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Remarks on the impossibility of a Siegel-Shidlovskii like

theorem for G-functions

T. Rivoal

Abstract. The Siegel-Shidlovskii Theorem states that the transcendence degree of the field generated over Q(z) by E-functions
solutions of a differential system of order 1 is the same as the transcendence degree of the field generated over Q by the evaluation

of these E-functions at non-zero algebraic points (expect possibly at a finite number of them). The analogue of this theorem is

false for G-functions and we present conditional and unconditional results showing that any intermediate numerical transcendence
degree can be obtained.
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1. Introduction

In 1929, Siegel [Sie29] introduced two classes of arithmetic power series, E and G-functions, which
can be viewed as generalizations of exp(z) and log(1 − z) respectively. An E-function is a formal
power series E(z) =

∑∞
n=0

an
n! z

n such that the coefficients an are algebraic numbers and there exists
C > 0 such that:

(i) the maximum of the moduli of the conjugates of an is ≤ Cn+1 for any n.

(ii) there exists a sequence of non-zero rational integers dn, with |dn| ≤ Cn+1, such that dnam is an
algebraic integer for all m ≤ n.

(iii) E(z) satisfies a homogeneous linear differential equation with coefficients in Q(z).

Siegel’s definition is slightly more general but it is believed that the distinction does not exists.
Nowadays E-functions tend to be systematically defined as above. A G-function is a formal power
series G(z) =

∑∞
n=0 anz

n satisfying (i), (ii) and (iii) (with G(z) instead of E(z) there). Shidlovskii
completed Siegel’s results on the diophantine nature of E-functions; see [Shi89].

Theorem 1. (Siegel-Shidlovskii, 1929-1955) Let Y (z) = t(E1(z), . . . , En(z)) be a vector of E-
functions solution of a differential system Y ′(z) = A(z)Y (z) where A(z) ∈ Mn(Q(z)). Let T (z) be
the least common denominator of the entries of A(z). Then for any α ∈ Q such that αT (α) 6= 0, we
have

deg trQ(z)Q(z)(E1(z), . . . , En(z)) = deg trQQ(E1(α), . . . , En(α)).

Subsequent works by Nesterenko and Shidlovskii [NS96], André [And00, And15], Beukers [Beu06]
gave a precise description of the polynomials relations when the transcendence degree is not maximal:
basically, any numerical relation can be lifted to a functional one in the simplest way.

The diophantine theory of E-functions is thus essentially complete. This is far from true for
G-functions, for which transcendence results are sporadic, let alone algebraic independence results.
Following the pioneering works of Galochkin [Gal74], Bombieri [Bom79] and Chudnovsky [Chu84], the
closest results in the direction of a Siegel-Shidlovskii like theorem for G-functions are of the following
form.
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Theorem 2. (Chudnovsky, 1984) Let Y (z) = t(G1(z), . . . , Gn(z)) be a vector of G-functions so-
lution of a differential system Y ′(z) = B(z)Y (z), where B(z) ∈Mn(Q(z)). Assume that

deg trQ(z)Q(z)(G1(z), . . . , Gn(z)) = n.

For any d, there exists C = C(Y, d) > 0 such that, for any algebraic number α 6= 0 of degree d with

|α| < exp
(
−C log (H(α))

4n
4n+1

)
, there does not exist a polynomial relation between G1(α), . . . , Gn(α)

over Q(α) of degree d.

Here, H(α) is the naive height of α. There is a long way between this statement and algebraic
independence. In a special case, André [And96] proved a Siegel-Shidlovskii like theorem. His proof is
a refinement of that of Chudnovsky.

Theorem 3. (André, 1996) For any α ∈ Q∗ with |α| < 1, the two numbers 2F1[1
2 ,

1
2 ; 1;α] and

2F1[−1
2 ,

1
2 ; 1;α] are algebraically independent over Q.

These hypergeometric series form a solution of a differential system of dimension 2, and the theorem
also has a p-adic counterpart. André’s method, named simultaneous adelic uniformisation, is quite
general in principle but has been applied so far only to the example described in the theorem, or to
directly connected variations. The relation between these two hypergeometric series and periods of
elliptic curves (and Jacobi theta functions) is crucial.

To the best of my knowledge, in the ring of G-values (see [FR14]), it is not yet known that there
exist three numbers which are algebraically independent over Q, though we can find two which are
algebraically independent over Q, for instance π and Γ(1/3)3, or π and Γ(1/4)4. Both results are
highly non-trivial and due to Chudnovsky; they are also consequences of André’s theorem.

However, the situation in this theorem does not describe the general case. Indeed, there exist
many examples of transcendental G-functions F (z) assuming algebraic values at some algebraic point
α. It is trivial that there exist examples with α 6= 0 a singularity of the differential equation; indeed
given a G-function F (z) with α inside its disk of convergence,

√
1− z/αF (z) is also a G-function, but

now α is a singularity of its minimal differential equation. But there also exist examples where α is
not a singularity. The most striking ones are the “modular” hypergeometric series 2F1(z), which takes
algebraic values on a dense algebraic set (see [Arc03, Beu93, Wol88]), for instance 2F1[ 1

12 ,
5
12 ; 1

2 ; z] is

equal to 3
4

4
√

11 at z = 1323
1331 .

While giving a lecture on E and G-functions where I presented the Siegel-Shidlovskii Theorem,
I was asked to which extent it is impossible to prove an analogue for G-functions. The answer is
probably part of the folklore but I could not find it, which led me to write this note.

Proposition 1. Given any non-zero distinct algebraic numbers α1, . . . , αk and any integer n ≥ 1,
there exists a vector Y (z) = t(G1(z), . . . , Gn(z)) of G-functions in Q[[z]], with Gn(z) = 1, solution
of a differential system Y ′(z) = B(z)Y (z) where B(z) ∈Mn(Q(z)) such that the following holds. Let
S(z) be the least common denominator of the entries of B(z). Then

deg trQ(z)Q(z)
(
G1(z), . . . , Gn(z)

)
= n− 1,

and, for all j = 1, . . . , k, we have αjS(αj) 6= 0 and

deg trQQ
(
G1(αj), . . . , Gn(αj)

)
= 0.

Moreover, we can also prove results with other values for the numerical transcendence degree.

Proposition 2. For any integer n ≥ 2, there exists a vector Y (z) = t(G1(z), . . . , Gn(z)) of G-
functions in Q[[z]] solution of a differential system Y ′(z) = B(z)Y (z) where B(z) ∈ Mn(Q(z)) such
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that the following holds. Let S(z) be the least common denominator of the entries of B(z). Then
S(1) 6= 0,

deg trQ(z)Q(z)
(
G1(z), . . . , Gn(z)

)
= n− 1

and
deg trQQ

(
G1(1), . . . , Gn(1)

)
= 1.

We can replace the transcendence degree 1 by any integer in {2, . . . , n−1} provided we assume the (so
far unproven) assumption that the numbers log(p), with p running through the primes, are algebraically
independent over Q.

Using the G-values π and Γ(1/3)3, we can obtain an unconditionnal result with numerical transcen-
dence degree 2.

Proposition 3. For any integer n ≥ 4, there exists a vector Y (z) = t(G1(z), . . . , Gn(z)), with
Gn(z) = 1, of G-functions in Q[[z]] solution of a differential system Y ′(z) = B(z)Y (z) where
B(z) ∈ Mn(Q(z)) such that the following holds. Let S(z) be the least common denominator of the
entries of B(z). Then S(1) 6= 0,

deg trQ(z)Q(z)
(
G1(z), . . . , Gn(z)

)
= n− 1

and
deg trQQ

(
G1(1), . . . , Gn(1)

)
= 2.

All these results concern one algebraic point, or a finite number of algebraic points. It seems difficult
to have small transcendence degree at infinitely many algebraic numbers for any n ≥ 3 (the case
n = 2 is possible, due to Wolfart [Wol88]). It is a difficult problem to predict the polynomial relations
between values of G-functions. The Bombieri-Dwork Conjecture implies that G-values should be, in
some sense, periods of suitable algebraic varieties over Q; the converse is known to be true, by André’s
work in [And89]. Polynomial relations between periods are described by Grothendieck Conjecture, of
which not much is known. Roughly speaking, it says that any polynomial relation between periods
has a motivic origin. We refer to André’s book [And04], especially Partie III from page 199.

The above results are not difficult to prove, provided we assume some well-known transcendence
results. The real point is proving the algebraic independence over Q(z) of the G-functions specially
constructed to collectively assume few values at some given algebraic point. The easiest way for this is
to use G-functions with logarithmic singularities at various points. An an illustration of the method,
let us show that log(1 − z) (defined in D = C \ [1,∞)) is not in Q(z). Indeed, assume there exists
P ∈ Q[X,Y ] such that P (z, log(1 − z)) = 0 for all z ∈ D; then by “turning” m times around z = 1,
we get P (z, log(1 − z) + 2iπm) = 0 for all m ∈ Z. This implies that P is a constant in the variable
Y , ie that P (X,Y ) = P (X, 0); hence P (z, 0) = 0 for all z ∈ D which forces P to be identically equal
to 0.

2. Proof of Proposition 1

The case n = 1 is of no interest, we simply take G1(z) = 1. We now assume that n ≥ 2. Let
P (z) ∈ Z[[z]] of degree ≥ 1 that does not vanish at z = 0 and vanishing at α1, . . . , αj . We define an
integer D ≥ 1 large enough such that for any |z| ≤ |max`(α`)| + 1, we have |zkP (z)| < D. We now
set

Gk(z) = log
(

1 + zk
P (z)

D

)
, k = 1, . . . , n− 1

and Gn(z) = 1. Each Gk(z) can be expanded as a power series
∑∞

n=0 ak,nz
n ∈ Q[[z]] with radius of

convergence ≥ |max`(α`)| + 1. In particular, the power series can all be evaluated at each z = α`,
` = 1, . . . , j.
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Obviously, G′k(z) = rk(z)Gn(z) with

rk(z) =
zk−1(kP (z) + zP ′(z))

D + zkP (z)
, k = 1, . . . , n− 1,

so that Y (z) = t(G1(z), . . . , Gn(z)) is solution of a differential system Y ′(z) = B(z)Y (z) with

B(z) =


0 . . . 0 r1(z)
0 . . . 0 r2(z)
... . . .

...
...

0 . . . 0 rn−1(z)

0 . . . 0 0


Clearly, the αj ’s are not poles of any of the entries of B(z) and the condition α`S(α`) 6= 0 is satisfied
for each `.

Since Gn(αj) = 1 and Gk(α`) = 0 for k = 1, . . . , n− 1 and ` = 1, . . . , j, it remains to prove that

deg trQ(z)Q(z)(G1(z), . . . , Gn(z)) = n− 1.

In other words, we have to prove that there does not exist Q ∈ Q[X1, . . . , Xn] such that

Q
(
z,G1(z), . . . , Gn−1(z)

)
= 0

for all z in C minus a certain number of cuts rooted at the zeroes of 1+zkP (z)/D, for k = 1, . . . , n−1.
Let ξk be any fixed root of 1 + zkP (z)/D; clearly, ξk 6= ξj if k 6= j. For any integer m, if we “turn”
m times around ξ1, we obtain

Q
(
z,G1(z) + 2iπm,G2(z) . . . , Gn−1(z)

)
= 0

locally around ξ1. As a polynomial in X2, Q
(
z,X2, G2(z) . . . , Gn−1(z)

)
has infinitely many roots,

hence it must be 0 in the variable X2, which implies that

0 = Q
(
z,X2, G2(z) . . . , Gn−1(z)

)
= Q

(
z, 0, G2(z) . . . , Gn−1(z)

)
.

We now turn around ξ2, and so on, to reach the conclusion that

0 = Q
(
z,X2, X3 . . . , Xn

)
,

for all z. Hence, Q(X1, . . . , Xn) is in fact equal to Q(0, 0 . . . , 0) = 0 and thus is identically zero.

3. Proof of Proposition 2

To get an example where deg trQQ
(
G1(1), . . . , Gn(1)

)
= 1, we take Gn(z) = 1, Gk(z) = log(1 −

zk/2) ∈ Q[[z]] for k = 1, . . . , n − 1. The same argument as in the proof of Proposition 1 gives
deg trQ(z)Q(z)(G1(z), . . . , Gn(z)) = n− 1, and for k ≥ 1, Gk(1) = − log(2) 6∈ Q (unconditionally).

To get an example where deg trQQ
(
G1(1), . . . , Gn(1)

)
= ` for a given integer ` ∈ {2, . . . , n − 1},

we repeat the above arguments with Gn(z) = 1, Gk(z) = log(1 + (pk − pk+1)zk/pk+1) ∈ Q[[z]] for
k = 1, . . . , ` − 1, and Gk(z) = log(1 + (p`−1 − p`)zk/p`) ∈ Q[[z]] for k = `, . . . , n − 1. Here, pj is the
j-th prime number, from p1 = 2. The functions are algebraically independent over Q(z) and

deg trQQ
(
G1(1), . . . , Gn(1)

)
= deg trQQ

(
log(p1/p2), . . . , log(p`−1/p`)

)
= `

conditionally.
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4. Proof of Proposition 3

Let us now construct a vector of G-functions leading to a numerical transcendence degree 2. We start
with the following result: the G-values π and Γ(1/3)3 are algebraically independent over Q. Let us
consider the two G-functions

f(z) = z2F1

[
1,

1

2
;
3

2
;−z2

]
= arctan(z) =

∞∑
n=0

(−1)n
z2n+1

2n+ 1

and

g(z) = 2F1

[
4

3
,−1

3
; 1;

z

2

]
=
∞∑
n=0

(4
3)n(−1

3)n

2n(1)2
n

zn.

Note that f ′(z) = 1
1+z2

∈ Q(z).

We have f(1) = π
4 while g(1) ∈ π

Γ(1/3)3
Q. The latter relation follows from a general formula of

Bailey [Sla66, p. 32, Eq. (1.7.1.8)]:

2F1

[
a, 1− a; c;

1

2

]
=

Γ( c2)Γ(1+c
2 )

Γ(a+c
2 )Γ(1+c−a

2 )
.

With a = 4
3 and c = 1, this gives

g(1) =
Γ(1

2)

Γ(7
6)Γ(1

3)
=

6Γ(1
2)

Γ(1
6)Γ(1

3)
=

6Γ(2
3)

22/3Γ(1
3)2

= 42/3
√

3
π

Γ(1
3)3

,

where we have used in succession three functional equations for the Gamma function (with s = 1
6 and

t = 2
3):

Γ(s+ 1) = sΓ(s), Γ(s)Γ
(
s+

1

2

)
= 21−2sΓ

(1

2

)
Γ(2s), Γ(t)Γ(1− t) =

π

sin(πt)
. (4.1)

We also need to evaluate g′(1). By [Sla66, p. 15, Eq. (1.4.1.1)], we have

g′(z) = −2

9
2F1

[
7

3
,
2

3
; 2;

z

2

]
.

We can sum g′(1) by means of [Sla66, p. 32, Eq. (1.7.1.9)]:

2F1

[
a, b;

1 + a+ b

2
;
1

2

]
=

Γ(1
2)Γ(1+a+b

2 )

Γ(1+a
2 )Γ(1+b

2 )
.

With a = 7
3 , b = 2

3 and using the reflection formula (last identity in (4.1)), we obtain

g′(1) = −
2Γ(1

2)Γ(2)

9Γ(5
3)Γ(5

6)
= −1

3
sin
(2π

3

)
sin
(π

6

)Γ(1
3)Γ(1

6)

Γ(1
2)3

= −
√

3

2πg(1)
.

The point z = 1 is not a singularity of the respective minimal differential equations of order
2 satisfied by f(z) and g(z). This is also the case for the functions f(zk) for any integer k ≥ 1.
For any n ≥ 4, we now define n G-functions by Gk(z) = f(zk), k = 1, . . . , n − 3, Gn−2(z) = g(z),
Gn−1(z) = g′(z), Gn(z) = 1. The vector Y (z) = t(G1(z), G2(z), . . . , Gn(z)) is solution of a differential
system Y ′(z) = M(z)Y (z) where the matrix M(z) ∈Mn(Q(z)) is not singular at z = 1.

By construction, we have

deg trQQ
(
G1(1), . . . , Gn(1)

)
= deg trQQ

(
f(1), g(1), g′(1)

)
= deg trQQ

(
π,Γ

(1

3

))
= 2.
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Let us now prove that the functions Gk(z), k = 1, . . . , n − 1, are algebraically independent over
Q(z). This is a consequence of the following facts. The singularities (at finite distance) of the functions
f(z) and g(z) are ±i and 2 respectively. Moreover, locally around z = i,

f(z) = Φ1(z) log(i− z) + Φ2(z)

for some Φ1(z) 6= 0 and Φ2(z) holomorphic at z = i, while locally around z = 2,

g(z) = Ψ1(z) log(2− z) + Ψ2(z)

for some Ψ2(z) holomorphic at z = 2 and Ψ1(z) = g(2− z) 6= 0. Note that

g′(z) = Ψ′1(z) log(2− z) + Ψ′2(z) +
Ψ1(z)

z − 2

also has infinite monodromy around z = 2.
We start from an hypothetic polynomial relation

Q
(
z, f(z), f(z2), . . . , f(zn−3), g(z), g′(z)

)
= 0,

for some non-zero polynomial Q ∈ Q[X1, . . . , Xn]. We first eliminate the functions f(zk) by “turning”
around eiπ/(2k), k = 1, . . . , n− 3. There remains a polynomial relation

Q̃
(
z, g(z), g′(z)

)
= 0.

To rule out such a relation, we cannot use the same argument as above because g(z) and g′(z)
have the same type of monodromy around z = 2. However, they are algebraically independent over
Q(z) because the differential Galois group of the minimal differential equation satisfied by g(z) is
SL2(C) (see [BH89] for instance). Hence, the G-functions Gk(z), k = 1, . . . , n − 1, are algebraically
independent over Q(z).
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[And04] Y. André, Une introduction aux motifs, Panorams et Synthèses 17, SMF, 2004
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Université Grenoble 1, CNRS UMR 5582
100 rue des Maths, BP 74
38402 Saint-Martin d’Hères cedex
France
e-mail : Tanguy.Rivoal@ujf-grenoble.fr


	Introduction
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

