Hardy-Kamanujan Journal Vci.20 (1997) 12-28

ON THE ZEROS OF A CLASS OF GENERALISED DIRICHLET SERIES-XVIII

(A FEW REMARKS ON LITTLEWOOD'S THEOREM AND TITCHMARSH POINTS)

BY

R. BALASUBRAMANIAN, K. RAMACHANDRA and A. SANKARANARAYANAN

(DEDICATED TO PROFESSOR K. CHANDRASEKHARAN ON HIS SEVENTY-FIFTH BIRTHDAY)

§ 1. INTRODUCTION AND NOTATION. This paper was necessitated because we observed that the proofs of the results of the paper XVI^[7] can be simplified and that the results therein can at the same time be generalised. (In § 1, § 2 and § 3 we prove six theorems in all. For an attractive application of these see Theorem 11 of § 4). We write $s = \sigma + it$ as usual. We begin by stating a generalisation of Theorem 9.15 (A) (on page 230 of [9]). We need some definitions. (We fix two positive constants *a* and *b* with a < b throughout). The parameter *T* will be assumed to exceed a large positive constant.

GENERALISED DIRICHLET SERIES (GDS). Let $\{\lambda_n\}$ be a sequence of real numbers with $a < \lambda_1 < \lambda_2 < \cdots, \lambda_1 < b$ and $a \leq \lambda_{n+1} - \lambda_n \leq b$ for $n \geq 1$. Let $\{A_n\}$ be any sequence of complex numbers such that $A_1 \neq 0$

and

$$Z(s) = \sum_{n=1}^{\infty} A_n \lambda_n^{-s}$$
 (1)

converges for some complex $s = s_0$. Then Z(s) is called a generalised Dirichlet series (GDS). We remark that if Z(s) converges at $s = s_0$, then it is absolutely convergent at $s = s_0 + 2$. Note that a GDS is different from zero if real part of $s(Re\ s)$ exceeds a certain constant. In fact as $Re\ s \to \infty$, |Z(s)| tends to a non-zero constant. A GDS is said to be a normalised generalised Dirichlet series (NGDS) if $\sum_{n \leq x} |A_n|^2 \ll_{\epsilon} x^{1+\epsilon}$ for every $\epsilon > 0$. A GDS is said to be a Dirichlet series if $\{\lambda_n\}$ is a subsequence of the sequence of natural numbers.

 $\{\alpha_n\}$ TRANSFORMATION OF AN NGDS. Let Z(s) be an NGDS. We consider only such sequences $\{\alpha_n\}$ of real numbers which satisfy

$$\sum_{n \le x} |A_n \alpha_n|^2 \ll_{\varepsilon} x^{1+\varepsilon} \text{ for every } \varepsilon > 0. \ F(s) = \sum_{n=1}^{\infty} A_n (\lambda_n + \alpha_n)^{-s} \text{ is said to}$$

be an $\{\alpha_n\}$ transformation of $Z(s)$ if $F(s)$ is a GDS. Note that

$$F(s) = D(s) + Z(s) \text{ where } D(s) = \sum_{n=1}^{\infty} A_n((\lambda_n + \alpha_n)^{-s} - \lambda_n^{-s})$$
(2)

and that D(s) is analytic in $\sigma > 0$. Moreover we have

LEMMA 1. For $\sigma > 0$ and every $\varepsilon > 0$ we have $D(s) = O_{\sigma}((|t|+2)^2)$ and also

$$\frac{1}{T}\int_{T}^{2T}|D(\sigma+it)|^{2} dt \ll_{\varepsilon} max\left(T^{2(\frac{1}{2}-\sigma)+\varepsilon},T^{\varepsilon}\right).$$
(3)

PROOF. See Theorems 7 and 7' of XV^[5].

THEOREM 1 (J.E. LITTLEWOOD). Let Z(s) be a GDS which can be continued analytically in $(\sigma \ge \frac{1}{2} - \delta_0, T - \log T \le t \le 2T + \log T)$, where $\delta_0(>0)$ is a constant, and there $\log(\max \mid Z(s) \mid +100)$ is $\ll \log T$. Let $Z(s) \to 1$ as Re $s \to \infty$. For $\alpha \ge \frac{1}{2}$ let $N(\alpha, T)$ denote the number of zeros of Z(s) in $(\sigma \ge \alpha, T \le t \le 2T)$. Then $(for \sigma_0 > \frac{1}{2})$ we have

$$2\pi \int_{\sigma_0}^{\infty} N(\sigma, T) d\sigma = \int_T^{2T} \log |Z(\sigma_0 + it)| dt + O(\log T)$$
(4)

and hence

$$N(\frac{1}{2}+2\delta,T) \le (g\delta)^{-1}T \log\left(\frac{1}{T}\int_{T}^{2T} |Z(\frac{1}{2}+\delta+it)|^{g} dt\right) + O(\log T)$$
(5)

holds uniformly for all real positive constants g and δ . If δ is any fixed constant we may take $\delta_0 = 0$ and then replace $O(\log T)$ by $O_{\delta}(\log T)$.

REMARK. This theorem is essentially due to J.E. Littlewood, since the special case g = 2 and $Z(s) = \zeta(s)$ (due to J.E. Littlewood) is dealt with on pages 229 and 230 of [9]. The general case stated as Theorem 1 above follows by a trivial generalisation of Littlewood's method. If we do not assume $Z(s) \rightarrow 1$ as $Re \ s \rightarrow \infty$, we have to replace $O(\log T)$ by O(T) in (4) and (5). This does not matter for our purposes.

§ 2. A COROLLARY TO THEOREM 1.

THEOREM 2. Let $r \ge 1$ be any integer constant and let $\varphi_1(s), \varphi_2(s), \dots, \varphi_r(s)$ be r Dirichlet series each of which is continuable analytically in $(\sigma \ge \frac{1}{2} - \delta_0, T - \log T \le t \le 2T + \log T)$ and there $\log(\max_j |\varphi_j(s)| + 100) \ll \log T$. Suppose further that

$$\max_{j} \left(\frac{1}{T} \int_{T-\log T}^{2T+\log T} |\varphi_{j}(\frac{1}{2}+it)|^{2} dt \right) \ll_{\epsilon} T^{\epsilon}$$
(6)

holds for every $\epsilon > 0$. Let $P(X_1, \dots, X_r)$ be any fixed polynomial (with complex coefficients) such that when we put $X_j = \varphi_j(s)(i = 1, 2, \dots, r), P =$ $P(s) = P(X_1, \dots, X_r)$ is a normalised Dirichlet series. Let F(s) be any $\{\alpha_n\}$ transformation of P(s). Then the function $N(\sigma, T)$ defined (as before) for F(s) satisfies

$$N(\sigma,T) \ll_{\sigma} T \qquad (\sigma > \frac{1}{2}). \tag{7}$$

REMARK. We define the degree of a monomial $X_1^{d_1} \cdots X_r^{d_r}$ to be $d_1 + \cdots + d_r$ and the degree of $P(X_1, \cdots, X_r)$ to be the maximum of $d_1 + \cdots + d_r$ taken over all monomials occuring in $P(X_1, \cdots, X_r)$. If the degree of P is 1 then we can allow each $\varphi_i(s)$ to be a GDS. Then P has to be an NGDS.

PROOF. The proof follows from the fact that (6) implies

$$\max_{j} \left(\frac{1}{T} \int_{T}^{2T} |\varphi_{j}(\sigma + it)|^{2} dt \right) \ll_{\sigma} 1 \quad (\sigma > \frac{1}{2}), \tag{8}$$

and that for a suitable small constant g > 0 we have

$$|F(s)|^{g} \ll |D(s)|^{2} + |\varphi_{1}(s)|^{2} + \dots + |\varphi_{r}(s)|^{2} + 1.$$
(9)

Note that in view of Lemma 1 it is not hard to deduce that

$$\frac{1}{T} \int_{T}^{2T} |D(\sigma + it)|^2 dt \ll_{\sigma} 1 \qquad (\sigma > \frac{1}{2}).$$
 (10)

From these facts Theorem 2 follows from Theorem 1.

§ 3. TITCHMARSH POINTS. Let F(s) be a GDS continuable analytically in $(\sigma \ge \beta, T - \log T \le t \le 2T + \log T)$ and there $\log(\max | F(s) |$ $+100) \ll \log T$. A point $s_0 = \sigma_0 + it_0$ in $(\sigma \ge \beta + \delta_1, T \le t \le 2T)$, where $\delta_1 > 0$ is a constant, is said to be a *Titchmarsh point with the lower bound* T^{ℓ} for | F(s) | if $\ell(>0)$ is bounded below independent of T and t_0 .

THEOREM 3. If $s_0 = \sigma_0 + it_0$ (with F(s) as above) is a Titchmarsh point of F(s), then the region ($\sigma \ge \beta$, $|t - t_0| \le \delta_2$) where $\delta_2(> 0)$ is any small constant, contains $\gg \log T$ zeros of F(s).

PROOF. For the proof of this theorem due to R. Balasubramanian and K. Ramachandra see Theorem 3 of $III^{[1]}$. It should be mentioned that this theorem is not too-trivial a generalisation of Theorem 9.14 (on page 227 of [9]) due to E.C. Titchmarsh.

WELL-SPACED POINTS. The points $s^{(q)} = \sigma_q + it_q$ $(q = 1, 2, \cdots)$ in the complex plane are said to be *well-spaced* if $|s^{(q)} - s^{(q')}|$ is bounded below for all pairs (q, q') with $q \neq q'$.

THEOREM 4. If there are N_0 well-spaced Titchmarsh points for F(s) (F(s) as in Theorem 3), then F(s) has $\gg N_0 \log T$ zeros in $(\sigma \ge \beta, T \le t \le 2T)$.

PROOF. The proof follows from the fact that |F(s)| tends to a non-zero

limit uniformly in t as $\sigma \to \infty$.

THEOREM 5. Let $\beta(<\frac{1}{2})$ be a constant and $r \geq 1$ any integer constant and $\varphi_1(s), \dots, \varphi_r(s)$ be r Dirichlet series each of which is continuable analytically in $(\sigma \geq \beta, T - \log T \leq t \leq 2T + \log T)$ and there $\log \max_j (|\varphi_j(s)| + 100)$ is $\ll \log T$. Suppose further that for $j = 1, 2, \dots, r$ and $\sigma \geq \beta$, we have

$$\frac{1}{T} \int_{T-\log T}^{2T+\log T} |\varphi_j(\sigma+it)|^2 dt \ll_{\varepsilon} max \left(T^{2m_j(\frac{1}{2}-\sigma)+\varepsilon}, T^{\varepsilon}\right)$$
(11)

where $m_j > 0$ are constants. Let $\mu > 0$ be a constant. Put $X_0 = T^{\mu(\frac{1}{2}-\sigma)-\epsilon}$. Let $X_0^{d_0} X_1^{d_1} \cdots X_r^{d_r} (d_j \ge 0$ integers, $j = 0, 1, 2, \cdots, r)$ be any fixed monomial in X_0, X_1, \cdots, X_r . Let the weighted μ -degree $d(\mu)$ of the monomial be defined as $\mu d_0 + m_1 d_1 + \cdots + m_r d_r$. Put $Q_0(s) = X_0^{d_0} (\varphi_1(s))^{d_1} \cdots (\varphi_r(s))^{d_r}$. Then given any well-spaced set of points $\{s_q\}$ with $s_q = \sigma + it_q (q = 1, 2, \cdots; \sigma \ge \beta + \delta_3, T \le t_q \le 2T)$ where $\delta_3 > 0$ is a small constant we have

$$|Q_0(\sigma+it_q)| \ll max\left(T^{d(\mu)(\frac{1}{2}-\sigma)+\epsilon}, T^{\epsilon}\right), \qquad (12)$$

except for $O(T^{1-\epsilon})$ values of q.

REMARK. If $\sum_{j=1}^{r} d_j = 1$, then we can allow $\varphi_j(s)(j = 1, 2, \dots, r)$ to be GDS.

PROOF. We use the fact that the value $|\varphi_j(s_q)|$ of $\varphi_j(s)$ is majorised by the mean value over a disc (with s_q as centre and ε as radius) of $|\varphi_j(s)|$. We choose a small radius and sum over all the discs taking s_q to be $\sigma + it_q$. We obtain

$$\frac{1}{T}\sum_{q} |\varphi_j(s_q)|^2 \ll max\left(T^{2m_j(\frac{1}{2}-\sigma)+\epsilon}, T^{\epsilon}\right).$$

Hence $|\varphi_j(s_q)| > max(T^{m_j(\frac{1}{2}-\sigma)+\epsilon}, T^{\epsilon})$ is possible for at most $O(T^{1-\epsilon})$ values of q. We next sum over all j and obtain the result.

THEOREM 6. Let $\beta(<\frac{1}{2})$ be a constant and let $\varphi_0(s)$ be a Dirichlet series continuable analytically in $(\sigma \geq \beta, T - \log T \leq t \leq 2T + \log T)$ and there

log max($|\varphi_0(s)| + 100$) $\ll \log T$. Suppose that it has $\gg T(\operatorname{resp} T(\log \log T)^{-1})$ well-spaced Titchmarsh points $\{\sigma + it_q\}$ (where σ is any constant with $\beta < \sigma < \frac{1}{2}$) with the lower bound $T^{\mu(\frac{1}{2}-\sigma)-\epsilon}$ where $\mu(>0)$ is a constant. Let $Q(X_0, X_1, \dots, X_r)$ be a fixed polynomial (with complex coefficients) such that for some positive integer M, the maximum of $d(\mu)$ (defined in Theorem 5) taken over all the monomials $X_0^{d_0} X_1^{d_1} \cdots X_r^{d_r}$ occuring in $Q(X_0, X_1, \dots, X_r)$ is less than $M\mu$. Put $Q(s) = Q(\varphi_0(s), \varphi_1(s), \dots, \varphi_r(s)))$ (where $\varphi_j(s) j = 1, 2, \dots$, are as in Theorem 5). Assume that $(\varphi_0(s))^M - Q(s)$ is an NGDS, and let F(s) be its $\{\alpha_n\}$ transformation. Then F(s) has $\gg T \log T(\operatorname{resp.} T(\log T)(\log\log T)^{-1})$ zeros in $(\sigma \geq \beta, T \leq t \leq 2T)$.

PROOF. Follows from $|(\varphi_0(s))^M - Q(s)| \ge |\varphi_0(s)|^M (1 - |Q(s)| |\varphi_0(s)|^{-M}).$

REMARK. Note that none of the functions $\varphi_0(s)$, $(\varphi_0(s))^M$ and Q(s) need be normalised Dirichlet series. If M = 1, then Q(s) does not involve $\varphi_0(s)$ (which can now be taken to be a GDS). If M = 1 and $Q(X_0, X_1, \dots, X_r)$ (now independent of X_0) is linear in X_1, \dots, X_r (i.e. $\sum_{j=1}^r d_j \leq 1$ for every monomial $X_1^{d_1} \cdots X_r^{d_r}$ occuring in $Q(X_0, X_1, \dots, X_r)$ and equality holds for at least one monomial) then all of $\varphi_1(s), \dots, \varphi_r(s)$ can be taken to be GDS.

Also $Q(X_0, X_1, \cdots, X_r)$ can be a constant.

§ 4. SOME APPLICATIONS OF THEOREMS 2 TO 6. Theorems 2 to 6 are only easy formalisms. These would be completely uninteresting without examples. Finding examples is a difficult task. For example we do not know how to prove the expected result $N(\sigma, T) \ll_{\sigma} T(\sigma > \frac{1}{2})$ for the abelian *L*-series of an algebraic number field. However we have a somewhat general theorem namely.

THEOREM 7. Let $\{\lambda_n\}(n = 1, 2, \cdots)$ be a sequence of real numbers as in the definition of GDS. Let $|\sum_{n \leq x} a_n| \leq B(x), \sum_{n \leq x} |a_n|^2 \leq xB(x)$ and $\sum_{m \leq x} |\sum_{n \leq m} a_n|^2 \leq xB(x)$, where B(x) depends on x. If $B(x) \ll_{\varepsilon} x^{\varepsilon}$ (for every $\varepsilon > 0$ then $Z(s) = \sum_{n=1}^{\infty} a_n \lambda_n^{-s}$ converges uniformly over compact subsets of $\sigma > 0$ and hence is analytic there. We have

$$N(\frac{1}{2}+\delta,T) \ll_{\delta} T \qquad (\delta > 0).$$
(13)

If further log $B(x) \ll \log \log x$ then we have

$$N(\frac{1}{2}+\delta,T) \ll \delta^{-1}T \log(\delta^{-1})$$
(14)

uniformly for $0 < \delta \leq \frac{1}{2}$.

REMARK. Results like

$$\frac{1}{T} \int_{T-\log T}^{2T+\log T} |Z(\frac{1}{2}+it)|^2 dt \ll_{\varepsilon} T^{\varepsilon}$$
(15)

for every $\varepsilon > 0$ and more general and powerful results have been proved in paper V^[6]. Results like (15) imply (13) and (14). If $\{Z(s)\}$ is any finite set of Dirichlet series each subject to (15) we can apply Theorem 2.

We now turn to series of the type

$$\sum_{n=1}^{\infty} a_n b_n e^{2\pi i n \theta} \lambda_n^{-s} \quad (\theta \text{ is a real constant}), \tag{16}$$

their analytic continuations and their Titchmarsh points. Investigations dealing with such series were carried out in a series of papers by R. Balasubramanian and K. Ramachandra (see III^[1], IV^[2], V^[6], VI^[3], XIV^[4] and also the paper [8] by K. Ramachandra and A. Sankaranarayanan). The paper XIV^[4] is nearly final. In paper XIV^[4] the condition $a_n = O(1)$ is assumed. This can be relaxed to $\sum_{n \leq x} |a_n|^2 = O(x)$. This last mentioned condition on a_n will be assumed in the rest of this paper.

Lest we get lost in generalities we state two special cases first.

THEOREM 8. Let $\theta_0(0 < \theta_0 < \frac{1}{2})$ be a constant and let $\{a_n\}$ be a sequence of complex numbers satisfying the inequality $|\sum_{m=1}^{N} a_m - N| \le (\frac{1}{2} - \theta_0)^{-1}$ for

18

 $N = 1, 2, 3, \cdots$. Also for $n = 1, 2, 3, \cdots$, let α_n be real and $|\alpha_n| \leq C(\theta_0)$ where $C(\theta_0)$ is a certain (small) constant depending only on θ_0 . Then the number of zeros of the function

$$\sum_{n=1}^{\infty} a_n (n+\alpha_n)^{-s} = \zeta(s) + \sum_{n=1}^{\infty} (a_n (n+\alpha_n)^{-s} - n^{-s})$$

in the rectangle ($| \sigma - \frac{1}{2} | \leq \delta, T \leq t \leq 2T$) is $\geq C(\theta_0, \delta)T$ log T where $C(\theta_0, \delta)$ is a positive constant depending only on θ_0 and δ , and $T \geq T_0(\theta_0, \delta)$ a large positive constant.

PROOF. Theorem 10 (below) gives $\gg T$ well spaced Titchmarsh points on every line segment ($\sigma = \frac{1}{2} - \delta, T \leq t \leq 2T$) with the lower bound $\gg T^{\delta}$, while actually (14) gives

$$N\left(\frac{1}{2} + \frac{C \log \log T}{\log T}, T\right) \ll C^{-1}T \log T$$

for every fixed C(> 0). (It is not hard to prove the required mean-square upper bound for the function).

THEOREM 9. In the above theorem we can relax the condition on a_n to

$$|\sum_{m=1}^{N} a_m - N| \le (\frac{1}{2} - \theta_0)^{-1} N^{\theta_0}$$
 and $\sum_{n \le x} |a_n|^2 \le (\frac{1}{2} - \theta_0)^{-1} x.$

Then the lower bound for the number of zeros in $(\sigma \ge \frac{1}{2} - \delta, T \le t \le 2T)$ (δ being any constant with $\frac{1}{2} - \delta > \theta_0$) is $\ge C(\theta_0, \delta)T(\log T)(\log \log T)^{-1}$. But only when $\sum_{n\le x} a_n = x + O_{\epsilon}(x^{\epsilon})$ we can prove that $N(\frac{1}{2} + \delta, T) \ll_{\delta} T$. Also if $\sum_{n\le x} a_n = x + O((\log x)^{C_1})$ ($C_1 > 0$ being a constant we can prove

$$\dot{N}\left(\frac{1}{2} + \frac{C(\log\log T)^2}{\log T}, T\right) \ll C^{-1}T(\log T)(\log\log T)^{-1}$$

for every fixed C > 0.

PROOF. Theorem 10 (below) gives $\gg T$ (loglog T)⁻¹ well-spaced Titchmarsh points on every line segment ($\sigma = \frac{1}{2} - \delta, T \leq t \leq 2T$) with the lower

bound $\gg T^{\ell}$ (δ being a constant subject to $\frac{1}{2} - \delta > \theta_0$).

THEOREM 10. (i) Let $\{\lambda_n\}$ be as in the definition of GDS. This sequence will be further restricted by the condition (vii) or (viii) as the case may be. θ will denote a real constant.

Let f(x) and g(x) be positive real valued functions defined in $x \ge 0$ satisfying

(ii) $f(x)x^{\eta}$ is monotonic increasing and $f(x)x^{-\eta}$ is monotonic decreasing for every fixed $\eta > 0$ and all $x \ge x_0(\eta)$.

(iii) $\lim_{x \to \infty} (g(x)x^{-1}) = 1.$

(iv) For all $x \ge 0, g'(x)$ lies between two positive constants and $(g'(x))^2 - g(x)g''(x)$ lies between two positive constants (it being assumed that g(x) is twice continuously differentiable for $x \ge x_0$).

Let $\{a_n\}$ and $\{b_n\}$ be two sequences of complex numbers having the following properties.

(v) $|b_n| (f(n))^{-1}$ lies between two positive constants (for all integers $n \ge n_0$) and $(\sum_{n\le x} |a_n|^2)x^{-1}$ does not exceed a positive constant for all $x \ge 1$.

(vi) For all $X \ge 1$, $\sum_{X \le n \le 2X} |b_{n+1} - b_n| \ll f(X)$.

We next assume that $\{a_n\}$ and $\{b_n\}$ satisfy at least one of the two following conditions.

(vii) MONOTONICITY CONDITION. There exists an arithmetic progression A (of integers) such that

$$\lim_{x\to\infty}\left(x^{-1}\sum_{n\leq x}'a_n\right)=h\quad (h\neq 0),$$

where the accent denotes the restriction of n to A. Also for every positive constant ν we have that $|b_n| \lambda_n^{-\nu}$ is monotonic decreasing for all $n(\geq n_0)$ in A.

(viii) REAL PART CONDITION. There exists an arithmetic pro-

gression Λ (of integers) such that

$$\lim_{x\to\infty} \inf\left(\frac{1}{x} \sum_{x\leq\lambda_n\leq 2x, Re\ a_n>0}' Re\ a_n\right) > 0$$

and

$$\lim_{x\to\infty}\left(\frac{1}{x}\sum_{x\leq\lambda_n\leq 2x,Re\ a_n<0}'Re\ a_n\right)=0$$

where the accent denotes the restriction of n to A.

(ix) Finally we set $\lambda_n = g(n)$ and let $\{\alpha_n\}$ be a sequence of real numbers such that $|\alpha_n|$ does not exceed a small positive constant (depending on other constants). We suppose that the GDS

$$F(s) = \sum_{n=1}^{\infty} a_n b_n e^{2\pi i n \theta} (\lambda_n + \alpha_n)^{-s}$$

can be continued analytically in $(\sigma \ge \frac{1}{2} - \delta, T - \log T \le t \le 2T + \log T)$ and there log max(|F(s)| + 100) $\ll \log T$.

Then on every line segment ($\sigma = \frac{1}{2} - \delta_4, T \leq t \leq 2T$) (δ_4 being a constant with $0 < \delta_4 \leq \delta$) there are $\gg T(\log \log T)^{-1}$ well-spaced Titchmarsh points with the lower bound $\gg T^{\delta_4} f(T)$. If further we have

$$\frac{1}{T}\int_{T}^{2T} |F(\frac{1}{2} - \delta_4 + it)|^2 dt \ll T^{-2\delta_4}(f(T))^2$$

for every constant δ_4 (with $0 < \delta_4 \leq \delta$), then the number of well-spaced Titchmarsh points on the line segment ($\sigma = \frac{1}{2} - \delta_4, T \leq t \leq 2T$) (with the lower bound $\gg T^{\delta_4} f(T)$) is $\gg T$.

REMARK. This theorem is proved by R. Balasubramanian and K. Ramachandra in this form in the paper XIV^[4] except that we have now to use $\sum_{n \leq x} |a_n|^2 \ll x$ in place of $a_n = O(1)$ and also except that we have to involve θ . Lemmas necessary (see Lemma 6 of IV^[2]) for these generali-

ties and also the method have been developed in previous papers mentioned before by R. Balasubramanian and K. Ramachandra. Finally we would like to mention paper XV^[5] of this series of papers. Here we assume a functional equation of a very general type for a GDS and prove that a large class of $\{\alpha_n\}$ transformations of it have $\gg T$ wellspaced Titchmarsh points on every line segment ($\sigma = \frac{1}{2} - \delta, T \leq t \leq 2T$) with a lower bound of the type $\gg_{\varepsilon} T^{m\delta-\varepsilon}$ where m > 0 is a real constant and $\varepsilon(>0)$ is an arbitrary constant (for example for the zeta function of a ray class in an algebraic number field of degree m. If $m \geq 2$ we can allow $\sum_{\substack{n \leq x \\ n \leq x}} |\alpha_n|^2 \ll x^{1+\varepsilon}$ in place of $\sum_{\substack{n \leq x \\ n \leq x}} |A_n \alpha_n|^2 \ll x^{1+\varepsilon}$, see the definition in § 1 for the meaning of A_n). Note that if $A_n = O_{\varepsilon}(n^{\varepsilon})$ then the condition on α_n is simply $\sum_{\substack{n \leq x \\ n \leq x}} |\alpha_n|^2 \ll x^{1+\varepsilon}$. These results are very general. But out of these GDS only in very special cases (but still a somewhat large class of GDS) we can prove that

$$\frac{1}{T}\int_T^{2T} \mid F(\frac{1}{2}+\delta+it)\mid^2 dt \ll_{\varepsilon,\delta} T^{\varepsilon}$$

for all $\delta > 0$ and $\varepsilon > 0$. Some examples (not already covered by Theorem 7) are (i) zeta function of any ray class of a quadratic field (ii) zeta function of a positive definite quadratic form $Q(X_1, \cdots X_\ell)$ (in $\ell \ge 2$ variables and with integer coefficients) namely $\sum_{n=1}^{\infty} (a_n n^{-\frac{\ell}{2}+1}) n^{-s}$, where a_n is the number of ℓ -tuples (m_1, \cdots, m_ℓ) of integers with $Q(m_1, \cdots, m_\ell) = n$. In this case m = 1and the lower bound is $\gg T^{\delta}(\text{resp.} \gg T^{2\delta-\varepsilon})$ according as $\ell > 2$ or $\ell = 2$ see [8].

Instead of enumerating all the applications of this theory we state a beautiful theorem (namely Theorem 11 below). Many other theorems can be deduced in a similar manner by the interested readers from the results of papers mentioned above and the results of § 1, § 2 and § 3, (see also the post-script at the end of this paper).

THEOREM 11. Let \mathcal{F} denote the class of Dirichlet series of the form $\zeta(s) + \sum_{n=1}^{\infty} a_n n^{-s}$ with complex number sequence $\{a_n\}$ satisfying $\sum_{n \leq x} a_n = O(1)$. Let $\varphi_j = \varphi_j(s)(j = 0, 1, 2, \dots, r)$ be any r + 1 Dirichlet series (may

not be distinct) of the class \mathcal{F} . Let $P(X_0, X_1, \dots, X_r)$ be any fixed polynomial (with complex coefficients) of degree d (being the maximum of $d_0+d_1+\dots+d_r$ taken over all monomials $X_0^{d_0}X_1^{d_1}\cdots X_r^{d_r}$ occuring in $P(X_0, \dots, X_r)$). Let Q be defined by

$$Q = (\varphi_0(s))^{d+1} - P(\varphi_0, \varphi_1, \cdots, \varphi_r) = \sum_{n=1}^{\infty} B_n n^{-s}, (\sigma > 1).$$

Then first we have $B_n \neq 0$ for at least one n (also Q is analytic in $\sigma > 0$, $t \geq 1$). Next put

$$F(s) = \sum B_n((n+\alpha_n)^{-s} - n^{-s}) + Q$$

where $\{\alpha_n\}$ is any sequence of real numbers with $|\alpha_n| \leq \frac{1}{3}$. Then in $(\sigma \geq \frac{1}{2} - \delta, T \leq t \leq 2T)$, F(s) has $\gg T \log T$ zeros and in $(\sigma \geq \frac{1}{2} + \frac{C \log \log T}{\log T}, T \leq t \leq 2T)$ only $\ll C^{-1}T \log T$ zeros $(C \geq 1$ being any constant).

REMARK 1. If $d \ge 1$ we can allow $\sum_{n \le x} |\alpha_n|^2 \ll x^{1+\epsilon}$ in place of $|\alpha_n| \le \frac{1}{3}$. But then we have to stipulate that F(s) should be a GDS.

REMARK 2. That $B_n \neq 0$ for at least one *n* of course follows since *Q* has a pole of order (d+1) at s = 1. But then we mention that the conclusion of Theorem 11 are valid for $\varphi_0(s) = (1-2^{1-s})\zeta(s)$ and $\varphi_j(s) = \sum_{n=1}^{\infty} a_n^{(j)} n^{-s} (j =$ $1, 2, \dots, r)$ where max $|\sum_{n \leq x} a_n^{(j)}| = O(1)$.

REFERENCES

- R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-III, J. Indian Math. Soc., 41 (1977), 301-315.
 - [2] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-IV, J. Indian Math. Soc., 42 (1978), 135-142.
 - [3] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-VI, Arkiv för Matematik, 19 (1981), 239-250.
 - [4] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-XIV, Proc. Indian Acad. Sci., (Math. Sci.), 104 (1994), 167-176.
 - [5] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-XV, Indag. Math., 5 (2) (1994), 129-144.
 - [6] K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-V, J. Reine u. Angew. Math., 303/304, (1978), 295-313.
 - [7] K. RAMACHANDRA AND A. SANKARANARAYANAN, On the zeros of a class of generalised Dirichlet series-XVI, Math. Scand., 75 (1994), 178-184.
 - [8] K. RAMACHANDRA AND A. SANKARANARAYANAN, Hardy's theorem for zeta-functions of quadratic forms, (to appear).
 - [9] E.C. TITCHMARSH, The theory of the Riemann zeta-function, (Revised and edited by D.R. HEATH-BROWN), Clarendon Press, Oxford (1986).

POST-SCRIPT

1. In view of Theorem 2, it is important to find Dirichlet series which satisfy (6). This will enable us to prove $N(\frac{1}{2} + \delta, T) \ll_{\delta} T(\delta > 0)$ for larger and larger class of GDS.

2. In view of Theorem 4, it is important to find N_0 (as large as possible) wellspaced Titchmarsh points with the lower bound $\geq T^{k\delta-\epsilon}$ (for some k > 0and every $\epsilon > 0$) on the line segment ($\sigma = \frac{1}{2} - \delta, T \leq t \leq 2T$) for a large class of Dirichlet series. In this direction we have Balasubramanian-Ramachandra functions given by Theorem 10 (Theorems 8 and 9 are special cases of these functions). Also we have the ℓ th derivative ($\ell \geq 0$ integer) of a class of GDS which satisfy a very general functional equation (see equation (5) of $XV^{[5]}$). The case $\ell = 0$ is treated in $XV^{[5]}$ and it is proved that $N_0 \gg T$. We can cover all integers ℓ as follows. We make use of the following lemma.

LEMMA 2. Let h(x) be an n-times continuously differentiable function defined in $a_0 \le x \le a_0 + nd_0$, where $a_0 > 0, d_0 > 0$ are constants and n is any fixed integer ≥ 1 . Then

$$\sum_{r=0}^{n} (-1)^{n-r} \binom{n}{r} h(a_0+rd_0) = \int_0^{d_0} \cdots \int_0^{d_0} h(a_0+u_1+\cdots+u_n) du_1 du_2 \cdots du_n.$$

PROOF. Follows by trivial induction.

We apply this lemma to $h(\sigma) = h(\sigma, t) = \chi(\sigma + it)$ of equation (5) of $XV^{[5]}$ and obtain $|\chi^{(\ell)}(s_0)| \gg T^{k(\frac{1}{2}-\sigma)}(\log T)^{\ell}$ for any fixed $t(T \le t \le 2T)$ and a suitable $s_0 = \sigma_0 + it$ (with σ_0 at a distance of $O((\log T)^{-1})$ from any arbitrarily given σ). At the same time for all s and ℓ we have (by Cauchy's theorem), $|\chi^{(\ell)}(s)| \ll T^{k(\frac{1}{2}-\sigma)}(\log T)^{\ell}$.

Next we apply local convexity (see for example the references [PS-1] and [PS-2] below, see especially Theorem 6-C of [PS-2] for a correction in [PS-1]) to the zeta-function like analytic function $Z^{(\ell)}(s)(\chi(s))^{-1}(\log T)^{-\ell}$ to prove that the integral of its absolute value taken over $|t - t_0| \leq C(\varepsilon)$ on $\sigma = \frac{1}{2} + \delta$ exceeds $t_0^{-\varepsilon}(T \leq t_0 \leq 2T)$, where $C(\varepsilon)$ depends only on ε . From this it follows that for $Z^{(\ell)}(s)$ we have $N_0 \gg T$ and the lower bound

is $\geq T^{k\delta-\epsilon}$.

3. Next given (arbitrarily) N_0 well-spaced points on $(\sigma = \frac{1}{2} - \delta, T \le t \le 2T)$ we can sometimes obtain a subset (of these points) of cardinality $\gg N_0$ $(= T, \text{ sometimes } T(loglog T)^{-1})$ Titchmarsh points for a class of Dirichlet series or GDS. But this class of Dirichlet series is a very restricted one. Let Z(s) be a Dirichlet series (see equation (5) of XV^[5]) which have

- (a) Euler product for $Z_1(s)$.
- (b) Functional equation with $1 \le k \le 2$.
- (c) Mean-square on the critical line (see equation (6) of the present paper) $\sigma = \frac{1}{2}$.

(We have to mention that (c) follows from (b))

(d)
$$|\chi^{(\ell)}(s)| \asymp t^{k(\frac{1}{2}-\sigma)} (\log t)^{\ell}$$
 for all integers $\ell \ge 0$.

From these we can deduce.

LEMMA 3. Let $\{t_j\}(T \leq t_j \leq 2T)$ be a well-spaced set of points with cardinality $\gg T$. Then out of these points we can select a subset of points t'_j (with cardinality $\gg T$) satisfying

$$|Z_1(\frac{1}{2} + \delta + it'_j)| \gg 1$$
 and $|Z_1^{(\ell)}(\frac{1}{2} + \delta + it'_j)| \ll 1$

 $(\ell = 1, 2, \dots, \ell_0)$ where $\ell_0 \ge 1$ is any integer.

PROOF. This lemma is contained implicitly in the proof of Theorem 1 of [PS-3].

From these we can formulate a general principle.

GENERAL PRINCIPLE. In Theorem 11 we can replace $(\varphi_0(s))^{d+1}$ by $Q_1 \equiv (F_1(s))^{M_1}(\varphi^{(\ell_1)}(s))^{M_2}$ with integers $\ell_1 \geq 0, M_1 \geq 0, M_2 \geq 0, M_1 + M_2 \geq 1$, where $F_1(s)$ is a power product (with non-negative integral exponents) of derivatives of functions like Z(s) satisfying (a),(b),(c) and (d) above and $\varphi(s)$ is either a Balasubramanian-Ramachandra function or a function which has a functional equation such as (5) of $XV^{[5]}$. In place of $P(\varphi_0, \varphi_1, \dots, \varphi_r)$ of Theorem 11, we can have a suitable modification say Q_2 such that $Q_1 - Q_2$ has $\gg T(\text{resp. }T(\log\log T)^{-1})$ well-spaced Titchmarsh points on $\sigma = \frac{1}{2} - \delta$. Accordingly we have lower bounds for the number of zeros of $Q_1 - Q_2$ in ($\sigma \ge \frac{1}{2} - 2\delta$, $T \le t \le 2T$) (and upper bounds for $N(\frac{1}{2} + \delta, T)$ only sometimes). We can say similar things about the $\{\alpha_n\}$ transformations of $Q_1 - Q_2$.

REFERENCES ADDED TO POST-SCRIPT

- [PS-1] R. BALASUBRAMANIAN AND K. RAMACHANDRA, Some local convexity theorems for the zeta-function like analytic functions-I, Hardy-Ramanujan J., Vol. 11 (1981), 1-12.
- [PS-2] R. BALASUBRAMANIAN AND K. RAMACHANDRA, Some local convexity theorems for the zeta-function like analytic functions-II, Hardy-Ramanujan J., Vol. 20 (1997), 2-11.
- [PS-3] K. RAMACHANDRA AND A. SANKARANARAYANAN, Notes on the Riemann zeta-function, J. Indian Math. Soc., Vol. 57 (1991), 67-77.

ADDRESSES OF AUTHORS

1. PROFESSOR R. BALASUBRAMANIAN MATSCIENCE THARAMANI P.O. MADRAS 600 0113, INDIA e-mail : BALU@IMSC.ERNET.IN

- 2. PROFESSOR K. RAMACHANDRA SCHOOL OF MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD BOMBAY 400 005 e-mail : KRAM@TIFRVAX.TIFR.RES.IN
- 3. DR. A. SANKARANARAYANAN SCHOOL OF MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD BOMBAY 400 005 e-mail : SANK@TIFRVAX.TIFR.RES.IN

MANUSCRIPT COMPLETED ON 11th OCTOBER 1995.