Hardy-Ramanujan Journal Vol.20 (1997) 29-39

ON THE ZEROS OF A CLASS OF GENERALISED DIRICHLET SERIES-XIX

BY

K. RAMACHANDRA

§ 1. INTRODUCTION AND PRELIMINARIES. The object of this paper is to give a simpler approach to the following theorem (this theorem namely Theorem 10 of $XVIII^{[5]}$ constitutes the main theorem on Balasubramanian-Ramachandra functions arising out of the works $III^{[1]}$, $IV^{[2]}$, $V^{[6]}$, $VI^{[3]}$ due to R. Balasubramanian and K. Ramachandra).

THEOREM 1. (R. BALASUBRAMANIAN AND K. RAMACHANDRA) (i) Let $\lambda_n (n = 1, 2, 3, \cdots)$ be an increasing sequence of positive real numbers such that $\lambda_{n+1} - \lambda_n$ is bounded both above and below. This sequence will be further restricted by the condition (vii) or (viii) as the case may be. θ will denote a real constant.

Let f(x) and g(x) be positive real valued functions defined in $x \ge 0$, satisfying

(ii) $f(x)x^{\eta}$ is monotonic increasing and $f(x)x^{-\eta}$ is monotonic decreasing for every fixed $\eta > 0$ and all $x \ge x_0(\eta)$.

(iii) $\lim_{x \to \infty} (g(x)x^{-1}) = 1.$

(iv) g(x) is differentiable once for $x \ge 0$ and g'(x) lies between two positive constants. Also g(x) is twice differentiable for $x \ge x_0$ and $(g'(x))^2 - g(x)g''(x)$ lies between two positive constants for $x \ge x_0$.

Let $\{a_n\}$ and $\{b_n\}(n = 1, 2, 3, \dots)$ be two sequences of complex numbers having the following properties

 $(\vec{v}) \mid b_n \mid (f(n))^{-1}$ lies between two positive constants (for all integers $n \geq n_0$) and $(\sum_{n \le x} |a_n|^2) x^{-1}$ does not exceed a positive constant for all $x \ge 1$.

(vi) For all $x \ge 1$, $\sum_{\substack{x \le n \le 2x \\ We \text{ next assume that } \{a_n\} \text{ and } \{b_n\} \text{ satisfy at least one of the following }$

conditions. We set $\lambda_n = g(n)$.

(vii) MONOTONICITY CONDITION. There exists an arithmetic progression A (of natural numbers) such that

$$\lim_{x\to\infty}\left(x^{-1}\sum_{n\leq x}'a_n\right)=h^+(0<|h|<\infty),$$

where the accent denotes the restriction of n to A. Also for every positive constant ν we have $|b_{\eta}| \lambda_n^{-\nu}$ is monotonic decreasing for all $n \geq n_0$ in \mathcal{A} .

(viii) REAL PART CONDITION. There exists an arithmetic progression A (of natural numbers) such that

$$\lim \inf_{x \to \infty} \left(\frac{1}{x} \sum_{x \le \lambda_n \le 2x, Re \ a_n > 0} Re \ a_n \right) > 0$$

and

$$\lim_{x\to\infty}\left(x^{-1}\sum_{x\leq\lambda_n\leq 2x,Re\ a_n<0}'Re\ a_n\right)=0$$

where the accent denotes the restriction of n to A.

(ix) Finally let $\{\alpha_n\}$ $(n = 1, 2, 3, \dots)$ be a sequence of real numbers such that $|\alpha_n|$ does not exceed a small positive constant (depending on other constants). We suppose that the series

$$F(s) = \sum_{n=1}^{\infty} a_n \ b_n e^{2\pi i n \theta} (\lambda_n + \alpha_n)^{-s} \quad (Re \ s \ge 2)$$

can be continued analytically in $(\sigma \ge \frac{1}{2} - \delta, T - \log T \le t \le 2T + \log T)$ (where δ is a positive constant) and there $\log \max(|F(s)| + 100) \ll \log T$. As usual we have written $s = \sigma + it$.

Then on every line segment ($\sigma = \frac{1}{2} - \delta_4, T \leq t \leq 2T$), (δ_4 being any constant with $0 < \delta_4 < \delta$) there are $\gg T(\log \log T)^{-1}$ well-spaced Titchmarsh points with the lower bound $\gg T^{\delta_4} f(T)$ for |F(s)|. If further

$$\frac{1}{T} \int_{T-\sqrt{\log T}}^{2T+\sqrt{\log T}} |F(\frac{1}{2}-\delta_4+it)|^2 dt \ll T^{2\delta_4}(f(T))^2$$

for every constant δ_4 (with $0 < \delta_4 \leq \delta$), then there are $\gg T$ well-spaced Titchmarsh points on every line segment ($\sigma = \frac{1}{2} - \delta_4, T \leq t \leq 2T$) with the lower bound $\gg T^{\delta_4} f(T)$ for |F(s)|.

In other words there exist real numbers t_1, t_2, \dots, t_r (with $r \gg T(\log\log T)^{-1}$ and $r \gg T$ respectively in the two cases) such that $T \leq t_j \leq 2T(j = 1, 2, \dots, r)$, the minimum of $|t_j - t_{j'}|$ taken over all pairs (j, j') with $j \neq j'$ is bounded below and further

$$|F(\frac{1}{2}-\delta_4+it_j)|\gg T^{\delta_4}f(T).$$

The proof of this theorem depends on the following two lemmas.

LEMMA 1 (van-der-CORPUT). If $f_1(x)$ is real and twice differentiable and $0 < \mu_2 \leq f_1''(x) \leq h'\mu_2$ (or $\mu_2 \leq -f_1''(x) \leq h'\mu_2$) throughout the interval [a, b], and $b \geq a + 1$, then

$$\sum_{||| < n \le b} Exp(2\pi i f_1(n)) = O(h'(b-a)\mu_2^{\frac{1}{2}}) + O(\mu_2^{-\frac{1}{2}}).$$

REMARK. This result is Theorem 5.9 on page 104 of [8], with a slight change of notation.

LEMMA 2 (H.L. MONTGOMERY AND R.C. VAUGHAN). If $\{\lambda_n\}$ is any increasing sequence of real numbers and $\{A_n\}$ and $\{B_n\}$ are any two sequences of complex numbers, then

$$|\sum_{m\neq n} \sum_{m\neq n} \frac{A_m \ \overline{B}_n}{\log(\lambda_m \lambda_n^{-1})} | \le K(\sum \delta_n^{-1} | A_n |^2)^{\frac{1}{2}} (\sum \delta_n^{-1} | B_n |^2)^{\frac{1}{2}},$$

where $\delta_n = \min_{m \neq n} |\lambda_n - \lambda_m|$ and K is a numerical constant.

REMARK. We need only a special case of this result where $\lambda_{n+1} - \lambda_n$ lies between two positive constants (and so the same is true of $n\delta_n$). For the proof in this special case and also for a reference to the paper of Montgomery and Vaughan see [7].

§ 2. SOME MORE LEMMAS.

LEMMA 3. Let y > 0, w = u + iv, $R(w) = Exp((Sin \frac{w}{100})^2)$, and

$$\Delta(y) = \frac{1}{2\pi i} \int_{u=2} y^w R(w) \frac{dw}{w}.$$

Then for $|u| \leq 3$ we have $|R(w)| \ll (Exp Exp | \frac{v}{100} |)^{-1}$. Consequently $\Delta(y) = 1 + O(y^{-2})$ and also $\Delta(y) = O(y^2)$.

PROOF. By trivial computation (and moving the line of integration to u = -2 and u = 2 respectively).

 \mathcal{A} will denote the arithmetic progression consisting of an infinite subset of natural numbers. Let $\lambda(0 < \lambda < 1)$ be a constant. We put $X = T\lambda$ (later we will choose λ to be a small constant). S will denote the set $\mathcal{A} \cap [\frac{1}{2}X, X]$. All our O-constants and the constants implied by the Vinogradov symbols \gg and \ll will be independent of λ .

LEMMA 4. For $T \leq t \leq 2T$, we have,

$$|\sum_{n\in S} Exp(-2\pi i n\theta + it \log g(n))| \ll T^{\frac{1}{2}}.$$

PROOF. Noting that the second derivative of $-2\pi x\theta + t \log g(x)$ is $t((g'(x))^2 - g(x)g''(x))(g(x))^{-2}$ the lemma follows by Lemma 1.

LEMMA 5. For $T \leq t \leq 2T$, we have

$$|\sum_{n\in S}\overline{b}_n Exp(-2\pi i n\theta + it \log g(n))| \ll T^{\frac{1}{2}}f(X).$$

PROOF. The proof follows by partial summation (from Lemma 4) on using $\sum_{x \le n \le 2x} |b_{n+1} - b_n| \ll f(x) \text{ for all } x \ge 1.$

Next we put $g(n) = \lambda_n$. We consider the case $\alpha_n \equiv 0$ first. Our object is to obtain a good lower bound for the LHS of (2) below.

LEMMA 6. For $s = \frac{1}{2} - \delta + it$, $T \le t \le 2T$, put

$$F_X(s) = \sum_{n=1}^{\infty} a_n b_n Exp(2\pi i n\theta) \lambda_n^{-s} \Delta(\frac{X}{\lambda_n}).$$
(1)

Then

$$\frac{1}{T} \int_{T}^{2T} |F_X(s)| dt \gg (T^{\frac{3}{2}} f(X))^{-1} |I|, \qquad (2)$$

where

1 . .

$$I = \int_{T}^{2T} F_X(s) \sum_{n \in S} \overline{b}_n Exp(-2\pi i n\theta + it \log \lambda_n) dt.$$
(3)

PROOF. Follows from Lemma 5.

LEMMA 7. We have,

$$I = T \sum_{n \in S} a_n \mid b_n \mid^2 \lambda_n^{-\frac{1}{2} + \delta} + O(J)$$
 (4)

where

$$J = (J_1 J_2)^{\frac{1}{2}}, J_1 = \sum_{n=1}^{\infty} |a_n b_n|^2 n^{2\delta} (\Delta(\frac{X}{\lambda_n}))^2$$
(5)

and

$$J_2 = \sum_{n \in [\frac{1}{2}X, X]} n \mid b_n \mid^2.$$
 (6)

PROOF. Follows from Lemma 2.

LEMMA 8. We have

$$J_1 = O(X^{1+2\delta}(f(X))^2)$$
(7)

. . .

and

$$J_2 = O(X^2(f(X))^2).$$
 (8)

PROOF. Follows from $\Delta(y) = 1 + O(y^{-2}) = O(y^2)$ and also from (ii) of Theorem 1.

LEMMA 9. Let

$$\sum_{0} = \sum_{n \in S} a_n \mid b_n \mid^2 \lambda_n^{-\frac{1}{2} + \delta} \Delta(\frac{X}{\lambda_n}).$$
(9)

Then

$$I = T \sum_{0} + O(X^{\frac{3}{2} + \delta}(f(X))^2)$$
(10)

PROOF. Follows from Lemmas 7 and 8.

LEMMA 10. Under monotonicity condition, we have,

$$|\sum_{0}|\gg|h| X^{\frac{1}{2}+\delta}(f(X))^{2}.$$
 (11)

PROOF. We write

$$\frac{1}{x} \sum_{n \in \mathcal{A}, n \leq x} a_n = h + \varepsilon_x$$

where $\varepsilon_x \to 0$ as $x \to \infty$. We obtain the result by the monotonicity of $|b_n|^2 \lambda_n^{-\frac{1}{4}+\frac{1}{2}\delta}$.

LEMMA 11. Under the real part condition, we have,

$$Re\sum_{0} \gg X^{\frac{1}{2}+\delta}(f(X))^{2}$$
(12)

PROOF. Follows since the contribution from those a_n with $Re a_n < 0$ is of a smaller order.

LEMMA 12. We have

$$|I| > C_1 T(f(X))^2 X^{\frac{1}{2}+\delta} - C_2 (f(X))^2 X^{\frac{3}{2}+\delta}$$
(13)

where C_1 and C_2 are positive constants independent of λ .

PROOF. Follows from Lemma 7 to 11.

LEMMA 13. We have, with $s = \frac{1}{2} - \delta + it$, $X = T\lambda$, where $\lambda(>0)$ is some fixed small constant, the inequality

$$\frac{1}{T}\int_{T}^{2T} |F_X(s)| dt \gg T^{\delta}f(T).$$
(14)

PROOF. RHS of (13) is

$$\left(C_1T^{\frac{3}{2}+\delta}\lambda^{\frac{1}{2}+\delta}-C_2T^{\frac{3}{2}}\lambda^{\frac{3}{2}+\delta}\right)(f(X))^2.$$

Using (ii) it follows that $f(X)X^{-1} \ge f(T)T^{-1}$ and so $f(X) \ge \lambda f(T)$. Lemma 13 follows on fixing λ to be a small positive constant.

LEMMA 14. Let now $Y = T\lambda'$ where $\lambda'(0 < \lambda' < \lambda)$ is a small constant. We have

$$\frac{1}{T}\int_{T}^{2T} |F_{Y}(s)| dt \leq \eta_0 T^{\delta} f(T), \qquad (15)$$

where η_0 depends on λ' and is small enough if λ' is small.

PROOF. Note that

$$\frac{1}{T} \int_{T}^{2T} |F_{Y}(s)|^{2} dt \ll Y^{2\delta}(f(Y))^{2}$$

and that here RHS is $\leq Y^{\delta}(Y^{\frac{1}{2}\delta}f(Y))^2 \leq (\lambda')^{\delta} T^{2\delta}(f(T))^2$. Lemma 14 follows from this on using Hölder's inequality.

LEMMA 15. We have, with $X = T\lambda$, $Y = T\lambda'$ where λ is as before and $\lambda'(0 < \lambda' < \lambda)$ is fixed to be a sufficiently small constant, the inequality

$$\frac{1}{T} \int_{T}^{2T} |F_X(s) - F_Y(s)| dt \gg T^{\delta} f(T).$$
 (16)

PROOF. Follows from Lemma 13 and 14.

From now on we fix the positive constants λ and λ' so that (16) is satisfied.

LEMMA 16. Now let α_n be real and let $|\alpha_n|$ be bounded above by a small positive constant. Then with $s = \frac{1}{2} - \delta + it$, $X = T\lambda$, $Y = T\lambda'$ we have

$$\frac{1}{T} \int_{T}^{2T} |\sum_{n=1}^{\infty} a_n b_n Exp(2\pi i n\theta) (\lambda_n + \alpha_n)^{-s} \left(\Delta \left(\frac{X}{\lambda_n + \alpha_n} \right) - \Delta \left(\frac{Y}{\lambda_n + \alpha_n} \right) \right) | dt \gg T^{\delta} f(T).$$
(17)

PROOF. We split the infinite series on the LHS of (17) to be \sum_1 with $n \leq T\lambda''$ (where $\lambda''(>0)$ is a small constant) and \sum_2 the rest. Clearly (by Lemma 2)

$$\frac{1}{T}\int_{T}^{2T} |\sum_{1}| dt \ll (\lambda'')^{\frac{1}{4}\delta}T^{\delta}f(T)$$

and also in \sum_2 using

$$\begin{aligned} (\lambda_n + \alpha_n)^{-s} \left(\Delta \left(\frac{X}{\lambda_n + \alpha_n} \right) - \Delta \left(\frac{Y}{\lambda_n + \alpha_n} \right) \right) - \lambda_n^{-s} \left(\Delta \left(\frac{X}{\lambda_n} \right) - \Delta \left(\frac{Y}{\lambda_n} \right) \right) \\ &= \int_0^{\alpha_n} \frac{d}{dk} \left((\lambda_n + k)^{-s} \left(\Delta \left(\frac{X}{\lambda_n + k} \right) - \Delta \left(\frac{Y}{\lambda_n + k} \right) \right) \right) dk \end{aligned}$$

and Lemma 2 we are led to Lemma 16. (For details see page 173 of $XIV^{[4]}$).

LEMMA 17. We have, with α_n as in Lemma 16,

$$\frac{1}{T} \int_{T}^{2T} |\sum_{n=1}^{\infty} a_n b_n Exp(2\pi i n\theta) (\lambda_n + \alpha_n)^{-s} \left(\Delta \left(\frac{X}{\lambda_n + \alpha_n} \right) - \Delta \left(\frac{Y}{\lambda_n + \alpha_n} \right) \right) |^2 dt \ll T^{2\delta} (f(T))^2.$$
(18)

PROOF. Follows from Lemma 2.

THEOREM 2. Denote by G(s) the infinite series in the LHS of (18). Then there are real numbers t_1, t_2, \dots, t_r as in Theorem 1 with $r \gg T$ and

$$|G(\frac{1}{2} - \delta + it_j)| \gg T^{\delta}f(T).$$
⁽¹⁹⁾

PROOF. Divide the interval [T, 2T] (of integration) on the LHS of (17) into abutting intervals of length 1, ignoring a bit at one end. Ignore the integrals over intervals of length 1 which do not exceed a small (positive) constant times $T^{\delta}f(T)$. Now apply Hölder's inequality for the rest and apply Lemma 17. We obtain (19).

THEOREM 3. We have

$$\frac{1}{T} \int_{T-\sqrt{\log T}}^{2T+\sqrt{\log T}} |P(\frac{1}{2}-\delta+it)| dt \gg T^{\delta}f(T).$$
(20)

PROOF. Collows from Lemma 16 on writing G(s) as a line integral over u = 2 and moving the line of integration to u = 0 using suitable horizontal connecting lines.

§ 3. COMPLETION OF THE PROOF OF THEOREM 1. Using the mean square upper bound for |F(s)| and also Theorem 3, we can obtain (as in the proof of Theorem 2) real numbers t_1, t_2, \dots, t_r as in Theorem 1 with $r \gg T$ and

$$|F(\frac{1}{2}-\delta+it_j)|\gg T^{\delta}f(T).$$

Next we use Theorem 2. Out of the numbers t_1, \dots, t_r we can omit a minimal number of them and obtain numbers $\tau_1, \dots, \tau_{r'}$ such that $r' \gg T(\log \log T)^{-1}, |\tau_j - \tau_{j'}| \gg \log \log T$ for all pairs (j, j') with $j \neq j'$ and

$$|G(\frac{1}{2}-\delta+i\tau_j)|\gg T^{\delta}f(T).$$

Now writing G(s) as a line integral over u = 2 and moving the line of integration to u = 0 using suitable connecting horizontal lines. We thus obtain points τ'_1, \dots, τ'_r , with

$$|F(\frac{1}{2}-\delta+i\tau'_j)|\gg T^{\delta}f(T) \ (j=1,2,\cdots,r').$$

This proves Theorem 1 completely.

REFERENCES

- R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-III, J. Indian Math. Soc., 41 (1977), 301-315.
- [2] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-IV, J. Indian Math. Soc., 42 (1978), 135-142.
- [3] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-VI, Arkiv för Mathematik, 19 (1981), 239-250.
- [4] R. BALASUBRAMANIAN AND K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-XIV, Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 167-176.
- [5] R. BALASUBRAMANIAN, K. RAMACHANDRA AND A. SANKARA-NARAYANAN, On the zeros of a class of generalised Dirichlet series-XVIII, Hardy-Ramanujan J., vol. 20 (1997), 12-28.
- [6] K. RAMACHANDRA, On the zeros of a class of generalised Dirichlet series-V, J. Reine a. Angew. Math., 303/304 (1978), 295-313.
- [7] K. RAMACHANDRA, Some remarks on a theorem of Montgomery and Vaughan, J. Number Theory, 11 (1979), 465-471.
- [8] E.C. TITCHMARSH, The Theory of the Riemann zeta-function (Revised and edited by D.R. HEATH-BROWN), Clarendon Press, Oxford (1986).

ADDRESS OF THE AUTHOR

K. RAMACHANDRA SENIOR PROFESSOR SCHOOL OF MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD BOMBAY 400 005, INDIA

e-mail: KRAM@TIFRVAX.TIFR.RES.IN

MANUSCRIPT COMPLETED ON 22nd OCTOBER 1995.