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§!.INTRODUCTION. This is a continuation of the paper (KR, AS] with the same title 

and this paper is also dedicated to him. Enough details are there in [RB.KR], [KR.AS] 

and [RB. KR, AS , KS)-III already and fot this reason presentation in the present paper 

is some what sketchy. We begin by introducing a meromorphic function F0 (s) as follows. 

Let k and l be any fixed integers subject to 0$ k $land z·2:: l.Let a 1, ... ,ak,f31, ... ,(31 

be any k + l complex constants. Let P(s) be any Dirichlet polynomial (i.e. a terminating 

Dirichlet series). Put 

Fo(s) = P(s)(Il ((s +a)) (Il ((s + /3)t 1 

where the first product runs over a 1 , ... , ak and the second over /31, .. , f3t. The main theorem 

in [RB. KR. AS, KS]-IV runs as follows: 

THEOREM 1. Let F0 (s) be not identically zero. Then F0 (s) has infindely many 

poles in t 2:: t0 (for every fixed to > 0). There exist poles with ordinates in [T. 2T]. joT 

all T 2:: To (for some T0 > 0). If we arrange these ordinates in the non decreasing 

order then the successive gaps are majorised by 

d log T 

where d > 0 is a constant independent ofT. 
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It is our object in this paper to generalise this theorem to functions of the type 

F(s) = L F0(s) 

where the sum is a finite one and is over terms F0 (s) with varying P(s); k, l; a 1 , ... , ak, {31 , ... , {31. 

We prove 

THEOREM 2. The statement of Theorem 1 is true word for tt-'ord if we replace 

F0(s) by F(s) and assume that (in some far off right off plane ) F(s) has a non-

terminating Dirichlet series expansion. 

REMARK 1. Note that we have completely knocked off the condition I:* < 1 of [KR, 

AS] which was necessary there since we have to deal with "Explicit formula" for the partial 

sums of the coefficients of the Dirichlet series expansions of F( s) in some far off right half 

plane. This needed some delicate estimates for F( s). 

REMARK 2. Our proof of theorem 2 allows as to consider terms F0 (s) (of the sum 

F( s)) with ( ( s + a) being replaced by (any derivative of bounded orders of ( ( s + a)) plus 

a Dirichlet polynomial which may depend on a's. Similarly we may as the same thing for 

((s+{3). But we need the condition that none of the denominators in the terms F0 (s) have a 

zero constant term. (Here some are all the ( can be replaced by (an+ b) -s (a > 0, b > 0 

integer constants ) or L-functions). 

REMARK 3. In remark 3 we may replace ((s +a) by (K(s +a, R) the zeta function of 

a ray class in an algebraic number field K of degree n(K). Also in each of the terms F0 (s) 

during replacements it is understood that the triplet (K, a, R) may vary. Similarly for the 

denominators but with the condition that none of the denominators of the terms F0 ( s) (of 

the sum) have a zero constant term. But now we need also the condition 

l:n(K) :::; I:n(K') 

for each term F0 (s) (of the sum F(s)) n(K') being the degree of the fields K' in (K'(s+{3. R'). 

REMARK 4. When k :::; l and all the a 1 , a2 · · ·, ak and {31 , {32, · · ·, {31 ( involved in each 

term F0( s)) are purely imaginary we get : The gaps between the ordinates of the successive 

poles of F(s) (of theorem 2) in (T,2T](T?::: T0 ) are majorised in absolute value by the 

quantity CloglogT. This is still true for number fields provided ,En(K) :S I:n(K'). In 

[RB.KR,AS,KSJ-IV, we proved the following result. If k <lor (k =land 0, 

then for F0 ( s) the gaps between the ordinates of the successive poles ( in the sense of 
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ordinates being arranged in the non-decreasing order ) in absolute value are bounded by 

a positive constant times log log T. 

REMARK 5. Our method has lots of applications. We state only a few below. 

Our method enables us to prove 

THEOREM 3. Let P(s) be any Dirichlet polynomial(# 0) for whichF(s) is defined 

for complex constants a and b (with a # 1 and b # 1 ) by 

P( s )( ('( s) )2 

F(s) = (((s)- a)(((s)- b)· 

Then F(s) has infinitely many poles in t;::: to and the gaps between the ordinates in 

[T, 2T], (T;::: T0 ), of the successive poles are majorised in absolute value by. 

dlog log T 

where d > 0 is a constant independent ofT. 

REMARK 1. Note that the poles of F(s) are precisely simple zeros of (P(s))- 1 (((s)-

a)(((s)- b) whenever a# b. 

REMARK 2. Theorem 3 is true when ((s) is replaced by many other functions such as 

the zeta function of a number field. 

REMARK 3. When a = b = 0 in fact one can say much more: The gaps be-

tween the ordinates in [T, 2T](T ;::: T0 ) of these poles are majorised in absolute value by 

d1(logloglogT)- 1 which follows from a result of J.E.Littlewood (see [ECT)). When a= 1 

orb= 1, F(s) can not be expanded as a Dirichlet series and hence it is an exclusion. 

We state two more theorems. 

THEOREM 4. Let P(s) and Q(s) be any two Dirichlet polynomials of which Q(s ) 

has non-zero constant term. Let F(s) defined by F(s) = P(s)(Q(s)) - 1 have a non-

terminating Dirichlet series expansion in some far off right half plane . Then F( s) 

has infintely many poles and the gaps between successive poles are bounded. 

REMARK . Successive in the sense of poles with ordinates being arranged in the non-

decreasing order. 
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THEOREM 5. Let P(s) und Q(s) be two DirichLet poLynomiuls oJ ·which Q\s) hus a 

non zero constant term. Let F( s) defined by 

F(s) = P(s)(Q'(s)) 2 (Q(s))-1 

have a non-terminating Dirichlet series expansion in some far off right half plane. 

Then F ( s) has infinitely many poles and the gaps between successive poles are 

bounded. 

REMARK Note that the poles of F(s) are precisely the simple zeros of Q(s) (P (s )) - 1
• 

SOME REMARKS ABOUT THE METHOD OF PROOFS. 

X 

In [KR, AS) we dealt with 'Explicit formula' for 2: an where F(s) = L::an n-s insome 
n=:;:c n=l 

far off right half plane. In our new method we consider "Explicit formula" for E defined 

by E= 2: an(x- n)9 , where q is a large positive integer constant. This enables us to cope 
n:S:r 

up with "large growth of F(s)" and to knock off the condition 2:* < 1 completely. Note 

that 

E = E(x) = - 1- { F(s) xs+q ds 
27ri JL1 s(s + l) .... (s + q) 

over a suitable vertical line L 1 ( far off to the right). It js not hard to prove tha t E (a:) is 

q - 1 times continuously differentiable and that 

dq-1 
-- E(x) = L an(x- n). 
dxq- 1 

n:Sx 

This helps us to observe that E(x) does not have a continuous derivative of order q, 

provided that an =/:. 0 for infinitely many n. On the other hand the explicit formula for 

E (x) (which is easy to derive) , shows that if there are no poles of F(s ) in itl 2:: to(> 0), a 

large constant then E( x) is q times continuously differentiable. To verify this all that we 

have to verify is that each of the functions E1 ( x) defined by 

1 h F(s)xs+qds 
E1(x) =-

27ri L s(s + l) .... (s + q) 

(where L is the (anti-clockwise) boundary of the rectangles 

for suitable sequence N = Nv(v = 1, 2, 3 .. ) even in the limit as N tends to oo ) are q times 

continuously differentiable provided x exceeds a large positive constant. Here q1 is a large 
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positive constant. This contradiction proves that F(s) has infinitely many poles in itl ;:-::: t0 • 

since the poles in (J > - ql contribute a ex function to the sum E (X). Once we have the 

infinitude of poles in it! 2::: t0 we can apply the results of [RB. KR] (see remark 1 on page 

194). We take this opportunity to correct a misprint on page 193, last line; (F(s)s) should 

read (F(s))). According to this result it follows that F(s) is a good Dirichlet series to be 

defined presently. 

DEFINITION. F(s) is said to be good if there exist positive constants C1 , C2 • C3 such 

that for all X 2::: C1 there holds 

Next the paper [RB, KR, AS,KS)-III comes to our rescue to prove all that we want. 

For the convenience of readers we will give a complete statement of the main reslt of 

[RB.KR, AS,KS]-III in §3. Apart from goodness the other conditions needed therein are 

easy to verify. 

§3. MAIN RESULT OF (RB, KR, AS, KS]III. In what follows T will exceed a large 

positive constant. The letters '1/J, t.p and H will denote positive functions of T bounded 

below by large positive constants. They are assumed to satisfy 

H = o(T), loglogt.p = O(H) 

and 

log'lj; = O(H) 

where the two 0-constants are assumed to be sufficently small. 

(A) Let F1 ( s) and F2 ( s) ( s = a + it) be two Dirichlet series (which may depend on a 

parameter T and we consider only the interval T- H :::; t :::; T +H) convergent absolutely in 

a C0 (2:: 100) and bounded there. The letter g > 0 will denote a large absolute constant 

and we assume that F1 ( s) and F2 ( s) can be continued analytically in 

a 2::: -g(log 'ljJ )(log log 'ljJ )-1
. 

Also we assume that F2 (a) -t 1 as a -t oo and that in a 2: C0 the function log F2 ( s) is 

bounded 

(B) Let 



Notes on the Riemann zeta-function-V 7 

(C) Let F2(s) =f 0 in -g 2: a 2: -g(log H)(log log H)-1 and also in the same region we have 

where C4 is a constant. For convenience we assume that the constant C4 is bounded below 

and also above. 

(D) Let IF1(s)! exp((g2 1og<p) 3
) in a 2: -g. Under these conditions we have the following 

main theorem. 

THEOREM. We have a pole p 1 + ip2 with 

T- H P2 T + H; 

provided F(s) defined as F1(s)(F2(s))- 1 is good. 

REMARK 1. For theorem 3 , it is not difficult to show that F( s) is a non-terminating 

Dirichlet series whenever P( s) =f 0. If we let P( s) = L: avll-s and v0 is ·the least 11 for 
v-::,M 

which av =f 0, then we find that for all large p , the coefficient of p- z s v0 -s in F(s) is 

which in fact gives the "goodness" of F(s) . Theseremarks go through for number 

fie lds case etc with the additional condition 2:: n(K) :::; L: n(K'). For theorem 3, we find 

that <p « TA and '1/J « (log T)A and hence the proof of theorem 3 follows from the above 

theorem of [RB, KR, AS, KS]III. Of course we have to use the functional equation of ((s) 

appropriately here. 

REMARK 2. For theorems 4 and 5 , we find that <p and '1/J ofthe above theorem satisfy 

r.p « Band '1/J « B for a large positive constant B. Hence the proofs follow from the above 

theorem of the paper (RB, KR, AS, KS}III. 
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