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§ 1. INTRODUCTION AND NOTATION. This paper was necessi­

t,a.ted because we observed that the proofs of the results of the paper XVI[71 

can be simplified and that the results therein can at the same time be gen­

eralised. (In § 1, § 2 and § 3 we prove six theorems in all. For an attr;Ktive 

application of these see Theorem 11 of§ 4). We write s = (J +it as usual. 

We begin by stating a. generalisation of Theorem 9.15 (A) (on page 230 of 

[9]). We need some definitions. (We fix two positive constants a and b with 

a < b throughout). The parameter T will be assumed to exceed a large 

positive constant. 

GENERALISED DIRICHLET SERIES (GDS). Let fAn} be a. se­

quence of real numbers with a < >.: < >.2 < · · ·, >., < band a :S An+J -An :S 
b for n :0: 1. Lel {An} be auy sequence of complex numbers such that A1 # 0 
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and 
"" 

(1) 

converges for some complex s = so. Then Z(s) is called a generalised Dirich­

let series (GDS). We remark that if Z(s) converges at s = s0 , then it is ab­

solutely convergent at s = so + 2. Note that a GDS is different from zero if 

real part of s(Re s) exceeds a certain constant. In fact as Res-.. oo, I Z(s) I 
tends to a non-zero constant. A GDS is said to be a normalised generalised 

Dirichlet series (NGDS) if L I An 1 2 <~ xl+e for every E > 0. A GDS 
n<x 

is said to be a Dirichlet series if {>.n} is a subsequence of the sequence of 

natural numbers. 

{an} TRANSFORMATION OF AN NGDS. Let Z(s) be an NGDS. 

We conside.r only such sequences {an} of real numbers. which satisfy 
00 

L I Anan 1 2<~ xi+~ for every E > 0. F(s) = LAn(>.n + <Ln)-• is said to 
n<:c n=l 

b~ an {an} transformation of Z(s) if F(s) is a GDS. Note that 
00 

F(s) = D(s) + Z(s) where D(s) = LAn((>.n +an) -~ .-:->.;~) .. {2) 
n=l 

and that D(s) is analytic in u > 0. Moreover we have 

LEMMA 1. For cr > 0 and every E > 0 we have D(s) = 0,.((1 t I +2) 2
) 

· , 
and also 

~ h2
T I D(u +it) 12 dt < .max ( T 2(f-<>')+•, T <) . (3) 

PROOF. See Theorems 7 and 7' of XV[5l. 

THEOREM 1 (J.E. LITTLEWOOD). Let Z(s) be a GDS which can be 

continued analytically in (u 2: ! - o0 ,T -log T :S: t :S: 2T +log T), where 

oo(> 0) is a constant, and there log(max I Z(s) I +100) is < lo,q T. Let 

Z(s)-.. .1 as Res-? oo. For a 2: ! let N(a, T) denote the number of zeros 

of Z(s) in (u 2: a, 1' :S: t :S: 21'). Then (for uo > !) we have 

roo £rr . 
271' N(u, T)du = log I Z(uo +it) I dt + O(log T) . 

J"'o JT 
(4) 
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and hence 

holds unifon;;ly /f.>r all real po;;iiive constants g and 8. If 8 is any fixed con­

stant we ma.y take Jo = 0 and then replace O(log 1') by Oii(!og T). 

REMARK. This theorem is essentially due to J.E. Littlewood, since the 

5peci;:,! case g == 2 and Z(s) = ((s) (due to J.E. Littlewood) is dealt with 

on pages 229 and 23!} of [9). The general ca.se stated a.s Theorem 1 above 

follows by a trivial generalisation of Littlewood's method. If we do not a.s­

sume Z(s) -+ 1 a.s Re s -+ oo, we have to repla.ce O(log T) by O(T) in ( 4) 

and (5). This does not matter for our pu~poses. 

§ 2. A COROLLARY TO THEOREM 1. 

THEOREM 2. Let r ~ 1 be any integer constant and let <p1 (s). <p2(s), · · ·, <p,.(s) 

be r Dirichlet series each of which is continuable analytically in (a ~ ~ -
80 , T -log T :S t :S 2T +log T) and there log(ma.x I <p;(s) I +100) ~log T. 

J 
Suppose further that 

( 
1 J2T+log T 1 ) 

milJC -T I <t'j( -
2 

+it} !2 dt ~e Te 
3 T-log T 

(6) 

holds for every E > 0. Let P(X1, ···,X,.) be any fixed polyn~mial (with com­

plex coefficients) such that when we put X;= <p;(s)(i = 1,2,· .. ,r),P = 
P(s) = P(X1,···,X,.) is a normalised Dirichlet series. Let F(s) be any 

{an} transformation of P(s). Then the function N(u, T) defined (as before) 

for F(s) satisfies 

N(a,T) ~u T (7) 

REMARK. We define the degree of a monomial Xf' · · · x:• to be d1 + 
· · ·+d,. and the degree of P(X1, ···,X,.) to beth~ maximum of dt +· · ·+d,. 

taken over all monomials occuring in P(X 1, · · ·, x;). If the degree of P is 1 

then we can allow ea.ch <t'i(s) to be a GDS. Then P ba.s to be an NGDS. 
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PROOF. The proof follows from the fa.ct that (6) implies 

(8) 

and that for a suitable small constant g > 0 we have 

I F(s) 1 9~1 D(s) 12 +I Cf't(s) 12 +···+I Cf'r(s) 12 +1. (9) 

Note that in view of Lemma 1 it is not hard to deduce that 

1 rT 
T JT I D(o- +it) 12 dt ~ .. 1 

1 
(o- > -) . 

2 

From these facts Theorem 2 follows from Theorem 1. 

(10) 

§ 3. TITCHMARSH POINTS. Let F(s) be a. GDS continuable analyt­

ically in (o- 2::: /3, T- log T :S: t :S: 2T +log T) and there log(maz I F(s) I 
+100) ~log T. A point s0 = o-0 +ito in (o- ;::: !3 + 61 , T::;: t::;: 2T), where 

61 > 0 is a constant, is said to be a Titchmarsh point :oith the lower bound 

T t for I F(s) I if l(> 0) is bounded below independent ofT and t0 • 

THEOREM 3. If s0 = o-o+ito (with F(s) as above) is a Titchmarsh point 

of F(s), then the region (o- ;::: /3, I t- t0 I:S: 62) where 62 (> 0) is any small 

constant, Contains> log T zeros of F(s) . 

PROOF. For the proof of this theorem due to R. Balasubrama.nian and 

K. Rama.cha.ndra see Theorem 3 of IIII11. It should be mentioned that this 

theorem is not too-trivial a generalisation of Theorem 9.14 (on page 227 of 

[9]) due to E.C. Titchmarsh. 

WELL-SPACED POINTS. The points s(q) = o-q + itq (q = 1, 2, · · ·) in 

the complex plane are said to be well-spaced if I s(q) - s(q') I is bounded 

below for all pairs (q, q') with q "f q'. 

THEOREM 4. If there are No well-spaced Titchmarsh points for F(s) 

(F(s) as in Theorem 3), then F(s) has> N0 log T zeros in (o-;::: /3, T::;: 

t::;: 2T) . 

PROOF. The prooffollows from the fa.ct that I F(s) I tends to a non-zero 
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!;;nit. GI•ifomtly in t a.s u-+ oo. 

THEOREM 5. Let {3( < !) be a constant and r "2:: 1 any integer con­

stant and :Pt(s),· ·· ,'f'r(s) be r Dirichlet ~erie.s each of which is continu­

able analytically in (a- 2: /3, T - log T :::; t :::; 2T + log T) and there 

log ma.x(l <,?j(s) \ +100) is~ log T. Suppose further that for j == 1, 2, · · ·, r 
J 

and u 2: /3, we have 

(11) 

where mi > 0 are constants. Let p, > 0 be a constant. Put Xo == T~"(t-a)-~. 

Let xgo Xf' · · · xfr ( di "2:: 0 integers, j = 0, 1, 2, · · ·, r) be any fixed mono­

mial in X 0 , X 1 , • · • , X r· Let the u1eighted p,- degree d(f-L) of the monomial be 

defined as wlo + m 1dt + · · · + mrdr. Put Qo(s) == xto(rp1(s))d' .. · (rpr(s))d,. 

Then given any well-spaced set of points { sq} with sq = u+itq ( q = 1, 2, · · ·; u ~ 

f3 + 53 , T :::; tq :::; 2T) where 53 > 0 is a small constant we have 

I Qo(u+ itq) I~ max (r d(I"Ht-cr)+•,re), 

except for O(T1-<) values of q. 
r 

(12) 

REMARK. If Ldi = l, then we can allow tpj(s)(j = 1, 2, · · ·, r) to be 
j=l 

GDS. 

PROOF. We use the fact that the value I 'Pi(sq) I of 'Pi(s) is majorised by 
the mean value over a disc (with sq as centre and € as radius) of I 'Pi ( s) I . 
We choose a small radius and sum over all the discs taking Sq to be u + itq. 

We obtain 

~L j 'Pi(sq) \ 2~ max (r zm,(t-aJ+•,r•). 
q 

; 

Hence I 'Pi(sq) I> max(T mi(t-o-H•, T') is possible for at most O(T1:._') 

values of q. We next sum over all j and obtain the result. 

THEOREM 6. Let !3( < !l be a constant and. let rp0 (s) be a Dirichlet se­

ries continuable analytically in (0' :>- (3, T-log T <: t <: 2T+log T) and there 
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log maz(l ~(s) I +100) <t: log T. 5/up_uose that it has:;)> T(resp.T(loglog T)-1) 

well-spaced Titchmarsh points {a-+ itq} (where o- is any C!)nstant with {3 < 
a- < !) with the lower bound T~'tt-u)-e where p(> o(is a constant. Let 

Q(X0 , Xll ···,X,.) be afized polynomial (with complex coefficients) such that 

for some positive integer M, the maximum of d(p) (defined in Theorem 5) 
taken over all the monomials xgo Xf1 

• • • X!• occuring inQ(Xo, X~t ···,X,.) 

is less than Mp. Put Q(s) = Q(~(s),<p1(s),···,<p,.(sl)) - (where <p;(s) j = 
1,2,·--, are as in TheoremS). Assume that (~(s))M -Q(s) is anNGDS, 

and let F(s) be its {a,.} transformation. Then F(s) has :;)> T log T(resp. 

T(log T)(loglog T)-1) zeros in (a-;::: {3, T :$ t :$ 2T). 

PROOF. Follows from I (~(s))M - Q(s) I~ I <po(s) IM (1- I. Q(s) I 
I <po(s) 1-M). 

REMARK. Note that none of the functions <po(s), (<p0(s))M and Q(s) need 

be normalised Dirichlet series. If M = 1, then Q(s) does not involve <po(s) 

(which can now be taken to be ~GDSflf M d 1 a.nd Q(Xo,Xt,--·,X,.) 
·t . 

(now independent of X0 ) is linear in 'x 1' ,·. ··,X,. (i.e. ~d; :$ 1 for every 
j=l 

monomial Xf 1 
• • • X!r occuring in Q(X0 , X b · · ·,X,.) a.nd equaiity holds for 

at least one monomial) then all of <f't (s), · · ·, <p,.(s) can be taken to be GDS. 

Also Q(Xo,Xb·--•,X,.) can be a constant. 

§ 4. SOME APPLICATIONS OF THEOREMS 2 TO 6. Theorems 

2 to 6 are only easy formalisms. These would be completely unintenisting 

without examples. Finding eJ!:amples is a .difficult task. For example we do 

not know how to prove the expected res1,1lt N(o-, T) ~u T(o- > !) for the 

abelian £-series qf an algebraic number field. However we have a somewhat 

general theorem namely. 

THEOREM 7. Let {A,.}(n = 1, 2, · · ·) be .,a,sequence of real numbers as 

in the definition of GDS. Let I LOn I$ B(z).~ I ·a,. I~$ xB(:t) and 
n<~ n<z 

E I Ean 12 $ xB(x), where B(:t) depends on x.Jf B(x)'<~ zE (for every 
m~z nSm 
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<X> 

c: > G) then Z(s) ::::: Lan..\;& converges uniformly over compact subsets of 
~=1 

u > 0 and hence is analytic there. We have 

(a> o). 

If further log B( z) ~ log log x then we have 

N(4 +a, T) ~ r 1T log(o- 1
) 

uniformly for 0 < a S ! . 
REMARK. Results like 

1 ~2T+Iog T 1 · 
T I Z(2 +it) 12 dt ~ .. T" 

T-log T 

(13) 

(14) 

(15) 

for every t:: > 0 and more general and powerful results have been proved in 

paper Vf6l. Results. like (15) imply (13) and (14). If {Z(s)} is any finite set 

of Dirichlet series each subject to (15) we can apply Theorem 2. 

We now turn to series of the type 

00 

Lanb,.e2,..;ne>.;& (9is a real constant), 
n=l 

(16) 

their analytic continuations and their Titchmarsh points. Investigations 

dealing with such series were carried out in a series of papers by R. Bala­

subramani~n and K. Ra.machandra (see IIIl1l, rvi21, y[61, VI[31, XIV[41 and 

also the paper (8] by K. Ramochandra. and A. Sankaranarayanan). The 

paper XIV[41 is nearly final. In paper XIVl41 the condition an = 0(1) is 

assumed. This can be relaxed to L I an 12= O(x). This last mentioned 
n<o; 

condition on an will be assumed in the rest of this paper. 

Lest we get lost in generalities we state two special cases first. 

THEOREM 8. Let80 (0 < 8o <!)be a constant and let {an} be a sequence 
N 

of complez numbers satisfying the inequality I La,.,.- N Is (!- Bo)-1 for 
rn=l 
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N = 1, 2, 3, · · · . Also for n = 1, 2, 3, · · ·, let o,. be real and I On I~ C(Do) 
where C(Do) is a certain (small) constant depending only ,on Do. Then the 

number of zeros of the function 

00 00 

n=1 n=1 

in the rectangle (I a - ~ I~ ~~ T ~ t $ 2T) is ~ C(Do, ~)T log T where 

C(D0 , ~) is a positive constant depending only on Do and 5, and T ~ To(80 , 5) 
a large positive constant. 

PROOF. Theorem 10 (below) gives ~ T well spaced Titchmarsh points on 

every line segment (a = ! - ~. T ~ t ~ 2T) with the lower hound ~ T 6, 

while actually (14) gives 

N (~ C loglog T T) c-IT l T 
2 + log T ' ~ og 

for every fixed C(> 0) . (It is not hard to prove the required mean-square 

upper bound for the function). 

THEOREM 9. In the above theorem we can relax the condition on an to 

N , 1 1 
I Eam- N I~ (2- Do)-1 N 80 and E I an rz~ (2- Do)- 1x. 

m=l n~z 

Then the lower bound for the number of zeros in (a ~ ~ - ~. T ~ t ~ 2T) ( 6 
being any constant with ! - o > D0 ) is~ C(D0 , ~)T(log T)(loglog T)- 1 • But 

only when Ea,. = x + Oe(xc) we can prove that N(t + ~~ T) ~5 T. Also if 
n<.:~: 

LOn= x + O((log x) 01 ) (C1 > 0 being a constant we can prove 
n$.:~: 

N G + C(l~!~o~ T)
2

' T) < c-1T(log T)(loglog T)- 1 

for every fixed C > 0. 

PROOF. Theorem 10 (below) gives~ T (loglog T)- 1 well-spaced Titch­

marsh points on every line segment (a = ! ~ o, T ~ t ~ 21') with the lower 
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bound ;p T' (S i,eing a constant subject to ! - 6 > :90 ). 

THEOREM 10. (i) Let {A,.} be as in the definition ofGDS. This sequence 

will be further restricted by the condition (vii) or (viii) as the case may be. 

fJ will denote a real constant. 

Let f(x) and g(x) be positive real valued functions defined in x ~ 0 

satisfying 

(ii) f(x)x" is monotonic increasing and f(x)x-" is monotonic decreasing 

for every fixed 1] > 0 and all x ~ xo(1J). 

(iii) lim (g(x)x-1) = 1. 
x-+oo 

(iv) For all x ~ O,g'(x) lies between two positive constants and (g'(x))2 -

g(x)g11(x) lies between two positive constants (it being assumed that g(x} is 

twice continuously differentiable for x ~ xo). 

Let {a,.} and {b,.} be two sequences of complex numbers having the fol­

lowing properties. 

(v} I b,. I (f(n))-1 lies between two positive constants (for all integers 

n ~ n0) and (,L: I a,. !2)x-1 does not exceed a positive _constant for all 

x~l. 

(vi) For all X ~ 1, ,L: I b,.+l- b,. I< f(X). 
X$n$2X 

We next assume that {a,.} and {b,.} satisfy at least one of the two fol-

lowin.q conditions. 

(vii) MONOTONICITY CONDITION. There exists an arithmetic 

progression A (of integers) such that 

where the accent denotes the restriction of n to A. Also for et>ery positive 

constant v we have that I b,. I ..\;v is monotonic decreasing for all n(~ no} 

in A. 
(viii) REAL PART CONDITION. There exists an arithmetic pro-
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gres.5ion A (of int€ger·s) such that 

>0 

and 

where the accent denotes the restriction of n to A. 
(ix) Finally we set An= g(n) and let {an} be a sequence of real numbers 

such that I an I does not exceed a small positive constant (depending on other 

constants). We suppose that the GDS 

00 

F(s) = 2:>nbne2";no(An +an)-~ 
n=l 

can be continued analytically in (a ~ ! - t5, T - log T S t S 2T +log T) and 

there log max(i F(s) I +100) ~ log T. 

Then on every line segment (a = ! - t54 , T S t S 2T) ( t54 being a constant 

with 0 < t54 S t5) there are~ T(loglog ·T)-1 well-spaced Titchmarsh points 

with the lower bound :::P T 6• f(T). If further we have 

~ l 2

T IF(~- t54 +it) 12 dt ~ T 26•(J(T))2 

for every constant 84 (with 0 < t54 S t5), then the number uf well-spaced 

Titchmarsh points on the lin~ segment (a = ! ~ t54 , T ~ t S 2T) (with the 

lower bound~ T 6• f(T)) is~ T . 

REMARK. This theorem is proved by R. Balasubramanian and 

K. Ramac\landra in this form in the paper XIV141 except that we have now 

to use L I an 1 2~ x in place of an = 0(1) and also except that we have 
n::;:p 

to involve 9. Lemmas necessary (see Lemma 6 of JV[21) for these generali­

ties and also the method have been developed in previous papers mentioned 

before by R. Balasubramanian and K. Ramachandra. 
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Finally we would like to mention paper XVI5l of this series of papers. 

Here we assume a functional equation of a very general type for a GDS 

and prove that a large class of {an} transformations of it have~ T well­

spaced Titchma.rsh points on every line segment (cr = t - 6, T $ t $ 2T) 

with a lower bound of the type ~. T mo-e where m > 0 is a real constant 

and .::(> 0) _is an arbitrary constant (for example for the zeta function of a 

ray class in . art algebraic number field of degree m. If m ;:::: 2 we can allow 

E ., a~ 12< ' x 1+• in place of E I A,.a,. 12< x 1+•, see the _P,efinition in 
n<x n<x 

(1 for the meaning of A,.). Note that if An :::: O.{n") then the condition 

on an is simply 2:: I an 12< xl+•. These results are very general. But out 
n<:z: 

of these GDS only in very special cases (but still a somewhat large class of 

GDS) we can prove that 

1 {2T 1 
T lr I F(2 + o+it) 1

2 
dt <e,o r· 

for all o > 0 and.::> 0. Some examples (not already covered by Theorem 7) 

are (i) zeta function of any ray class of a quadratic field (ii) zeta function of 

a. positive definite quadratic form Q(X1 , • • ·Xt) (in l;:::: 2 variables and with 
00 

integer coefficients) namely E ( ann-f+I) n-•, where a,.. is the number of 
n=l 

/-tuples (m1 , • • ·, mt) of integers with. Q(mt, · · ·, md ·= n. Iit·'this case m = 1 
and the lower hound is ~ T~(resp. » T2~_.•) according as l > 2 or i = 2 

see [8]. 

Instead of enumerating all .the applications of this theory we state a 

beautiful theorem (na.mely _Theorem 11 below) . Many other theorems can 

be deduced in a. similar manner by the interested readers from the resul~ 

of papers mentioned above and the' results of § 1, § 2 and § 3, (see also the 

post-script at the end of this paper). 

THEOREM 11. Let :F denote the class of Dirichlet series of the form 
00 

((s) + Ea..n-• with complex number sequence {a,} satisfying Ea.. = 
n=l n<z 

0(1). Let '-Pi = r.p;(s)(j = 0,1,2, · · ·, r) be any r + 1 Dirichlet series (may 
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not be distinct) of the clas.~ :F. Let P(Xo, Xt, · · ·, Xr) be any fixed polynomial 

(with complex coefficients) of degree d (being the maximum of do+dt +· · +dr 

taken over all monomials x;:o Xf1 
• • • xf~ occuring in P( X 0 , · • ·,X r)). Let 

Q be defined by 

00 

Q = (tpo(s))d+l_ P(tpo,tpt, .. ·,cp,) = LBnn-•,(u > 1). 
n=l 

Then first we have Bn # 0 for at least one n (also Q is analytic in u > 0, 

t ~ 1). Next put 

where {an} is any sequence of real numbers with I a,. I :5 ! . Then in( u ~ ! -
o, T::; t::; 2T), F(s) has::}:> T log T zeros and in (u·~ J + 0 l:n~ T, T. :S·t::; 2T) 

only«: c- 1T log T zeros (C ~ 1 being any constant). 

REMARK 1. If d ~ 1 we can allow L I a,. 12< xl+• in place of I a,. I:S !· 
n<x 

But then we have to stipulate that F(-;,) should be a CDS. 

REMARK 2. That B,. # 0 for at least one n of course follows since Q has 

a pole of order (d + 1) at s = 1. But then we mention that the conclusion of 
00 

Theorem 11 are valid for tpo(s) = (1-21-')((s) and 'Pi(s) = L'.:aWn-•(j = 
n::I 

1, 2, · · ·, r) where max I L:a!/) I= 0(1). 
n$x 
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POST-SCRIPT 

1. In view of Theorem 2, it is important to find Dirichlet series which satisfy 

(6). ThiS will enable us to prove N(r+ <5,T) ~6 T(6 >. 0) for larger and 

larger class of GDS. 

2. In view of Theorem 4, it is important to find No (as large as possible) well­

spaced Titchmarsh points with the lower bound ~ T k&-« (for some k > 0 

and every e > 0) on the line segment ( cr = i-6, T $ t $ 2T) for a large class 

of Dirichlet series. In this direction we have Balasubramanian·Rama.cha.ndra 

functions given by Theorem 10 ·(Theorems 8 and 9 are special cases of these 

functions). Also we have thelth derivative (l ~ 0 integer) of a class of GDS 

which satisfy a very general functional equation (see equation (5) of xvl51). 
The case l = 0 is treated in XVl51 and it is proved that No ~ T. We can 

cover all int~ers l as follows. We make use of the following· lemmjl.. 

LEMMA 2. Let h(x) be an n-times continuously differentiable function 

defined in ao ::; x ::; ao + ndo, where ao > 0, do > 0 are constants and n is 

any fixed integer ~ 1. Then 

PROOF. Follows by trivial induction. 

We applY. this lemma to h(cr) = h(cr,t) = x(cr +it) of equation (5) of 
xv£s] and obtain I x<'l(so) 1:)> T k(i'-a)(log T)' for any fixed t(T $ t::; 2T) 

and a suitable s0 = cr0 + it (with cr0 at a distance of 0 ( (log T) -t) from any 

arbitrarily given cr). At the same time for all sand l we have (by Cauchy's 
theorem), I x<t>(s) I~ T k(!-al(Zog T)t. 

Next we apply local convexity (see for example the references [PS-1] 

and [PS-:2] below, see especially Theorem 6-C of [PS-2] for a correction in 

[PS-1]) to the zeta-function like analytic function z<t>(s)(x(s))-1 (log T)-t 

to prove that the integral of its absolute value taken over I t- to I$ C(e) 
1 ~ ' ' 

on r.T = i +.o exceeds t;;•(T $ t0 $ 2T}, where C(e) depends only on t: • 

. FrQm this it foiiows tha.t for z<tl(s) we have No> T and the lower bound 
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is ·;::: T k6-e. 

3. Next given (arbitrarily) No well-spaced points on (u = ! - ~. T $ t $ 2T) 

we .ca.n sometimes obtain a subset (of these points) of cardinality ~ No 

(= T, sometime6'1'(loglog T)-1
) Titchmarsh points for a. class of Dirichlet 

series or GDS. But this class of Dirichlet series is a very restricted one. Let 

Z(s) be a Dirichlet series (see equation (5) of XVI5l) which have 

{a) Euler product for Z1 (s). 

(b) Functional equation with 1$ k $ 2. 

(c) Mean-square on the critical line (see equation (6) of the present paper) 

(1 = ~· 
(We have to mention that (c) follows from (b)) 

(d) 1 x<tl(s) J:=:: tk(~-"l(log t)t for an integers e;::: o. 

From these we ca.n deduce. 

LEMMA 3. Let {t;}(T $ t; $ 2T) be a well-spaced set of points with 

cardinality ~ T. Then out of these points we can select a subset of p(Jints t'. 
' J 

(with cardinality ~ T) satisfying 

)ZI(~+&+it~-)1~1 and )Z}tl(~+lf+itj)l<! 

(£:;;:: 1, 2, ··· ·, £0 ) where lo ;::: 1 is any integer. 

PROOF. This lemma. is contained implicitly in the proof of Theorem 1 of 

[PS-3]. 
From these we can formulate a. general principle. 

GENERAL PRINCIPLE. In Theorem 11 we can replace (rp0(s))d+l by 

Q1 E (Ft (s))M'(rp(t,)(s))M2 with integers it ;::: 0, M1 ~ 0, Ml ;::: 0, M1 + 
.M 2 ;::: 1, where F1 (s) ~ a power product (with non-negative integral ex­

ponents) of derivatives of functions like Z(s) satisfying (a),(b),(c) and (d) 

above and rp(s) is either a Balasubramanian-Ramachandra function or a 

function which has a functional equation such as (5) of XV£51. In place of 



On the zeros of a cla.s.s-XVIII 27 

P( cp0 , cp1 , • · ·, <pr) of Theorem 11, we can ha11e a suitable modification say Q2 

such that Q1- Q2 has~ T(resp. T(loglog T)-1) well-spaced Titchmarsh 

points on q = ~ - 8. Accordingly we have lower bounds for the number of ze­

ros ofQ1 -Qz in (q 2: ! -28, T :<::; t :<::; 2T) (and upper bounds for N(~+o, T) 

only sometimes). We can say similar things about the {an} transformations 

ofQt -Q2. 
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