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1. Introduction 

This paper arose out of a table of RAJA RAMANNA et al. (see [RR,AS], [RR, BVSJ 

and [RR] papers on nuclear physics) which gave values of the number log10 ( where n 

is a positive integer. The authors observed that sometimes this is very close to a prime. I 

first state a result of I.M. VINOGRADOV (see [IMV]) and then a result of S.D. CHOWLA 

(see [SDC]) and then go on to state the course of developments of a deep method (see 

(HD.HH)) due to H. DAVENPORT and H. HEILBRONN. One of the corollaries to a deep 

theorem of I.M. VINOGRADOV runs as follows. Let ). > 0 be any fixed irrational number. 

Then as n runs through all positive integers and p through all primes the numbers >.p - n 

are everywhere dense on the real line. (Actually VINOGRADOV proves that the numbers >.p 

are "uniformly distributed modulo 1" .) By using a theorem of V. JARNIK and A. WALFISZ 

(VJ,AW] on the number of lattice points in a five-dimensional ellipsoid, S.D. CHOWLA 

deduced ingeniously that the set of values of >.1x] (>.1 fixed non-zero real numbers, not 

all of the same sign and ).1.\21 irrational) as the nine number tuple (x1) runs independently 

over all positive integer entries, is dense on the real line. The result of DAVENPORT and 

states that here 9 can be reduced to 5. (The latest result in this direction 

is due to G.A. MARGULIS who by a different method [GAM] showed that the values of 

any real indefinite quadratic form in 3 variables (which is not a multiple of a form with 

rational coefficients), as the variables run through all triplets of positive integers, is dense 

everywhere on the real line.) 
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Now we come to the method of DAVENPORT and HEILBRONN. Their method was 

modified by R.P. BAMBAH [RPB] who showed that the values of 2:;=1 >.jx] with the same 

conditions as before is dense on the real line even when we insist that one of the co-

ordinates say x 5 be the k0 th powers of positive integers ( k0 2 being a fixed integer). The 

problem of considering prime quintuplets (xj) was considered by K. RAMACHANDRA [KRI], 

and earlier W. SCHWARZ [WSJ, both of whom considered also the corresponding linear 

problem 2:J=1 AjXj with prime triplets (x1 , x2, x3). Also A. BAKER [AB) considered the 

linear problem by a different method. The result of K. RAMACHANDRA was sharper than 

those of W. SCHWARZ and A. BAKER, and his method like the method of W. SCHWARZ 

was an adaptation of the fundamental method of DAVENPORT and HEILBRONN. Next 

R.C. VAUGHAN [RCV1], [RCV2] improved remarkably the result of K. RAMACHANDRA by 

introducing into the method, expressions involving the zeros of the Riemann zeta-function. 

(It should be mentioned that much later after R.C. VAUGHAN, S. SRINIVASAN [SS] has 

also worked out some results by the DAVENPORT-HEILBRONN fundamental method (by 

using VAUGHAN's ideas)). 

In this paper it is our object to raise new questions which arise in connection with 

our new results which run as follows. (We state a few theorems and make some remarks.) 

Theorem 1. Let a > 1, c > 1 be any two fixed real numbers suc.h that 1

1
oga 
ogc 

irrational. Then for any two fixed real numbers b and T], we have the inequality 

for infinitely many pairs ( n, p) where n is a positive integer and p is prime. 

Remark 1. Let >. be any positive irrational and <p(u) (u 3) be any continuously 

differentiable function for which <p'(u) is monotonic and = (We can relax this 

condition to some extent.) Then the numbers >.p- n .+ <p(n) are dense (everywhere) on 

the real line as n runs through all positive integers and p through primes. 

Actually we prove the following more general theorem and remark about some new 

questions. 

Theorem 2. Let >.1 > 0, >.3 < 0 be any two constants such that >.1>.3 1 is irrational 

and let >.2 be any non-zero real constant. Let <p1 ( u), <p2 ( u) and <p3 ( u) be any three 

continuously differentiable real valued functions (defined for u 3) with the prop-

erties: <pj( u) monotonic and 2:J=1 l<t'j( u)l ::::; u-1(log u)ko where ko is any fixed positive 

constant. Then the inequality 

3 

I L Aj(Pj + <f'j(pj))l < Exp( -(log(PlP2P3))
112

) 
' j=l 
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holds for infinitely many triplets (p1 , p2, p3) of primes (in fact , even with the restric-

tion Pi
1
P2 S Exp( -(log(PIP2P3))

112
).) 

Remark 2. By employing R.C. VAUGHAN's method (which is a sharpening of RA-

tviACHANDRA's method) we may be able to replace Exp( -(log(p1p2p3.))
112 ) which occurs in 

the above theorem by (p1p2p3t 6 where o > 0 is an absolute constant. 

Remark 3. The precise generalisations of Theorem 2 (with for example PJ + 'Pi(Pi), k 2 1, 

in place of Pi+ 'Pi(Pj)) will form the subject matter of a forthcoming paper. 

Remark 4. One of the attractive problems is to consider (with any indefinite quadratic 

form f(x 1 , x2, x3) in three variables which is not proportional to a rational form) the 

problem regarding f(x 1 + c.p1 (xi), x2 + tp2(x2), x3 + c.p3(x3)) which corresponds to the result 

of G.A. MARGULIS. Here c.p1(u), cp2(u) and c.p3(u) are suitable real.valued functions. 

2. Notation and sketch of the method 

We denote by A, B, C quantities greater than 1, which will depend on the variable x 

(x 2 10) (but all of them are S exp(lOOy'IQgX)). We will choose them later. Very soon 

we will choose B = A (since B =f:. A is not of much use). The letter D will denote the 

constant (3..Xt + 2I..X2I)I..X3I-1
. We write e(u) = e2

1riu, 

51 L (logp)e(B..Xta(p+c.pi(P))) 

52 L (logp)e(B..X2a(p+c.p2(P))) 
;.' 

53 L (logp)e(B..X3a(p + c.p3(p))), 

where a is a real variable. 

Then by using 

j oe (sin( 7ra)) 2 
-oc e(/3a) 7ra da = max(O, 1 - l/31) (/3 real), 

we see that the quantity J defined by 

j =JOG Sl52SJ(Sin(7ra))
2
da 

- oc 7l'Q 

satisfies 

3 

J = L L l:)logpt)(logp2)(logp3) max( 0,1 -JB L Aj(Pj + c.p(pi))i) 
j=l 



A method of Davenport and Heilbronn 15 

where the three summations are as in S1 , S2 and S3 respectively. Clearly it suffices to 

prove J "I= 0 (with a suitable B) in order to prove Theorem 2. This is done as follows. 

First of all we show that the contribution J1 (to J) from the interval Ia I $ x- 1 A is the 

dominant term for J (we may calllal $ x- 1 A as the basic interval). Next we prove that the 

contribution J3 (to J) from Ia! B(logx)2 is small (we may call this the supplementary 

interval). The contribution J2 (to J) from the remaining interval will have to be shown to 

be small for a sequence x = x 11 - oo (that will be done by using the irrationality of A1A3 1
• 

this (remaining) interval may be called the intermediary interval). Though this reminds us 

of the famous "CIRCLE METHOD", this method is somewhat different and is an ingenious 

method due to H. DAVENPORT and H. HEILBRONN. We introduce some more notation. 

c-• 
12 = e(BA2a(u + <p2(u))du, 

13 = e(BA3a(u + <p3(u))du, 

and 

Ej = sj- Ij (j = 1,2,3). 

We assume the prime number theorem in the form 19(u)- u = O(uE-1(u)) (u 3), where 

E(u) = Exp((logu)¥o), and 19(u) = '2:2$p$ulogp. The letters K 1 and K 2 will denote certain 

positive constants independent of x. The Vinogradov symbols « and >> have the usual 

meaning. 

3. Treatment of the basic interval 

Consider the portion J1 of J, where the integration is restricted by lal $ x- 1 A. In J1 

we define J* to be the same as J1 but with S1, S2 and S3 being replaced by 11, ! 2 and 

h, respectively. Next we define J** to be the same as J* with the integration limits 

-oo:::; a:::; oo. Our first object is to show that IJ1 - J*l is small and that IJ*- J**i is also 

small, but J** is big. This will complete the object of this section namely that J1 is big. 

We begin with the following lemma. 

Lemma 3.1. We have 

3 3 

IS1S2S3- J1J2J31:::; Il(IIjl + IEjl)- II IIjl· 
j=l j=l 

0 
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Proof. Follows from Sj = Ij + Ej 

Lemma 3.2. We have 

and 

where the implied constants depend only on ).1, ).2 and ).3 . 

Proof. We have 

Hence 

IE1I « xE-1(x) + IB).Iadx2E-1(x). 

Similarly we can prove estimates for IE31 and IE2I· 0 

From now on we choose A = B. 

Lemma 3.3. For lal x-1 A, we have the inequality 

Proof. Follows from the condition A= B imposed already. 0 

Lemma 3.4. We have 

Proof. The proof follows from Lemmas 3.1 and 3.3 (on using the trivial estimates for lid, 
II2I and II31). 0 
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Lemma 3.5. We have 

II1I2J3I IBal-3 

for all real a (where the implied constant depends only on A1 , A2 and A3 ). 

Proof. The integrals Ib I 2 , I3 are of the form 

j e(BAja(u + <pj(u)))du (over suitable limits of integration) 

_ j BAja(1 + <pj(u))e(BAja(u + <pj(u)))du _ 

- BAja(l + <pj(u)) . - · 

on using the monotonicity of <pj ( u). 0 

Lemma 3.6. We have 

Proof. LHS is 

0 

Lemma 3.7. We have 

where the implied constant depends only on A1, A2 and A3 . 

Proof. LHS is the same as 

/."' {c-• /,D" max ( 0, I - IB t, A; ( u; + <p; ( u;)) I) du, du,du,. 

Let u1 and u2 run freely over their ranges. For every pair ( u 1 , u2 ) the integrand is 

provided 

IBA3( U3 + <p3( u3)) I 

(as a function of u3 ) varies over an interval of length For this u3 has to be in an interval 

of length» B-1 = A-1
. This proves Lemma 3.7. 0 

Collecting we have the following main lemma of this section. 

Lemma 3.8. We have 

Jl = r. sls2s3(sin(7ra))2 da 
Jla:l$x-l A 71'0'. 

x2A-1C-1(Kl- K2A-4C- K2AC(E(x)t 114
). 
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4. Treatment of supplementary interval 

Denote by J3 the portion lal exceeding a positive quantity (see Lemma 4.2) of the 

integral 

We will show that J3 is small. 

Lemma 4.1. Let y 2: 0. Then 82 « xC-1 and 

[ IS1S3Ida « xlogx. 
}y$a$y+1 

Proof. The first assertion is trivial. Next we have IS1S3I :S; ISd2 + IS3I2 and 

$ 2.:(1 + O(l))(logp? « xlogx. 
p 

Here we have used a famous theorem due to H.L. MoNTGOMERY and 

R.C. VAUGHAN (see for instance [KR2]). We may prove what is required for our purposes 

by simpler arguments but it is convenient to use this. 

Similarly 

0 

Lemma 4.2. For all y 2: 0 we have 

and choosing y = A(log x )2
, we have 

r IS1S2S31(sin(7ra))
2
da « A-lc-1x2(logxt 1

. 

Jlai2:A(logx)2 71"0' 

Proof. The proof follows from Lemma 4.1. 0 
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5. Treatment of intermediary interval (namely I: x-1 A< lal < A(logx) 2
) 

We show that the integral 

over this interval is small compared with A-1C- 1x2 (for a sequence x = xv -+ oo). Let 

Af- maxael minj=t,31Sil· Then 

(where (a)I denotes those a E I for which M = !Btl and (a)J denotes those a E I for 

which M = JS31) 

We adopt a similar procedure at some places below. Finally we let x = xv -+ oo (v = 
1, 2, 3 .... ). 

Lemma 5.1. Let Q 2: 1 and {3 be any real numbers. Then there exist integers a, q 

with (a, q) = 1, 1 :::; q:::; Q and Jf3- :::; (qQ}- 1
• Hence we have 

and 

I..\1Ba- $ (qiQ)-1, 1 $ Q1 $ Q, (a11 qi) = 1, 

i..\3Ba- $ (q3Q)-1
, 1 $ q3 $ Q, (a3, q3) = 1, 

1
..\1 ao I ( )-1( -2) - - - $ QoQo $ Qo ' 
..\3 Qo 

(ao, Qo) = 1, 

where ar, a 3, q11 q3, Q, Q0 are integers and Q and Qo are at our choice. 

Proof. The first assertion is well-known and follows by a simple application of the Dirichlet 

box princ.iple. The rest of the assertions are special corollaries. 0 

Hereafter we impose x and Q0 to be large enough and ..\1..\31 irrational and so q0 can 

be assumed to run through a sequence which tends to infinity. 
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Lemma 5.2. If Qo is large enough then ao =F 0. If a1 = 0 then for such a ( note that 

I : A(log x )2 a x-1 A and also !Ba! << Q-1
) 

If a3 = 0 then for such a we have 

Proof. Similar to the proofs of Lemmas 3.2 and 3.5. 0 

Let (a )0,1 be the set of those a E I for which a 1 = 0 and (a )o,3 the set of those a E I 

for which a3 = 0. Then 

We can get the same bound for 

by proceeding in a similar way. 

Collecting we have the following lemma. 

Lemma 5.3. Contribution to the integral over the intermediary interval from those 

a for which a 1 = 0 or a3 = 0 is 

From now on we consider the contribution form those a for which both a 1 =F 0 

and a3 =F 0. 
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Lemma 5.4. We have 

Proof. We have 

Here the LHS is 

This gives 

I.e. 

Proof. Follows from the inequality defining a3 and q3• 

Lemma 5.6. Let q1 and q3 be both where t > 0 is such that 

Then 

Proof. Otherwise 
ao - alq3 = 0 

qo a3q1 

21 

D 

D 

(1) 

(2) 

and hence q0 divides a3q1 and so qo ia3iq1 which is not possible by hypothesis (we have 

used Lemma 5.5). D 

Lemma 5.7. If t(> 0) is such that (1) holds and 

q01+
2
t A2(1og x )2 + A4(log x )4 = o(l ), (3) 

then we have 

(4) 

Proof. The proof follows from Lemma 5.6. D 
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Lemma 5.8. For j = 1, 3 we have 

Si = L)logp)e(-\iBa(p + <t'i(P))) = Sj + O(Q-1qj1x2
), (5) 

p 

where 

s; = (p + C,Oj(p))), 
p % 

(6) 

the summation over p each time being as in Si. 

Proof. 0 bserve that 

e(-\iBa(p + C,Oj(p)))- e(aiqj1(p + C,Oj(p))) 

= O(j-\3Ba- a3qj1 j(p + <t'i(P))) = O(Q- 1qj1p). 

Thus 

IS3- Sjl LP(logp)Q-1qj1 = O(Q-1qj1x 2
). 

p 

This proves the lemma (since c,o3(p) = Jf c,oj(u)du + 0(1) = O((logp)ko+I )). 0 

We now proceed to estimate Sj. We have 

[Dix (a · ) ( (a· )) s; = 
12 

e d L: (Iogp)e 2p 
2 % 2::;p::;u % 

(whe; D 1 and D3 are positive constants depending only on -\1, -\2 and -\3 ) 

(7) 

where 

(8) 

Lemma 5.9. We have (for 2 :::; u:::; x , j = 1, 3) 

U) = 0 ( ((qjX )1/2 + X5/7 q]/14 + xqt/2)(log X )17)' (9) 
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sj = s; + O(x2(%Q}-1
) 

= o(x2(%Qt1 + A2(logx)ko+2o((%x)1/2 + qJI14xsf7+ qjl/2x)). (lO) 

Proof. The equation (9) is precisely Theorem 16.1 (on p. 141) of H.L. MoNTGOMERY 

(see [HLM]). 0 

Collecting we have 

Lemma 5.10. Let 

Then choosing that j for which qj we have 

We have still to choose x in terms of q0 and relate Q to q0 • In this direction we have 

the following lemma. 

Lemma 5.11. Let 1 $ A$ Exp(100v'logx), 1 $ C $ Exp(100v'IOgX), t = 1
1
6

, x = q5, 
_ Q Then the conditions (11) are all satisfied and we have 

. { IS1S2S3I(sin(7ra))
2 
da + [ IS1S2S3I(sin(7ra))

2 
da 

J(oh 71"Q J(o:)3 71"Q 

« {(;qfi) + + +qQ"t/2)A2(logx)ko+20}x2c-l/2logx 

« + + +qQ"t/2)A2(logx)ko+21}(logx). 

Here (ah and (a)3 denote respectively those a for which q1 and those for which 
. t 

q3 ?: qo. · 
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6. Conclusion 

Thus collecting Lemmas 3.8, 4.2, 5.3 and 5.11 we have the following theorem. 

Theorem 3. Let x = q5, 1 S A S Exp(100Jiogx), 1 S C s Exp(lOO.y'logx), t = {
6

, 

Q Then we have 

where 

A= Kt- K2A- 4C- K2(logxt1
- K 2AC(E(x))-114 

2 

- K2A-1C
1
1

2(logx)- K2AC11
2(1 + 

- + + + qijt/2}(logx)ko+22 

where K 1 > 0 and K 2 > 0 are constants depending only on >.1, >.2 and >.3 . 

Remark. The choice A= C = Exp(lOy'IQgX) and Q = q5(E(x)t
1 

proves Theorem 2. 
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