P

1% R. Balasubramanian,K. Ramachandra and A. Sankaranarayanan

Hardy-Ramanujan Journal
Vci 20 (1497) 12-28

ON THE ZEROS OF A CLASS OF GENERALISED
DIRICHLET SERIES-XVIII

(A FEW REMARKS ON LITTLEWOOD’S THEOREM AND
TITCHMARSH POINTS)

BY

R. BALASUBRAMANIAN, K. RAMACHANDRA and
A. SANKARANARAYANAN

(DEDICATED TO PROFESSOR K. CHANDRASEKHARAN
ON HIS SEVENTY-FIFTH BIRTHDAY)

§ 1. INTRODUCTION AND NOTATION. This paper was necessi-
tated because we observed that the proofs of the results of the paper X VIl
can be simplified and that the results therein can at the same time be gen-
eralised. {In § 1, § 2 and § 3 we prove six theorems in all. For an attractive
application of these see Theorem 11 of § 4). We write s = ¢ + it as usual.
We begin by stating a generalisation of Theorem §.15 (A) (on page 230 of
[9]). We need some definitions. (We fix two positive constants a and b with
a < b throughout). The parameter T will be assumed to exceed a large
positive constant.

GENERALISED DIRICHLET SERIES (GDS). Let {A.} be a se-
quence of real pumbers with a < Ay < Az < -, Ay <band e < Xy — Ay <
bforn > 1. Let {A,} be any sequence of complex numbers such that 4, # 0
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and -
Z(s) = ¥ Aas* ()

n=1
converges for some complex s = 3. Then Z(s) is called a generalised Dirich-
let sertes (GDS). We remark that if Z(s) converges at s = sp, then it is ab-
solutely convergent at s = sg + 2. Note that a GDS is different from zero if
real part of s(Re s) exceeds a certain constant. In fact as Re s & o0, | Z(s) |
tends to a non-zero constant. A GDS is said to be a normalised generalised
Dirichlet series (NGDS) if Z | An |2« z!** for every € > 0. A GDS

n<z
is said to be a Dirichlet series if {\,} is a subsequence of the sequence of

natural numbers.

{a,} TRANSFORMATION OF AN NGDS. Let Z(s) be an NGDS.

We consider only such sequences {a,} of real numbers which satisfy
4 = -

E | Anan |*<, 2% for every € > 0. F(s) = ZA"(’\" + @,)"? is said to
n<z n=1

be an {a,} transformation of Z(s) if F(s) is a GDS. Note that
F(s) = D(s) + Z(s) where D(s) = Y _Aa((An+n) " = A7°) . (2)
n=1

and that D(s) is analytic in o > 0. Moreover we have

LEMMA 1. For ¢ > 0 and every € > 0 we have D(s) = O,({] t | +2)%)
and also |

1 [T s i . ’ 2At-0)te pe

= | Do +1t) |* dt <, ma.z(T 2 , T ) (3)

T Ir SN
PROOF. See Theorems 7 and 7’ of XV, ‘
THEOREM 1 (J.E. LITTLEWOOD). Let Z(s) be a GDS which can be
continued analytically in (0 > § — 60,7 —log T < t < 2T + log T), where
%o (> 0) is a constant, and there log(maz | Z(s) | +100) is < log T. Let

Z(s) > 1 as Re s — co. Fora > 3 let N{(a,T) denote the number of zeros
of Z(s) in (0 > a,T < t < 2T). Then (for oy > 3) we have

oo 2T .
on [* N, T)do= [ log] Z(oo+it) | dt+O(log T)  (4)

Jay T
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and hence

17

N(.2%+25,T) <o) Tiog (3 [ 12G 45401 ) +0(log T) (5)
-

holds uniforinly far all real posiitve constants g and 8. If § is any fized con-

stant we may lake & = 0 and then replace O{log T') by C;s{log T).

REMARK. This theorem is essentially due to J.E. Littlewood, since the
snecial case ¢ = 2 and Z(s) = {(s) (due to J.E. Littlewood) is dealt with
on pages 229 and 230 of [9]. The general case stated as Theorem 1 above
follows by a trivial generalisation of Littlewood’s method. If we do not as-
sume Z(s) - 1 as Re s = oo, we have to replace O(log T') by O(T) in {4)
and (5). This does not matter for our purposes.

§ 2. A COROLLARY TO THEOREM 1.

THEOREM 2. Letr > 1 be any integer constant and let 1 (s), p2(s), -+, ¢r(9)
be r Dirichlet series each of which is continuable analytically in (o > % -
80, T —log T <t £ 2T + log T) and there log(max | ¢;(s) | +100) < log 7.

j

Suppose further that

1 2T +log T 1 :
max (—-/ | @;(z +it) |? dt) o (6)
3 \T Jr-tog T 2
holds for every € > 0. Let P(Xy,- -+, X;) be any fized polynomial (with com-
plez coeﬁ‘iczents) such that when we put X; = pi(s)(t = 1,2,--,1), P =
P(s) = P(Xi,--+,X,) s a normalised Dirichlet series. Let F(s) be any
{an} transformation of P(s). Then the function N{o,T) defined (as before)
for F(s) satisfies
1
N, )<, T (o> -2—). (7)

REMARK. We define the degree of a monomial Xf‘ <+ X% to be dy +
-++d, and the degree of P(X;,---, X,) to be the maximum of d; +---4d,

taken over all monomials occuring in P(Xy,---, X;) If the degree of P is 1

then we can allow each ;(5) to be a GDS. Then P has to be an NGDS.
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PROOF. The proof follows from the fact that (6) implies
L f*% . 1
max { — lpi(lo+it)|Pdt) <, 1 (0> ), (8)
i \TJr 2
and that for a suitable small constant g > 0 we have

| F(s) P<| D(s) 2+ | @a(s) >+ -+ | e (8) [ +1. (9)

Note that in view of Lemma 1 it is not hard to deduce that
1 [T 1
—-/ |Dio+it) Pdt <, 1 (o> =) (10)
T Jr 2

From these facts Theorem 2 follows from Theorem 1.

§ 3. TITCHMARSH POINTS. Let F(s) be a GDS continuable analyt-
ically in (6 > B, T —log T <t < 2T +log T) and there log(maz | F(s) |
+100) < log T. A point sg = op+ itgin (¢ > S+ 6;,T < t < 2T), where
8, > 0 is a constant, is said to be a Titchmarsh point with the lower bound
T ¢ for | F(s) | if £(> 0) is bounded below independent of T and tg.

THEOREM 3. Ifsq = 0g+itg (with F(s) as above) is a Titchmarsh point
of F(s), then the region (o > B,}t — tg |< 8) where 62(> 0) is any small
constant, contains > log T zeros of F(s).

PROOF. For the proof of this theorem due to R. Balasubramanian and
K. Ramachandra see Theorem 3 of IIIl1). It should be mentioned that this
theorem is not too-trivial a generalisation of Theorem 9.14 (on page 227 of
[9]) due to E.C. Titchmarsh.

WELL-SPACED POINTS. The points s(9 = o, + it, (g = 1,2,--) in
the complex plane are said to be well-spaced if | 50 — s{@) | is bounded
below for all pairs (g, ¢') with ¢ # ¢'.

THEOREM 4. If there are Ny well-spaced Titchmarsh points for F(s)
(F(s) as in Theorem 3), then F(s) has > No log T zeros in (¢ > B,T <
t <2T).

PROOF. The proof follows from the fact that | F(s) | tends to a non-zero
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limit criformly in t as 0 — oco.

THEOREM 5. Let f(< 1) be a constant and r > 1 any integer con-
stant and (s}, -+, ¢r(s) be r Dirichlet series each of which is continu-
able analytically in (0 > B, T ~log T < t < 2T + log T) and there

log max(} ¢;(s) | 4+100) is < log T. Suppose further that for j = 1,2, ---,r
and 0'12 B, we have
% 2T +log T | i(0 +it) |? dt <. maz (T 2mj(%-‘c')+€’Te) (11)
T—log T
where m; > 0 are constants. Let u > 0 be a constant. Put Xg = THG-o)-,
Let Xg" Xf‘ oo X8 (d; > 0 integers, § = 0,1,2,--+,7) be any fired mono-
miel in Xo, X1, -+, X,. Let the weighted u—degree d{yt) of the monomial be
defined as pdp +mydi + - - -+ myd,. Put Qo(s) = Xg°(<pl(s))d‘ s {pr(s)) .
Then given any well-spaced set of points {s,} with s, = o4it,(g =1,2, o>
B+ 63, T <t, <2T) where 83 > 0 is a small constant we have

| Qo(0 +ity) | maz (T "(“’(%"”)“‘,Tf) ) (12)
except for O(T'¢) values of q.

REMARK. If Zdj = 1, then we can allow ¢;(s)(j = 1,2,---,7) to be

1=1
GDS. :
PROOF. We use the fact that the value | ©;(s,) | of ;(s) is majorised by
the mean value over a disc (with sy as centre and ¢ as radius) of | @;(s) | .
We choose a small radius and sum over all the discs taking s, to be o +it,.
We obtain 3

. 1
73 1 3(s,) P maz (T Fali=ote 7o)
q

Hence | ¢;(sq) |> maz(T m;(3=0)te Te) is possible for at most O(T‘;‘)
values of ¢. We next sum over all j and obtain the result.

THEOREM 6. Let B(< 1) be a constant and let po(s) be a Dirichlet se-
ries continuable analytically in (0 > 8, T~log T <t < 2T'+log T) and there
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fog maz(| po(s) | +100) < log T. Supoose thal it has > T(resp.T'(loglog T)~")
well-spaced Titchmarsh points {0 + it,} (where o is any constant with § <

o < 3) with the lower bound T#3-°)~¢ where p(> 0) is a constant. Let
Q(Xo, X1, -, X,) be a fized polynomsal (with complez cocfficienits) such that
for some positive integer M, the mazimum of d(u) (defined in Theorem 5)
taken over all the monomials X X ... X% occuring in Q(Xo, X1, -+, X,)
is less than M. Put Q(s) = Q(#o(s), ¢1(5), -+ @1 (s))) (where ;(s) j =
1,2, -, are as in Theorem 5). Assume that (wo(s))M — Q(s) is an NGDS,
and let F(s) be its {on} transformation. Then F(s) has 3> T log T(resp.
T(log T)(loglog T)™}) zeros in (o > 8, T < t < 2T).

PROOF. Follows from | (¢o(s))™ — Q(s) 12| ¢o(s) M (1~ 1.Q(s) |
| @o(s) I7M).

REMARK:. Note that none of the fanctions @o(s), (¢o(s))™ and Q(s) need

be normalised Dirichlet series. If M = 1, then Q(s) does not involve @o(s)

(which can now be taken to be a GDS). f M = 1 and Q(Xo, X1, -+, X,)
7 p *.

(now independent of Xj) is linear in X li;:- X (e Zd,— < 1 for every
Jj=1

monomial Xf‘ -++ X3 occuring in Q(Xo, X1, -, X,) and equality holds for

at least one monomial) then all of p;(s),- - -, ¢-(s) can be taken to be GDS.

Aiso Q(Xo, X1, -+, X,) can be a constant. o

§ 4. SOME APPLICATIONS OF THEOREMS 2 TO 6. Theorems
2 to 6 are only easy formalisms. These would be completely uninteresting
without examples. Finding examples is a difficult task. For example we do
not know how to prove the expected result -N:{(o,T) <<; T(o > 1)-for the
abelian L-series of an algebraic number field. However we have a somewhat
general theorem namely.

THEOREM 7. Let {\}(n = 1,2,---) be @sequence of real numbers as
in the definition of GDS. Let | Y an |< B(2), Y, |'an [*< 2B(2) and
n<z n<z

Z | Za,, |2< 2 B(z), where B(z) depends on z. If B(z) €. a° (for every

m<z nlm
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o

£ > u\ then Z(s) = Zaﬂz\" converges uniformly over compact subsets of
a=1

o > 0 and hence is analytic there. We have

NG+ET) & T (5>0). , (13)
If further log B{z) < loglog x then we have

N(% +6,T) < 87T log(67) (14)

uniformiy for0 < 5§ < 1

REMARK. Results like
1 2T +lag T 1 -
p | Z(= +it) 1* dt <, T (15)
T Jretog T 2
for every £ > 0-and more general and powerful results have been proved in
paper VIf. Results like (15) imply (13) and (14). If {Z(s)} is any finite set
of Dirichlet series each subject to (15) we can apply Theorem 2.
We now turn to series of the type

o0

Zanbnez""‘&)\; * (#is a real constant), (16)

n=1
their analytic continuations and their Titchmarsh points. Iuvestigations
dealing with such series were carried out in a series of papers by R. Bala-
subramanian and K. Ramachandra (see 10, V12 Vil VIBl, X1VH4 and
also the paper [8] by K. Ramachandra and A. Sankaranarayanan). The
paper XIVY is nearly final. In paper XIVIY the condition a, = O(1) is
assumed. This can be relaxed ta Z | an 2= O(z). This last mentioned

n<zs

condition on a,, will be assumed in the rest of this paper.
Lest we get lost in generalities we state two special cases first.

THEOREM 8. Let05(0 < 6y < }) be a constant and let {a,} be a sequence
N

of complez numbers satisfying the inequality | Zam ~Ni< (3~ 60)! for

m=1
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N =1,2,3,--- . Also forn = 1,2,3,---, let o, be real and | a,, |< C(6p)
where C(0g) is a certain (small) constant depending only on 63. Then the
number of zeros of the function

D an(n+an) ™ =((8) + D (anln+ an) ™ —n7)
n=1 n=1

in the rectangle (| 0 — 1 |< 6, T < t < 2T) is > C(60,6)T log T where
C(f0,9) is a positive constant depending only on 6y and 6, and T > To(6o, 6)

a large positive constant.

PROOF. Theorem 10 (below) gives >> T well spaced Titchmarsh points on
every line segment (o = % - §,T <t < 27T) with the lower bound > T%,
while actually (14) gives

logl
N l_}__.—._c ogogT’T L C ' Tlog T
2 log T

for every fixed C(> 0). (It is not hard to prove the required mean-square
upper bound for the function).

THEOREM 9. In the above theorem we can relax the condition on a, to

N
1 ~1 500 2 (1 -1
1Y am-NI< (5= 00)7'N* and S leal < (5~ 00) 'z
m=1 n<z
Then the lower bound for the number of zeros in (02 3-6T<t<2T)(s
being any constant with 1 — & > o) is > C(6o, 8)T(log T)(loglog T)~'. But
only when Zan =z + 0.(z¢) we can prove that N(% +6,T) < T. Also if
n<z
Zﬂn =2+ O((log z)°*) (C; > 0 being a constant we can prove

n<z

1 C(loglog T)? ) 1 -1
N ( 5t Tog T ,T) « C™'T(log T)(loglog T)

for every fized C > 0.

PROOF. Theorem 10 (below) gives > T' (loglog T)~! well-spaced Titch-
marsh points on every line segment (o = 1 — §,T <t < 2T') with the lower
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bound » T’ {§ heing a constant subject to 1 — § > go).

THEOREM 10. {i) Let {\,} be as in the definition of GDS. This sequence
will be further restricted by the condition (vil) or (viii) as the case may be.
# will denote a real constant.

Let f(z) and g(z) be positive real valued functions defined in z > 0
satisfying

(it} f(z)2" is monotenic increasing and f(z)z~" is monotonic decreasing
for every fired n > 0 and all 2 > zo(n).

(iif) xl_i_)nclo(g(z)z‘l) = 1.

(iv) For all z > 0, ¢'(z) lies between two positive constants and (g'(z))? -
g(z)g"(x) lies between two posilive constants (it being assumed that g(z) is
twice continuously differentiable for z > xp).

Let {a,} and {b,} be two sequences of compler numbers having the fol-
lowing properties.

(v} | ba | (f(n))~Y lies between two positive constants (for all integers

n > ng) and (Z | an 1)z~ does not ezceed a positive constant for all
E g - n<e

z > 1.

{(vi) For all X > 1, Z | b1 — ba <€ F(X).
X<n<2X
We nezt assume that {a,} and {b,} satisfy at least one of the two fol-
lowing conditions.
(vil) MONOTONICITY CONDITION. There exists an arithmetic
progression A (of integers) such that

% -1 4 _
:r:ll}nolo (z z(:a,.) =h (h#0),
where the accent denotes the restriction of n to A. Also for every positive
constant v we have that | b, | AJY is monotonic decreasing for all n(> no)
in A.

{(viii) REAL PART CONDITION. There ezists an arithmetic pro-
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gression A {of integers) such that

L 1 !
zll*rrolomf (; Z Re an) >0

< An<22,Re an>0

and

. 1 3
lim (—- Z Re a,,) =0
z—o0 \ T
z<An<2z,Re an<0

where the accent denotes the restriction of n to A.

(ix) Finally we set A, = g(n) and let {a,} be a sequence of real numbers
such that | ay, | does not ezceed a small positive constant (depending on other
constants). We suppose that the GDS

oo

F(s) = anbne®™™ (A, + an) ™"
n=1
can be continued analytically in (0 > 1 —6,T —log T <t < 2T +log T) and
there log maz(| F(s) | +100) < log T.
Then on every line segment (o = %—54, T <t < 2T) (44 being a constant
with 0 < &4 < §) there are > T(loglog T)~! well-spaced Titchmarsh points
with the lower bound > T% f(T)). If further we have

) T
[ ARG sk P a ety

for every constant 6, (with 0 < 84 < &), then the number of well-spaced-
Titchmarsh points on the line segment (o = % =64, T < t < 2T) (with the
lower bound > T% f(T)) is > T.

REMARK. This theorem is proved by R. Balasubramanian and
K. Ramachandra in this form in the paper X1Vl except that we have now

to use Z | @y |>< 7 in place of a, = O(1) and also except that we have
n<eg

to involve f. Lemmas necessary (see Lemma 6 of IVI?) for these generali-
ties and also the method have been developed in previous papers mentioned
before by R. Balasubramanian and K. Ramachandra.



22 R. Balasubramanian,K. Ramachandra and A. Sankaranarayanan

Finally we would like to mention paper XV of this series of papers.
Here we assume a functional equation of a very general type for a GDS
and prove that a large class of {a,,} transformations of it have > T well-
spaced Titchmarsh points on every line segment (o = % -6T <t <2T)
with a lower bound of the type . T ™¥~¢ where m > 0.is a real constant
and £(> 0) is an arbitrary constant (for example for the zeta function of a
ray class in an algebraic number field of degree m. If m > 2 we can allow
Z | an [ z'*° in place of Z | Anan [2< 217, see the definition in

n<z n<z

8 1 for the meaning of A,). Note that if A, = O.(n®) then the condition
on ay, is simply Z | an |2 z1*2. These results are very general. But out

nsz
of these GDS only in very special cases (but still a somewhat large class of

GDS) we can prove that
1 47, 0 e

for all § > 0 and € > 0. Some examples (not already covered by Theorem 7)
are (i) zeta function of any ray class of a quadratic field (ii) zeta function of
a positive definite quadratic form Q(Xy, -+ X,) (in £ > 2 variables and with

o0
2 .
integer coefficients) namely Z (a,,n‘ i“) n~?, where a, is the number of

E n=1 .
£-tuples (my, - - -, my) of integers with Q(my, - - -, m¢) = n. In'this casem = 1
and the lower bound is 3> T?%(resp. >» T?~¢) according as £ > 2 or £ = 2
see [8]. ’

Instead of enumerating all .the applications of this theory we state a
beautiful theorem (namely Theorem 11 below). Many other theorems can
be deduced in a similar manner by the interested readers from the results
of papers mentioned above and the results of § 1, § 2 and § 3, (see also the
post-script at the end of this paper).

THEOREM 11. Let F denote the class of Dirichlet series of the form
0o
¢(s) + Za,.n" with complezr number sequence {a,} satisfying Zam =

nlz

n=1 e
O(1). Let p; = p;(8)(j = 0,1,2,:--,r) be any r + 1 Dirichlet series (may
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not be distinct) of the class F. Let P(Xo, Xy, - - -, X,.) be any fized polynomial
(with complex coefficients) of degree d (being the mazimum of dy+d, + - tdy
taken over all monomials X{,I“Xf‘ -+ X% occuring in P(Xo,---,X,)). Let
Q be defined by .

(o 9]
Q = (o(8))™* = P(po, 91,7+, 9) = ¥ _Ban™%, (0 > 1).
n=1
Then first we have B, # 0 for at least one n (also Q is analytic in ¢ > 0,
t > 1). Next put

= Z Bu((n+a.)7" —n7%) + Q

where {a,} is any sequence of real numbers wi'th>| an |< 3. Thenin (o > ;-

§,T <t <2T), F(s) has>» T log T zeros and in (a 21+ Q—.'l%gl’?l’T, <t< ZT)

only < C7'T log T zeros (C > 1 being any constant).

REMARK 1. ifd > 1 we can allow Z | o |>< 2% in place of | a, |< 1.
n<z

But then we have to stipulate that F(s) should be a GDS

REMARK 2. That B, # 0 for at least one n of course follows since Q has

a pole of order (d+ 1) at s = 1. But then we mention that the conclusion of

Theorem 11 are valid for po(s) = (1-2'7*)((s) and @;(s) = Za(’) “o(j =

n=1
1,2,---,r) where max | Ea(’) |=0(1).

n<x
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POST-SCRIPT

1. In view of Theorem 2, it is important to find Dirichlet series which satisfy
(6). This will enable us to prove N(} + 8,T) < T(8 > 0) for larger and
larger class of GDS.

2. In view of Theorem 4, it is important to find Ny (as large as possible) well-
spaced Titchmarsh points with the lower bound > T ¥~ (for some k > 0
and every £ > 0) on the line segment (0 = %—6, T < t < 2T') for a large class
of Dirichlet series. In this direction we have Balasubramanian-Ramachandra
functions given by Theorem 10 (Theorems 8 and 9 are special cases of these
functions). Also we have the £th derivative (€ > 0 integer) of a class of GDS
which satisfy a very general functional equation (see equation (5) of XVI)).
The case £ = 0 is treated in XVI¥ and it is proved that Ny > T. We can
cover all intégers £ as follows. We make use of the following lemma.

LEMMA 2. Let h(z) be an n-times continuously differentiable function
defined in ap < < ag + ndo, where ap > 0,dy > 0 are constants and n is
any fized integer > 1. Then

n

Z(—l)"" (:) h(ag+rdo) = ‘[)do .- -’/;do h(ag+ur+- - -+u,)dusduy - - - duy,.
r=0
PROOF. Fallows by trivial induction.

- We :ipply this lemma to k(o) = h(o,t) = x(c + it) of equation (5) of
X VI and obtain | x(9(so) | T ¥3=)(log T)* for any fixed ¢(T < t < 2T)
and a suitable so = o + it (with o at a distance of O((log T)™?) from any
arbitrarily given o). At the same time for all s and £ we have (by Cauchy’s
theorem), | x9(s) < T ¥G=)(log T)*.

Next we apply local convexity (see for example the references [PS-1]
and [PS-2] below, see especially Theorem 6-C of [PS-2] for a correction in
[PS-1]) to the zeta-function like analytic function Z(9(s)(x(s))~ (log T)™*
to prove that the integral of its absolute value taken over | t —to |< Cle)
on o = }+ 8 exceeds t;°(T < to < 2T), where C(e) depends only on €.
‘From this it {oljows that for Z(9(s) we have Ny > T and the lower bound
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is > T k8~

3. Next given (arbitrarily} Ny well-spaced points on (o = £ —§,T < ¢ < 27)
we can sometimes obtain a subset (of these points) of cardinality > Ny
(= T, sometimes T'(loglog T')~!) Titchinarsh points for a class of Dirichlet
series ar GDS. But this class of Dirichlet series is a very restricted one. Let
Z(s) be a Dirichlet series (see equation (5) of XVI®]) which have

(a) Euler product for Zy(s).
(b) Functional equation with 1 <k < 2.

(c) Mean-square on the critical line (see equation (6) of the present paper)

e
0'——2.

{We have to mention that (c) follows from (b))
(d) | x¥9(s) |= t¥(G=9)(log t)? for all integers £ > 0.
From these we can deduce.

LEMMA 3. Let {{;}(T < t; < 2T) be a well-spaced set of points with
cardinality > T. Then out of these points we can select a subset of points t)
(with cardinality > T) satisfying
| ZE 4 6+it) > 1 and | ZOC 4o+
12+ D I>1 and | 1(—2-+ +it) |« 1
(€=1,2,---,4) where {o > 1 is any integer.
PROOF. Thi_s lemma is contained implicitly in the proof of Theorem 1 of
[PS-3].
From these we can formulate a general principle.
GENERAL PRINCIPLE. In Theorem 11 we can replace (:,90(3))“+1 by
Q1 = (Fi(s))Mi (o) (s))™> with integers £y > 0, My 2 0, Mz > 0, M, +
M, > 1, where Fy(s) is a power product (with non-negative integral ez-
ponents) of derivatives of functions like Z(s) satisfying (a),(b),(c) and (d)
above and (s) is either a Balasubramanian-Ramachandra function or a
function which has a functional equation such as (5) of XVl In place of
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P(o, ¢1," - *»¢r) of Theorem 11, we can have a suitable modification say Q,
such that Q1 — Q2 has > T{(resp. T(loglog T)™ ') well-spaced Titchmarsh
points on o = 1 —48. Accordingly we have lower bounds for the number of ze-
ros of Q1 —Qz in (0 > 3 —26,T <t < 2T) (and upper bounds for N(3+6,T)
only sometimes). We can say similar things about the {an} transformations

of Q1 — Q2.
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