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§1. INTRODUCTION AND STATEMENT OF RESULTS. In [A.IJ A.IVIC has 

proved the following inequality. Let c > 0 be any constant and let "! run over the ordinates 

of all the zeros (counted with multiplicity) of the Riemann zeta-function in the critical 

strip. Then 
1 'l L J((- + i"!)J2 «e 
2 

( 1.1) 

where the implied constant depends only on E. Here T 2: To, a large positive constant. 

In the present paper it is our object to improve this inequality in two ways. First we 

the LHS by a bigger quantity and at the same time replace the RHS by a smaller 

quantity namely T(log T)2 log log T (where now the implied constant is absolute). Also 

we consider further generalisations and sketch their proof. In place of J(O + h)i2 our key 

function (associated with arbitrary (but fixed) constants A> 0 and B > 0) is 

M("!) =max J((sW, (1.2) 

where the maximum is taken over all s( = u + it) in the rectangle 

1 
2- A(logTt

1 
u 2, Jt- B(log logT)(logT)-

1
. (1.3) 

Plainly the investigations go through for L ( s, x) in place of ( ( s). Accordingly our Theorem 

THEOREM 1. We have, for every fixed c > 0, 

( i) L M("!) «c: H(log T) 2 log log T 
"(€! 
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where I( c [T + 1, 2T- 1]) is any interval of length H(?:. and T?:. To( E). 

(ii) 2)M('Y))! loglogT 
"'(d 

where l(C [T + 1, 2T- 1J) is any interval of length H(?:_ and T ?:_ T0 (c:) . 

REMARK. In (ii) we can by any constant k > 0 for which k- 1 is an integer and 

correspondingly the number will have to be replaced by 1 + k2
. (Of course we should 

have H ?:. In this connection we state the following Theorem 2. 

THEOREM 2. If k(> 0) is any constant, then 

2:)M('Y))k H(logT)l+k
2
loglogT 

"(£! 

where I ( C [T + 1, 2T - 1]) is any interval of length H ( > 0) satisfying the following 

two Hypotheses. 

HYPOTHESIS 1. We should have 

1 {T+H 1 2 

H JT 1((2 + it)i 2
kdt (logT)k . 

HYPOTHESIS 2. For some constant k* > k, we should have 

1 {T+H 1 
H }T 1((2 + it)!2k• 

where C(> 0) is some constant depending on k*. 

REMARKS. If k = 2 we do not know whether Hypothesis 2 holds or not. However it 
2 

holds if k < 2 (namely we can take k• = 2 and C = 4 and H ?:. TJ+e). Naturally we have 

to restrict to k < 2. Even here we do not know the truth of Hypothesis 1 unless k- 1 is 

an integer and H ?:. r!+e. (Of course if k = 1 we can take things like H ?:_ but the 

corresponding Hypothesis 2 forces us to take H ?:. yj+e). It should be remarked that our 

method is completely different from that of A.IVIC. 

Next we state Theorem 3 which gives lower bounds for 

THEOREM 3. We have, for any k > 0 

'L:(M(r))k » ( f !((! + it)1 2kdt)(logT)(loglogTt 1 

I 
}I 2 

"(£ 
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where I( C [T, 2T]) is any interval of length H satisfying 

H 2:: 4B (log T) - 1 log log T 

provided the intervals 

it- ··yj 5 B(logT)-1 loglogT 

associated with two successive "Y 's have at least one point in common. 

Since the proof of theorem 3 is very simple we give it here itself. 

PROOF OF THEOREM 3. Contribution (to the integral on the right) from each 

interval 

Jt- "Yi 5 B(log Tt 1 
log log T 

is clearly« (M0("Y))k(logTt 1 loglogT, where Mob) is the maximum of J(O + it)l 2 .in the 

interval. Also these intervals cover I completely so that each "Y is counted in L-yEI(M0("Y))k. 

Clearly M0 ("Y) 5 M("Y) and this completes the proof of Theorem 3. 

Next we state a Conjecture. 

CONJECTURE: LTs-ys2r(M("Y))2 « T(logT)5 loglogT. 

FURTHER REMARKS. Lower bounds (and sometimes upper bounds) for 

{ J(( + it)i 2kdt 
lr 2 

have been studied first by K.RAMACHANDRA and then by D.R.HEATH-BROWN and 

then by M.JUTILA (for these results see the book [K.Rh by K.RAMACHANDRA and also 

the famous classic [E.C.T, D.R.H-B] by E.C.TITCHMARSH and D.R.HEATH-BROWN). 

There have been some further work on this integral by K.RAMACHANDRA [K.R]2. An-

other typical result of K.RAMACHANDRA [K.Rh is 

..!._ {T+H + it)j2v'2dt » (logH)2(loglogHt 1
, 

H lr 2 

where H exceeds some positive constant times log logT. In particular 

.!. f
2

T + it)j2v'2dt » (logT?(loglogT)-1
• 

T lr 2 

It seems very difficult to knock off the factor (log log T) -I. 

§2. NOTATION. We adopt standard notation. The Vinogradov symbols « and » 
mean "less than a positive constant times" and"greater than a positive constant times" 
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respectively. Some times we use « ... and » ... to denote that these constants depend on 

.... (for example «.o)· We use the Landau symbod 0( ... ) to denote "less than a positive 

constant times ... 11
• In §3 the letters A, B, C, D, E, F and G will denote positive constants. 

A and B need not necessarily be the same as in §1. Twill exceed a large positive constant. 

t: (> 0) will be an arbitrary constant. Some times we write T0(c) to denote that thepositive 

constant T0 depends on c. 

§3. PROOF OF THEOREM 1. We divide the proof·into seven steps for convenience. 

To illustrate our method we take H = T- 2. The general case in (i) follows from the deep 

result 
1 {T+H 1 
HiT 1((2 + it)l4

dt «e' (logT)
4

. 

where T;::: H ;::: due to N.ZAVOROTNYI [N.Z] (see also [D.R.H-B] , [H.l), [M.J) and 

[Y.M) fo.r the history to date) and (ii) from the crucial result 

1 {T+H 1 1 

HiT 1((2 + it)idt <<.o (logT)i 

where T;::: H;::: due to K.RAMACHANDRA (see (4.3.2) of [K.R.]d. 

STEP I. Consider the various rectangles 

[ 
1 D log log T l [ E 2 - log T ::; u ::; 2 x T + (logT) ::; t ::; T + 2(log T)E, T + 2(log T)E ::; t ::; T + 3(log T)E , . 

where the right extremity of the last t-interval does not exceed 2T - (log T)E. Consider 

the maximum 

max i((sW 

over a typical rectangle. We will prove that 

(3.1) 

(We can improve RHS to T(log T)5+BD (log log Tt2
; but we do not need this) . Let s 1 , s 2 . .. 

denote points where the maxima are attained. Then the required quantity is (see Theorem 

(1.7.1) of [K.R]t) 

i((sl)l
4 + l((s,)l

4 + .. . ( 
2 

,.-t {/v, j i((s)i'da + /v, j i((s)i'da + ... } 

(where Di is the disc of radius D(loglogT)(logTt1 with centre Sj and da the element of 

area) 



14 KR 

where the last integration is over the rectangle 

[ 
1 2D log log T l 
2 - log T $ a $ 3 x [T $ t $ 2T] . 

The last integral is easily seen to be « T(log T)4+8D 

STEP II. We now record a Corollary to step I. We have 

max j((s)l $ (logTf 

for all rectangles except N of them where 

N(log T) 4c « T(log T)6+8D 

and so 

N « T(logT)6-4C+8D. (3.2) 

STEP III. We now write 

M(T) =max j((s)l 2 

where the maximum is taken over the rectangle 

Let the asterisk denote the sum over those 'Y for which M(T) $ (logT)-F. Then 

* 
L (M('Y)) « T(IogT) 1

-F (3.3) 
T+l=:;-y=:;2T-l 

since the total number of 'Y 's is« TlogT (we may fix F to be 2). 

STEP IV. Denote the rectangle in step III by R(T) and by s-y the point at which !((s)l 

attains its maximum in R('Y) . Consider those 'Y 's for which M ('Y) > (logT)-F. Then 

the number of zeros of ((s) in the disc with centre s-y and radius G(loglogT)(logT)- 1 is 

O(log log T) uniformly provided that this disc is inside any of the rectangles of step II. 

(Note that the number of exceptional rectangles is N $ T(logT)6- 4C+SD). This follows by 

Jensen's Theorem (see page 150 of [K.R)I). 

STEP V. Now consider all the M('Y) with T + 1 $ 'Y $ 2T- 1. We claim 

L M ( 'Y) « T(log T)2 log log T. (3.4) 
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(this proves part (i) of Theorem 1). To see this we split up the sum on the LHS into 

2::: 1 + 2::: 2 + 2:::3. where 2:::3 is the sum in (3.3) and I:2 is over all "Y lying in all the exceptional 

['1/ rectangles occuring in step II. We have 

L:::; 
2 

Note that I:(M("Y))Z « T(logT) 6+BD+E+
40

:::; T(logT) 50+BD+E since each of the 1\f("Y)'s may 

be replaced by the maxima in step I. Also 

Thus 

if C = 4D + E + 20. 

N « T(log T)6-4C+BD. 

L « T(logT)25+4D+E+3-2C+4D:::; T(logTtl 

2 

We now look at the sum I:1 . It consists of those "Y's for which 

(logTtF :S M("Y) :S (logTf 

and so by step IV the number of zeros of ( ( s) in 

ls'Y- sl:::; G(IoglogT)(IogTt
1 is O(loglogT). 

Here G is any constant such that this disc lies in 

-- <u<3 x 
[ 
1 D log log T l J 
2 logT - -

where J is any of the non exceptional intervals of step II. This is so if D = lOG. 

(3.5) 

STEP VI. We are now in a position to complete the estimation of 2:: 1 . Divide the u-

range < 0' < 2] into intervals 
2 logT- - · 

1o = - < 0' < + 
2 log T - - 2 log T ' 

11 = + < (J < + 
2 log T - - 2 log T ' 

[
1 2A 1 3A l 

12 = 2 + log T :::; a :::; 2 + log T ' ... 
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In = + nA < u < + ( n + 1 )Aj'"' ' ... 
2 log T - - 2 log T 

the last interval projecting a little beyond 2. First consider ! 0 . Look at the s", of the sum 

l: 1 for which Re s1 d 0 . We have (see page 34 of [K.R]I) 

l((s-y)l2::; j { l((s)j2da 
J\s-s 1 \:5Ro 

where da is the element of area and R0 > 0. Choose Ro = We find 

« (log log T)log T) 2(T log T)(log Tt 1 

= T(log T)2 log log T 

Now for any fixed n(n = 1, 2, 3, ... ) consider the interval In for Re s1 . We have (see page 

34 of [K.R]I) 

where dais the element of area and Rn > 0. We choose Rn = We find 

:L 
1,Re s1 El, 

« (loglogT)(n-1 logT)2 j { j((s)j2 dudt 
Jr<t<2Tl+ <u<l+2"A 

- - ' 2 2I'Og'T - - IOgT 

« (loglogT)(logT?n-
2 ld, (T m-

217
)du 

« T(loglogT)(logT)2n-2(n- 1 logT)n(logTt1 

« T(loglogT)(logT) 2n-2
• 

Summing up over n = 1, 2, ... , [>.log T], where >. > 0 is a suitable constant (and square 

bracket denotes the integer part), we have 

L « T(log T) 2(log log T). 
1 

This proves part (i) of Theorem 1 in the case H = T- 2, (the case H 2: is similar) . 

STEP VII. To prove part (ii) we have to use 

h
2T 1 1 

r-l I((-+ it)idt « (logT)4. 
T 2 

(3.6) 
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From (3.6) the following two Corollaries can be drawn (by the use of convexity principles 

(see [K.R]2) ). 

COROLLARY 1. For Ia- « (logT}-1
, we have 

1 I 

- l((a + it)ldt « (logT)4. 
T T 

(3.7) 

COROLLARY 2. For A with 0 <A::; 2,A » (logT)- 1
, We have 

1 1 
- l((a+it)ldt«A-4. 
T T . 

(3.8) 

The rest of the proof of part (ii) of Theorem 1 is similar to that of part(i). (In this case 

also the proof with H 2:: is similar). 

34. PROOF OF THEOREM 2. The proof is similar to that of Theorem 1 (part 

(i)). We have simply to note that Hypothesis 1 implies (by convexity principles refered to 

already) the following two Corollaries. 

COROLLARY 1. For Ia- « (logTt 1
, we have, 

1 {T+H 2 

H lr j((a + it)j2kdt « (logT)k . ( 4.1) 

COROLLARY 2. For a = with 0 < A ::; 2 and A» (log T)- 1
, we have, 

( 4.2) 

This completes the proof of all our assertions. 

§5.REMARK. We have not computed the constants in Theorems 1 and 2. We will take 

it up on a different occasion if there are some important applications. 

ACKNOWLEDGEMENTS: I am thankful to Professor Roger Heath-Brown for en-

couragement. 
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