + i1') I~ V1 is 

< ( XVi- 2loglog T + T XV1-
6(log T)~(loglog T)5) log T loglog T. 

STEP IV. By first applying Holders inequality and then extending the range 

of integration to v = i to v = 5[ and changing the variable from v to v + 1 

and observing that 

we conclude that the number of zeros p with 1(1) ~Vis< T(log T) 5v-4 • 

STEP V. Hence apart from R1 zeros we have 0 ( VV,.Y~-v) for the 0-term 

in Step IT. Here 

STEP VI. We fix Y == e(VV1)2..'-1, where e > 0 is a small constant. Thus 

we have to e8timate R2 , the number of zeros under question which satisfy 

~ $1 L:a..n-Pa(!;·) I· 
n~X 
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Let M = max( X, Y2 ) . Then it is easily seen that the contribution to the 

infinite sum from n ~ M is< L ~ · ~ <: ~~:; = o(1). Thus we have 
n~M 

t ~I ~~ I + I ~2 I 

where ~1 and L:2 are the portions X ~ n ~ Mt and M1 ~ n ~ M, Mt 

being max( X , Y). Thus R2 ~ Rs + R4 where R3 is the number of zeros with 

I L:1 I~ ~ and ~those with I ~2 I~ l· We split up I;2 into E~u) and 

:fi.nd that at least one U should have I ~~U) I> (log T)-1 . By second part 

of Lemma 12 with j = 1, we now find a bound for the number of zeros 

associated to one such U and take the sum over all U. Thus 

R4 <: logT L {<logT)5 ·uf.:n+(logT)15tJl~"8 } 
M1 <U<M 

< (log T) fu~u T)5Y 2_,. +(log T)15f ys'!:-•} 

Similarly (applying Lemma 12 with j = 0) we get 

and here we can replace M1 by X since Y2- 217 is already there. 

STEP VII. Thus (since R2 <: R3 + R4) denoting the number of zeros in 

question by H, we have 

2 
We recall that Y = c(VV1)~ where c(> 0) is a small constant. 
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We have to minimize this upper bound for H(log T)- 1 subject to the 

restriction that X, V, V1 all lie between T 6 and TA where the constants 

A(> 0) and (6 > 0) can be chosen to suit our greatest convenience. (A 

should not be confused with earlier notation). It will be helpful to minimize 

first with respect to X, then with respect to V and finally with respect to 

V1 . The following minimization lemma is very helpful. We state it in the 

notation of B.R. Srinivasan. 

LEMMA 13. Let M and N be positive integers, u.n(> 0) and vn(> 0)(1 ~ 

m ~ M, 1 ~ n ~ N) denote constants. Let A...(> O),Bn(> 0). Then there 

exists a q with the properties ( Q1, Q2 are non-negative numbers) Q1 ~ q ~ 

M N 

LAmqu,. + LBnq-Vn 
m=l n=l 

M N M N 

~ L L(~B~"')(u~+vn)-I + LAmQr"' + LBnQ2"n. 
m=l n=l m=l n=l 

PROOF. See [B.R.S) . 

By applying this lemma, we are led to a bound for H in the form 

H ~ T(J:~:~){l-u){log T)A(u)+l(loglog T)B(u) , 

this leads as in § A.2 to 

It can be checked that for I u - ~ I~ D :::'1 T (D > 0 any large constant), 

we have 1 + A(u) = 8 and B(u) = ~·apart from an error 0 C?:;u:r!) . This 
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proves the theorem which we stated in the beginning of this section. 

STEP VIII. We now give some steps in the minimization. We estimate 

the quantity H under question and as shown in§ A.2, the same which will 

hold for N(u, T) for 1 ~ u ~ ! -5. Since Y = e(VVI)2 .. ~1, from Step Vll, 

we have 

H X 2 TX 1 6 T(log T)15~ 
log T < V

12
(loglog T) + Vi6 (log T)2(loglog T) + X&T- 4 

T(log T)4 T(log T)15k •-• .. 
+X2

-
26(log T) 5 + 4 + 12.,_8 +(log T)5(VVi)2 .. - 1 • 

V (VVI) 2.--1 

We now minimize with respect to X subject to T 5 ~ X ~ TA (A-a large 

constant) and obtain (Hereafter we omit terms which are 0 (TA,(,.l-'1) ref. 

Theorem 3.3) for u ~ ! - 5 

H T • T 1+1 1 T(l T)15! 
log T < (loglog T)2 + (log T)•(loglog T)6 + og + vc vr TAl& .. -•> 

1 

+(log T)5T26(1-tT) + { ( (logl~ T),) 60"-4 ( T(log T)l5i)} & .. -s 
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Now, we make the change Vt -+ vr-1, V -+ V2"-1 • Then we have to 

minimize the RHS of 

T 1 2 T 1+' 6 1 
v:• .. -• (loglog T) + v:12,_a (loglog T) (log T)!l 

I I 

+ 
T~ ~ 12r-& T(l TJ,!-:r+i 12 .. -a ---nri=r-(log T)ar-3 (loglog T) a .. -a + 09V:1 , 8 (log log T) 2r-l 
V:-,-- . I 

1 

T(log T)
4 + T(log T)

16i + (l T)5(VVi )4-4<T 
ys.. • (Yvt)I2 .. -s og 1 . + 

Now, we minimize this with respect to V subject to T 5 $ V::; TA. The last 

three terms have the minimum 

Thus we have finally to minimize with respect to V1 subject to T 6 ::; V1 ::; T.A 
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the RHS of 

H T 1 2 T 1H 1 6 < log T v.••-•(loglog T) +~(log T)s(loglog T) 
1 1 

+ 

+ 

+ 
= 

<e 

+ 
+ 

T-d:=s (151)(6CT a)-1 12 .. -a -=:=r(log T) 2 - (loglog T) il•-3 .,-,-
1 

T(log T~~+i 12 .. -a T(log T)ul 
v.• .. 1 (loglog T) 2•-

1 + TA(n•-&>v.'• .. -a 
1 1 

1 2 1 (4-4d")(2or-1) 

(log T)57"'6<1-"'>v;'-""' + T ;;:• (log T)4+ "; V1 " 

T, + T2 + Ta + T4 + T5 + T6 + T7 (say) 

T'+• Tl+l+< TJi=s+• T1+< 
TA(< .. -2) + TA(12 .. i) + TA(.!!y=!) + TA(12• 8) 

T1+• S6(l-.,.)+< !.=+.s(<<-< .. )(2 .. -tl)+• 
T2A(12• 8) + T + T .. .. 

n·~+~·~+~·~+~·~+n•~+n•~+~·~+ 

Ta * T7 + T4 • T1 + T5 * T1 

(where for a> O,{J > 0, E, > 1 and E2 > 0, we define ( ~ • E 2vf) to be 

(Ef E~)(a+lll-') 

5 5 

< ~)T; • T6) + ~)T; • T1 ). 
i=l j=l 

We now make the following remarks : T1 • T6 is small, 

and so small, 

3 

Ta * T6 < { ( T••'-3 +• r-""' ( T46(1 - ... )+•) 12~-s} i < T~+HJO.S 

and so negligible, 
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and 80 negligible and T5 • T6 < Tc (for large A) and 80 negligible. Clearly 

Ts • T1 is small. Now, 

and so negligible, 

where 

1 }-1 { (4-40" )}-
1 

J1 = {4(1- u)(2u- 1)u- + 12u- 6 = (2u- 1) -0"- + 6 

0" 

- (2u- 1)(4 + 2a")" 

Thus the exponent ofT in T2•T7 is~ 4!~-;:> + 6l~~;> ::; 2(1- u) (for u 2-: !) 
and so negligible. 

In T3 * T7, the exponent ofT is 

{ 
(4-4..-)(2v-1} + (1-,.l£.21T-8)} { (4-4tT)(21T-l) + 12u-8} -l 

..-(61T 3) ,. 3 

where 

30" - 1 30"- 1 
12 = 12(u) = 3(1- u)(2u- 1) + u(3u--: 2) = -3u2 + 1u- 3 · 
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We note that the derivative of the denominator is > 0 for 0 < ·u < l and 

that -3(i)2 + ¥-- 3 > 0. Also 

JHu)( -3u2 + 1u- 3)2 = ( -3u2 + 1u- 3)3- (3u- 1)( -6u + 7) 

::::; 9u2 - 6u- 2 

< 0 

if u ;?: ~ -fl. Hence J2(u) is decreasing in u ;?: i - f1 for some f1 > 0. But 

J2 (~) < ¥· Thus T3 * T1 < T(1- u)(lf-1006) and so it is negligible. Also we 

have 

where J3(u) = 4(.,.2_;.,._1). For large A and u:?: ~- f1, we note that T5 * T1 

is also small. Finally, we are left with the only term T4 * T1• Now 

T4 * T1 < T(log T)2r-1 +2(loglog T)~ x 
{ 

( 

_A_ 1 l2r-l) 4(1-r~2r- 1) 

(12<T-8+ 4(1-0')(2.--1!)-1 

( 
1-r 4+2r-1)12u-8} " x T,-(log T) - .. -

Note that 3u- 2 + (1-"')(z...-t) = (.,.2+u-t). Thus 
... ... 

T4 * T1 < T(log T)2r-t +, (loglog T) ,.,_, x 
{ ( 

_A_ L . 12r-8) (1-<T)(Z...-1) 

x (T1-"'(log T)ii<T-t)3cr-2} (.,.,+.,.-1)-1 

where 

A(u) = { k~+__~~(l- u)(2u- 1) + (3u- 2}(6u- 1)} (u2 + u- 1)-1 

= l{34u2 - 37u + 13)(u2 + u - 1}- 1 
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and 

B{u) = 4{1 - u)(3uc-- 2}(42 + u o...:. iy-\ 

Finally we have N(u, T) < H < T(..f~;~1 }c1 -"') (log T)l+A( ... )(loglog T)B(~) 
and this proves the theorem. 
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POST-SCRIPT 

K. Ramachand:ra has recently deduced (see K. RAMACHANDRA, A 

large value theorem for ((s), Hardy-Ramanujan J ., 18 {1995),1-9) the fol-

lowing large value theorem from Montgomery's fundamental Lemma 8.1 (see 

[H.L.M]) . We follow the notation of Lemma 1 of§ A.3 except that we write 

To forT. 

THEOREM 1. We have 

I L I S(s) 1 2 ~~ GN + G(T5+ Is· I (log TonTJ 
•ES* 

2N 

where To~ 2, G = L I a,.. 12 n - 2" 0 and f: > 0 is an arbitrary constant. 
n=N 

REMARK. The proof depends on the fact that ifT ~ t 1 < t2 < · · · < tR ~ 

2T, I ti+I- ti I~ 1 (j = 1, 2, · .. , R -1) and I log ((1 +iti) 12: t: log log T (j = 

1, 2, · · ·, R) then R ~~ T 100c (where 0 < e < to and T 2:: 100) . This will be 

proved in Ra.ma.chandra's paper referred to above. 

COROLLARY. Consider any sets· · of complex numbers with the follow­

ing properties (i) O"o ~ Res ~ O"Q + i for all s E s·· (ii) I Im s !~ T(2:: 100) 

for all s E s·· and (ill) I /m(.! - s') 12:: 1 for any two.!, s' E s·· with sIs'. 

Then for V > 0 we have 

where t: > 0 is an arbitrary constant. 
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REMARK. Earlier some imperfect theorems in place of Theorem 1 above 

were known (due to H.L. Montgomery) . Corresponding corollaries were 

obtained by M.N. Huxley. Our method of deducing the above corollary is 

similar to Huxley's. 

From the corollary it is not hard to deduce (from the arguments of§ 

A.3) the following theorem. 

THEOREM 2. With N(u,T) as usual, ~ ~ u ~ ~ + D I0:11f T,T ~ 100 

and A2(u) ~ (.,.f~~~ 1 ), we have 

where e > 0 and D > 0 are any two arbitrary constants. 

We now borrow a theorem of Barban and Vehov (ref: M.B. Barban and 

P.P. Vehov, ob odnoi ekstremal' noi zudace, Trudy Mosk. Mat. Obs~ . 18 

(1968), 83-90, English translation : Trans. Moscow Math. Soc. 18 (1968), 

91-99) from Jutila's paper (M. Jutila, Zeros of the zeta-function near the 

critical line, Studies in pure mathematics, To the memory of Paul Turan, 

385-394 (Birkhaiiser, Basel-Stuttgart, (1982)}. Let 1 < v1 < v2, and let us 

define Hd::: Hd(v~,v2) for integers d > 0 by Hd == 1 if 1 :<:; d ~ Vt,Hd = 
' -1 

(log!!j) (log~) if Vt < d < V2 and Hd = 0 if d ~ V2 . 

·Again for any z 1 , z 2 with 1 < Zt < z2 define 

Then we have 
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THEOREM 3. (M.B. BARBAN AND P.P. VEHOV) 

We now indicate the proof of the following theorem. 

THEOREM 4. Let!+ 6 :$ u :$ 1-6 where 0 < 6 < 1~. Then 

COROLLARY. Jn the neighbourhood I u- i I:$ D :;:,'? T (D > 0 is any 

arbitmry constant) of ~ we have 

3(1-0') 13 2 

N(u, T) <v T~(log T)T(loglog T)-i. 

PROOF OF THEOREM 4. Put 2h = T,z2 = T log T and M(T,s) = 
00 

LAnn-•. By a well-known theorem of Montgomery and Vaughan we have 
n=l 

rT 1 00 

J'l I M(T, 2 +it) 12 dt = L(T + O(n)).>,!n-1 < T log T. 
T n=l 

Also by the same theorem of Montgomery and Vaughan we have (using 

Theorem 3), 

{2T 
JT I ((1 + it)M(T, 1 +it) - 112 dt < log T(loglog T)-1

• 

From these two results Theorem 4 follows as in the appendix § A.2. 

REMARK 1. Using Theorem 2 and the corollary to Theorem 4, we can in 

the results involving ?jl(z) (stated in the introduction) replace 8~, 101 a.nd 



Ramanujan 's lattice point problem 

121.!! by the numbers 7f2, 9! and 11-f2 respectively. 
24 

51 

REMARK 2. The paper by K . Ramachandra (referred to in the begin­

ning of the post-script) has since appeared. In Theorem 1 he has improved 

(log ToY to log log To. As a consequence we can replace (in Theor~m 2) 

(log T)B-tH by (log T)8-k(loglog T) ~ : ·This re~ults in minor improvements 

of results stated in the previous remark . 

REMARK 3. Using the density results proved in the appendix and post-

script we can prove the following result. 

Let H = Xt(log X) 11 h(loglog X)3H f(X) where /(X)(~ logloglog X) 

tends to oo as X--+ oo. Then there holds 

This result will be used in the forthcoming paper (with the title problems 

and results on ap- fjq) by us. 
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