Hardy-Ramanujan Journal
Vol. 23 (2000) 2-9

NOTES ON THE RIEMANN ZETA-FUNCTION -V

BY

R.BALASUBRAMANIAN, K.RAMACHANDRA, A.SANKARANARAYANAN AND K.SRINIVAS

Dedicated with deepest regards to PROFESSOR ALAN BAKER, FRS, on his sixtieth birth day.

§1.INTRODUCTION. This is a continuation of the paper [KR, AS] with the same title and this paper is also dedicated to him. Enough details are there in [RB.KR], [KR.AS] and [RB, KR, AS, KS]-III already and for this reason presentation in the present paper is some what sketchy. We begin by introducing a meromorphic function $F_{0}(s)$ as follows. Let k and l be any fixed integers subject to $0 \leq k \leq l$ and $l \geq 1$. Let $\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{l}$ be any $k+l$ complex constants. Let $P(s)$ be any Dirichlet polynomial (i.e. a terminating Dirichlet series). Put

$$
F_{0}(s)=P(s)\left(\prod \zeta(s+\alpha)\right)\left(\prod \zeta(s+\beta)\right)^{-1}
$$

where the first product runs over $\alpha_{1}, \ldots, \alpha_{k}$ and the second over $\beta_{1}, . ., \beta_{l}$. The main theorem in [RB. KR. AS, KS]-IV runs as follows:

THEOREM 1. Let $F_{0}(s)$ be not identically zero. Then $F_{0}(s)$ has infinitely many poles in $t \geq t_{0}$ (for every fixed $t_{0}>0$). There exist poles with ordinates in $[T, 2 T]$. for all $T \geq T_{0}$ (for some $T_{0}>0$). If we arrange these ordinates in the non decreasing order then the successive gaps are majorised by

$$
d \log T
$$

where $d>0$ is a constant independent of T.

It is our object in this paper to generalise this theorem to functions of the type

$$
F(s)=\sum F_{0}(s)
$$

where the sum is a finite one and is over terms $F_{0}(s)$ with varying $P(s) ; k, l ; \alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{l}$. We prove

THEOREM 2. The statement of Theorem 1 is true word for word if we replace $F_{0}(s)$ by $F(s)$ and assume that (in some far off right off plane) $F(s)$ has a nonterminating Dirichlet series expansion.

REMARK 1. Note that we have completely knocked off the condition $\sum^{*}<1$ of [KR, AS] which was necessary there since we have to deal with "Explicit formula" for the partial sums of the coefficients of the Dirichlet series expansions of $F(s)$ in some far off right half plane. This needed some delicate estimates for $F(s)$.

REMARK 2. Our proof of theorem 2 allows as to consider terms $F_{0}(s)$ (of the sum $F(s))$ with $\zeta(s+\alpha)$ being replaced by (any derivative of bounded orders of $\zeta(s+\alpha)$) plus a Dirichlet polynomial which may depend on α 's. Similarly we may as the same thing for $\zeta(s+\beta)$. But we need the condition that none of the denominators in the terms $F_{0}(s)$ have a zero constant term. (Here some are all the ζ can be replaced by $\sum_{n=1}^{\infty}(a n+b)^{-s}(a>0, b>0$ integer constants) or L-functions).

REMARK 3. In remark 3 we may replace $\zeta(s+\alpha)$ by $\zeta_{K}(s+\alpha, R)$ the zeta function of a ray class in an algebraic number field K of degree $n(K)$. Also in each of the terms $F_{0}(s)$ during replacements it is understood that the triplet (K, α, R) may vary. Similarly for the denominators but with the condition that none of the denominators of the terms $F_{0}(s)$ (of the sum) have a zero constant term. But now we need also the condition

$$
\sum n(K) \leq \sum n\left(K^{\prime}\right)
$$

for each term $F_{0}(s)$ (of the sum $\left.F(s)\right) n\left(K^{\prime}\right)$ being the degree of the fields K^{\prime} in $\zeta_{K^{\prime}}\left(s+\beta, R^{\prime}\right)$.
REMARK 4. When $k \leq l$ and all the $\alpha_{1}, \alpha_{2} \cdots, \alpha_{k}$ and $\beta_{1}, \beta_{2}, \cdots, \beta_{l}$ (involved in each term $F_{0}(s)$) are purely imaginary we get: The gaps between the ordinates of the successive poles of $F(s)$ (of theorem 2) in $[T, 2 T]\left(T \geq T_{0}\right)$ are majorised in absolute value by the quantity $C \log \log T$. This is still true for number fields provided $\sum n(K) \leq \sum n\left(K^{\prime}\right)$. In [RB.KR,AS,KS]-IV, we proved the following result. If $k<l$ or $\left(k=l\right.$ and $\Re\left(\sum(\beta-\alpha)\right) \leq 0$, then for $F_{0}(s)$ the gaps between the ordinates of the successive poles (in the sense of
ordinates being arranged in the non-decreasing order) in absolute value are bounded by a positive constant times $\log \log T$.

REMARK 5. Our method has lots of applications. We state only a few below.

Our method enables us to prove

THEOREM 3. Let $P(s)$ be any Dirichlet polynomial $(\neq 0)$ for which $F(s)$ is defined for complex constants a and b (with $a \neq 1$ and $b \neq 1$) by

$$
F(s)=\frac{P(s)\left(\zeta^{\prime}(s)\right)^{2}}{(\zeta(s)-a)(\zeta(s)-b)}
$$

Then $F(s)$ has infinitely many poles in $t \geq t_{0}$ and the gaps between the ordinates in $[T, 2 T],\left(T \geq T_{0}\right)$, of the successive poles are majorised in absolute value by

$d \log \log T$

where $d>0$ is a constant independent of T.

REMARK 1. Note that the poles of $F(s)$ are precisely simple zeros of $(P(s))^{-1}(\zeta(s)-$ $a)(\zeta(s)-b)$ whenever $a \neq b$.

REMARK 2. Theorem 3 is true when $\zeta(s)$ is replaced by many other functions such as the zeta function of a number field.

REMARK 3. When $a=b=0$, in fact one can say much more: The gaps between the ordinates in $[T, 2 T]\left(T \geq T_{0}\right)$ of these poles are majorised in absolute value by $d_{1}(\log \log \log T)^{-1}$ which follows from a result of J.E.Littlewood (see [ECT]). When $a=1$ or $b=1, F(s)$ can not be expanded as a Dirichlet series and hence it is an exclusion.

We state two more theorems.

THEOREM 4. Let $P(s)$ and $Q(s)$ be any two Dirichlet polynomials of which $Q(s)$ has non-zero constant term. Let $F(s)$ defined by $F(s)=P(s)(Q(s))^{-1}$ have a nonterminating Dirichlet series expansion in some far off right half plane. Then $F(s)$ has infintely many poles and the gaps between successive poles are bounded.

REMARK. Successive in the sense of poles with ordinates being arranged in the nondecreasing order.

THEOREM 5. Let $P(s)$ and $Q(s)$ be two Dirichlet polynomials of which $Q(s)$ has a non zero constant term. Let $F(s)$ defined by

$$
F(s)=P(s)\left(Q^{\prime}(s)\right)^{2}(Q(s))^{-1}
$$

have a non-terminating Dirichlet series expansion in some far off right half plane. Then $F(s)$ has infinitely many poles and the gaps between successive poles are bounded.

REMARK Note that the poles of $F(s)$ are precisely the simple zeros of $Q(s)(P(s))^{-1}$.

§2. SOME REMARKS ABOUT THE METHOD OF PROOFS.

In [KR, AS] we dealt with 'Explicit formula' for $\sum_{n \leq x} a_{n}$ where $F(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ in some far off right half plane. In our new method we consider "Explicit formula" for E defined by $E=\sum_{n \leq r} a_{n}(x-n)^{q}$, where q is a large positive integer constant. This enables us to cope up with "large growth of $F(s)$ " and to knock off the condition $\sum^{*}<1$ completely. Note that

$$
E=E(x)=\frac{1}{2 \pi i} \int_{L_{1}} \frac{F(s) x^{s+q}}{s(s+1) \ldots(s+q)} d s
$$

over a suitable vertical line L_{1} (far off to the right). It is not hard to prove that $E(x)$ is $q-1$ times continuously differentiable and that

$$
\frac{d^{q-1}}{d x^{q-1}} E(x)=\sum_{n \leq x} a_{n}(x-n)
$$

This helps us to observe that $E(x)$ does not have a continuous derivative of order q, provided that $a_{n} \neq 0$ for infinitely many n. On the other hand the explicit formula for $E(x)$ (which is easy to derive), shows that if there are no poles of $F(s)$ in $|t| \geq t_{0}(>0)$, a large constant then $E(x)$ is q times continuously differentiable. To verify this all that we have to verify is that each of the functions $E_{1}(x)$ defined by

$$
E_{1}(x)=\frac{1}{2 \pi i} \int_{L} \frac{F(s) x^{s+q} d s}{s(s+1) \ldots .(s+q)}
$$

(where L is the (anti-clockwise) boundary of the rectangles

$$
\left\{|t|=2 t_{0},-N \leq \sigma \leq-q_{1}\right\}
$$

for suitable sequence $N=N_{\nu}(\nu=1,2,3 .$.$) even in the limit as N$ tends to ∞) are q times continuously differentiable provided x exceeds a large positive constant. Here q_{1} is a large
positive constant. This contradiction proves that $F(s)$ has infinitely many poles in $|t| \geq t_{0}$. since the poles in $\sigma>-q_{1}$ contribute a C^{∞} function to the sum $E(x)$. Once we have the infinitude of poles in $|t| \geq t_{0}$ we can apply the results of [RB. KR] (see remark 1 on page 194). We take this opportunity to correct a misprint on page 193, last line; $(F(s) s)$ should read $(F(s))$). According to this result it follows that $F(s)$ is a good Dirichlet series to be defined presently.

DEFINITION. $F(s)$ is said to be good if there exist positive constants C_{1}, C_{2}, C_{3} such that for all $X \geq C_{1}$ there holds

$$
\max _{X \leq n \leq X^{c_{2}}}\left|a_{n}\right|>X^{-C_{3}} .
$$

Next the paper [RB, KR, AS,KS]-III comes to our rescue to prove all that we want. For the convenience of readers we will give a complete statement of the main reslt of [RB.KR, AS,KS]-III in §3. Apart from goodness the other conditions needed therein are easy to verify.
§3. MAIN RESULT OF [RB, KR, AS, KS]III. In what follows T will exceed a large positive constant. The letters ψ, φ and H will denote positive functions of T bounded below by large positive constants. They are assumed to satisfy

$$
H=o(T), \log \log \varphi=O(H)
$$

and

$$
\log \psi=O(H)
$$

where the two O-constants are assumed to be sufficently small.
(A) Let $F_{1}(s)$ and $F_{2}(s)(s=\sigma+i t)$ be two Dirichlet series (which may depend on a parameter T and we consider only the interval $T-H \leq t \leq T+H$) convergent absolutely in $\sigma \geq C_{0}(\geq 100)$ and bounded there. The letter $g>0$ will denote a large absolute constant and we assume that $F_{1}(s)$ and $F_{2}(s)$ can be continued analytically in

$$
\sigma \geq-g(\log \psi)(\log \log \psi)^{-1}
$$

Also we assume that $F_{2}(\sigma) \rightarrow 1$ as $\sigma \rightarrow \infty$ and that in $\sigma \geq C_{0}$ the function $\log F_{2}(s)$ is bounded
(B) Let

$$
\left|F_{2}(s)\right|<\varphi^{g} \text { in } \sigma \geq-20 g .
$$

(C) Let $F_{2}(s) \neq 0$ in $-g \geq \sigma \geq-g(\log H)(\log \log H)^{-1}$ and also in the same region we have

$$
\left|F_{1}(s)\left(F_{2}(s)\right)^{-1}\right| \leq C_{4}^{\sigma} \psi\left(C_{4}>0\right),
$$

where C_{4} is a constant. For convenience we assume that the constant C_{4} is bounded below and also above.
(D) Let $\left|F_{1}(s)\right| \leq \exp \left(\left(g^{2} \log \varphi\right)^{3}\right)$ in $\sigma \geq-g$. Under these conditions we have the following main theorem.

THEOREM. We have a pole $p_{1}+i p_{2}$ with

$$
T-H \leq p_{2} \leq T+H
$$

provided $F(s)$ defined as $F_{1}(s)\left(F_{2}(s)\right)^{-1}$ is good.
REMARK 1. For theorem 3 , it is not difficult to show that $F(s)$ is a non-terminating Dirichlet series whenever $P(s) \neq 0$. If we let $P(s)=\sum_{\nu \leq M} a_{\nu} \nu^{-s}$ and ν_{0} is the least ν for which $a_{\nu} \neq 0$, then we find that for all large p, the coefficient of $p^{-2 s} \nu_{0}^{-s}$ in $F(s)$ is $\frac{a_{\nu_{0}}(\log p)^{2}}{(1-(-))(1-b)}$ which in fact gives the "goodness" of $F(s)$. These remarks go through for number fields case etc with the additional condition $\sum n(K) \leq \sum n\left(K^{\prime}\right)$. For theorem 3, we find that $\varphi \ll T^{A}$ and $\psi \ll(\log T)^{A}$ and hence the proof of theorem 3 follows from the above theorem of [RB, KR, AS, KS]III. Of course we have to use the functional equation of $\zeta(s)$ appropriately here.

REMARK 2. For theorems 4 and 5 , we find that φ and ψ of the above theorem satisfy $\varphi \ll B$ and $\psi \ll B$ for a large positive constant B. Hence the proofs follow from the above theorem of the paper [RB, KR, AS, KS]III.

REFERENCES

[RB. KR], R.Balasubramanian and K.Ramachandra, Some Problems of Analytic Number Theory - II, Studia Scientiarum Mathematicarum Hungarica, 14 (1979), 193-202.
[RB. KR, AS, KS], R.Balasubramanian, K.Ramachandra, A.Sankranarayanan and K.Srinivas. Notes on the Riemann zeta-function -III, Hardy-Ramanujan J., Vol. 22 (1999), 23-33.

RB, KR, AS, KS], R.Balasubramanian,K.Ramachandra, A.Sankaranarayanan and K.Srinivas, Notes on the Riemann Zeta-function - IV, Hardy-Ramanujan J., Vol. 22 (1999), 34-41.
[KR. AS], K.Ramachandra and A.Sankaranarayanan, Notes on the Riemann zeta-function- II, Acta Arith., Vol.XCI, 4(1999), 351-365.
[ECT], E.C. Titchmarsh, The theory of the Riemann zeta-function, second edition, Edited by D.R.Heath-Brown, Clarendon Press (Oxford) (1986).

ADDRESS OF THE AUTHORS

1. R.Balasubramanian

Senior Professor
Matscience
Tharamani P.O.
CHENNAI-600 113
INDIA.
e-mail balu@imsc.ernet.in
2. K.Ramachandra

Hon. Vis. Professor
National Institute of Advanced Studies
Indian Institute of Science Campus
Bangalore-560012
INDIA.
e-mail kram@math.tifrbng.res.in
3. A.Sankaranarayanan

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
MUMBAI-400 005
INDIA.
e-mail sank@math.tifr.res.in
4. K. Srinivas

Matscience
Tharamani P.O.
CHENNAI-600 113
INDIA.
e-mail srini@imsc.ernet.in
MIANUSCRIPT COMPLETED ON 24-06-1999.
REVISED ON 01.10.1999

