ON A PROBLEM OF IVIĆ

BY K.RAMACHANDRA

TO DR. A. SANKARANARAYANAN ON
 HIS FORTIETH BIRTHDAY

§1. INTRODUCTION AND STATEMENT OF RESULTS. In [A.I] A.IVIC has proved the following inequality. Let $\varepsilon>0$ be any constant and let γ run over the ordinates of all the zeros (counted with multiplicity) of the Riemann zeta-function in the critical strip. Then

$$
\begin{equation*}
\sum_{T \leq \gamma \leq 2 T}\left|\zeta\left(\frac{1}{2}+i \gamma\right)\right|^{2}<_{\varepsilon} T(\log T)^{2}(\log \log T)^{\frac{3}{2}+\varepsilon} \tag{1.1}
\end{equation*}
$$

where the implied constant depends only on ϵ. Here $T \geq T_{0}$, a large positive constant.
In the present paper it is our object to improve this inequality in two ways. First we replace the LHS by a bigger quantity and at the same time replace the RHS by a smaller quantity namely $T(\log T)^{2} \log \log T$ (where now the implied constant is absolute). Also we consider further generalisations and sketch their proof. In place of $\left|\zeta\left(\frac{1}{2}+i \gamma\right)\right|^{2}$ our key function (associated with arbitrary (but fixed) constants $A>0$ and $B>0$) is

$$
\begin{equation*}
M(\gamma)=\max |\zeta(s)|^{2}, \tag{1.2}
\end{equation*}
$$

where the maximum is taken over all $s(=\sigma+i t)$ in the rectangle

$$
\begin{equation*}
\frac{1}{2}-A(\log T)^{-1} \leq \sigma \leq 2,|t-\gamma| \leq B(\log \log T)(\log T)^{-1} . \tag{1.3}
\end{equation*}
$$

Plainly the investigations go through for $L(s, \times)$ in place of $\zeta(s)$. Accordingly our Theorem is

THEOREM 1. We have, for every fixed $\varepsilon>0$,
(i) $\quad \sum_{\gamma \in I} M(\gamma) \ll_{\varepsilon} H(\log T)^{2} \log \log T$
where $I(\subset[T+1,2 T-1])$ is any interval of length $H\left(\geq T^{\frac{2}{3}+\epsilon}\right)$ and $T \geq T_{0}(\epsilon)$.
(ii) $\quad \sum_{\gamma \epsilon I}(M(\gamma))^{\frac{1}{2}}<_{\varepsilon} H(\log T)^{\frac{5}{4}} \log \log T$
where $I(\subset[T+1,2 T-1])$ is any interval of length $H\left(\geq T^{\frac{1}{2}+\varepsilon}\right)$ and $T \geq T_{0}(\varepsilon)$.
REMARK. In (ii) we can replace $\frac{1}{2}$ by any constant $k>0$ for which k^{-1} is an integer and correspondingly the number $\frac{5}{4}$ will have to be replaced by $1+k^{2}$. (Of course we should have $H \geq T^{\frac{1}{2}+\varepsilon}$). In this connection we state the following Theorem 2.

THEOREM 2. If $k(>0)$ is any constant, then

$$
\sum_{\gamma \epsilon I}(M(\gamma))^{k} \ll H(\log T)^{1+k^{2}} \log \log T
$$

where $I(\subset[T+1,2 T-1])$ is any interval of length $H(>0)$ satisfying the following two Hypotheses.

HYPOTHESIS 1. We should have

$$
\frac{1}{H} \int_{T}^{T+H}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \ll(\log T)^{k^{2}}
$$

HYPOTHESIS 2. For some constant $k^{*}>k$, we should have

$$
\frac{1}{H} \int_{T}^{T+H}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k^{*}} \ll(\log T)^{C}
$$

where $C(>0)$ is some constant depending on k^{*}.
REMARKS. If $k=2$ we do not know whether Hypothesis 2 holds or not. However it holds if $k<2$ (namely we can take $k^{*}=2$ and $C=4$ and $H \geq T^{\frac{2}{3}+\varepsilon}$). Naturally we have to restrict to $k<2$. Even here we do not know the truth of Hypothesis 1 unless k^{-1} is an integer and $H \geq T^{\frac{1}{2}+\varepsilon}$. (Of course if $k=1$ we can take things like $H \geq T^{\frac{1}{3}+\varepsilon}$ but the corresponding Hypothesis 2 forces us to take $H \geq T^{\frac{2}{3}+\varepsilon}$). It should be remarked that our method is completely different from that of A.IVIĆ.

Next we state Theorem 3 which gives lower bounds for

$$
\sum_{\gamma \epsilon I}(M(\gamma))^{k} .
$$

THEOREM 3. We have, for any $k>0$

$$
\sum_{\gamma \in I}(M(\gamma))^{k} \gg\left(\int_{I}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t\right)(\log T)(\log \log T)^{-1}
$$

where $I(\subset[T, 2 T])$ is any interval of length H satisfying

$$
H \geq 4 B(\log T)^{-1} \log \log T
$$

provided the intervals

$$
|t-\gamma| \leq B(\log T)^{-1} \log \log T
$$

associated with two successive γ 's have at least one point in common.
Since the proof of theorem 3 is very simple we give it here itself.
PROOF OF THEOREM 3. Contribution (to the integral on the right) from each interval

$$
|t-\gamma| \leq B(\log T)^{-1} \log \log T
$$

is clearly $\ll\left(M_{0}(\gamma)\right)^{k}(\log T)^{-1} \log \log T$, where $M_{0}(\gamma)$ is the maximum of $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ in the interval. Also these intervals cover I completely so that each γ is counted in $\sum_{\gamma \epsilon I}\left(M_{0}(\gamma)\right)^{k}$. Clearly $M_{0}(\gamma) \leq M(\gamma)$ and this completes the proof of Theorem 3.

Next we state a Conjecture.
CONJECTURE: $\Sigma_{T \leq \gamma \leq 2 T}(M(\gamma))^{2} \ll T(\log T)^{5} \log \log T$.
FURTHER REMARKS. Lower bounds (and sometimes upper bounds) for

$$
\int_{I}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

have been studied first by K.RAMACHANDRA and then by D.R.HEATH-BROWN and then by M.JUTILA (for these results see the book [K.R] $]_{1}$ by K.RAMACHANDRA and also the famous classic (E.C.T, D.R.H-B] by E.C.TITCHMARSH and D.R.HEATH-BROWN). There have been some further work on this integral by K.RAMACHANDRA [K.R] $]_{2}$. Another typical result of K.RAMACHANDRA [K.R] $]_{2}$ is

$$
\frac{1}{H} \int_{T}^{T+H} \cdot\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 \sqrt{2}} d t \gg(\log H)^{2}(\log \log H)^{-1}
$$

where H exceeds some positive constant times $\log \log T$. In particular

$$
\frac{1}{T} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 \sqrt{2}} d t \gg(\log T)^{2}(\log \log T)^{-1}
$$

It seems very difficult to knock off the factor $(\log \log T)^{-1}$.
§2. NOTATION. We adopt standard notation. The Vinogradov symbols \ll and \gg mean "less than a positive constant times" and"greater than a positive constant times"
respectively. Some times we use $\ll \ldots$ and $\gg \ldots$ to denote that these constants depend on (for example $<_{\varepsilon}$). We use the Landau symbod $\mathrm{O}(\ldots)$ to denote "less than a positive constant times ...". In $\S 3$ the letters A, B, C, D, E, F and G will denote positive constants. A and B need not necessarily be the same as in $\S 1 . \mathrm{T}$ will exceed a large positive constant. $\varepsilon(>0)$ will be an arbitrary constant. Some times we write $T_{0}(\varepsilon)$ to denote that the positive constant T_{0} depends on ε.
§3. PROOF OF THEOREM 1. We divide the proof into seven steps for convenience. To illustrate our method we take $H=T-2$. The general case in (i) follows from the deep result

$$
\frac{1}{H} \int_{T}^{T+H}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} d t<_{\varepsilon}(\log T)^{4}
$$

where $T \geq H \geq T^{\frac{2}{3}+\varepsilon}$ due to N.ZAVOROTNYI [N.Z] (see also [D.R.H-B], [H.I], [M.J] and [Y.M] for the history to date) and (ii) from the crucial result

$$
\frac{1}{H} \int_{T}^{T+H}\left|\zeta\left(\frac{1}{2}+i t\right)\right| d t<_{\varepsilon}(\log T)^{\frac{1}{4}}
$$

where $T \geq H \geq T^{\frac{1}{2}+\varepsilon}$ due to K.RAMACHANDRA (see (4.3.2) of $[K . R .]_{1}$).
STEP I. Consider the various rectangles
$\left[\frac{1}{2}-\frac{D \log \log T}{\log T} \leq \sigma \leq 2\right] \times\left[T+(\log T)^{E} \leq t \leq T+2(\log T)^{E}, T+2(\log T)^{E} \leq t \leq T+3(\log T)^{E},\right.$.
where the right extremity of the last t-interval does not exceed $2 T-(\log T)^{E}$. Consider the maximum

$$
\max |\zeta(s)|^{4}
$$

over a typical rectangle. We will prove that

$$
\begin{equation*}
\sum \max |\zeta(s)|^{4} \ll T(\log T)^{6+8 D} . \tag{3.1}
\end{equation*}
$$

(We can improve RHS to $T(\log T)^{5+8 D}(\log \log T)^{-2}$; but we do not need this). Let $s_{1}, s_{2} \ldots$ denote points where the maxima are attained. Then the required quantity is (see Theorem (1.7.1) of $[\mathrm{K} . \mathrm{R}]_{1}$)

$$
\leq\left|\zeta\left(s_{1}\right)\right|^{4}+\left|\zeta\left(s_{2}\right)\right|^{4}+\ldots \leq\left(\frac{\log T}{D \log \log T}\right)^{2} \pi^{-1}\left\{\int_{D_{1}} \int|\zeta(s)|^{4} d a+\int_{D_{2}} \int|\zeta(s)|^{4} d a+\ldots\right\}
$$

(where D_{j} is the disc of radius $D(\log \log T)(\log T)^{-1}$ with centre s_{j} and $d a$ the element of area)

$$
\leq 10 \pi^{-1}(\log T)^{2}(D \log \log T)^{-2} \iint|\zeta(s)|^{4} d \sigma d t
$$

where the last integration is over the rectangle

$$
\left[\frac{1}{2}-\frac{2 D \log \log T}{\log T} \leq \sigma \leq 3\right] \times[T \leq t \leq 2 T]
$$

The last integral is easily seen to be $<T(\log T)^{4+8 D}$
STEP II. We now record a Corollary to step I. We have

$$
\max |\zeta(s)| \leq(\log T)^{C}
$$

for all rectangles except N of them where

$$
N(\log T)^{4 C} \ll T(\log T)^{6+8 D}
$$

and so

$$
\begin{equation*}
N \ll T(\log T)^{6-4 C+8 D} . \tag{3.2}
\end{equation*}
$$

STEP III. We now write

$$
M(\gamma)=\max |\zeta(s)|^{2}
$$

where the maximum is taken over the rectangle

$$
\left[\frac{1}{2}-\frac{A}{\log T} \leq \sigma \leq 2\right] \times\left[|t-\gamma| \leq \frac{B \log \log T}{\log T}\right] .
$$

Let the asterisk denote the sum over those γ for which $M(\gamma) \leq(\log T)^{-F}$. Then

$$
\begin{equation*}
\sum_{T+1 \leq \gamma \leq 2 T-1}^{*}(M(\gamma)) \ll T(\log T)^{1-F} \tag{3.3}
\end{equation*}
$$

since the total number of γ 's is $\ll T \log T$ (we may fix F to be 2).
STEP IV. Denote the rectangle in step III by $R(\gamma)$ and by s_{γ} the point at which $|\zeta(s)|$ attains its maximum in $R(\gamma)$. Consider those γ 's for which $M(\gamma)>(\log T)^{-F}$. Then the number of zeros of $\zeta(s)$ in the disc with centre s_{γ} and radius $G(\log \log T)(\log T)^{-1}$ is $O(\log \log T)$ uniformly provided that this disc is inside any of the rectangles of step II. (Note that the number of exceptional rectangles is $\left.N \leq T(\log T)^{6-4 C+8 D}\right)$. This follows by Jensen's Theorem (see page 150 of $[\mathrm{K} . \mathrm{R}]_{1}$).

STEP V. Now consider all the $M(\gamma)$ with $T+1 \leq \gamma \leq 2 T-1$. We claim

$$
\begin{equation*}
\sum M(\gamma) \ll T(\log T)^{2} \log \log T . \tag{3.4}
\end{equation*}
$$

(this proves part (i) of Theorem 1). To see this we split up the sum on the LHS into $\sum_{1}+\sum_{2}+\sum_{3}$. where \sum_{3} is the sum in (3.3) and \sum_{2} is over all γ lying in all the exceptional N rectangles occuring in step II. We have

$$
\sum_{2} \leq\left(\sum(M(\gamma))^{2}\right)^{\frac{1}{2}} N^{\frac{1}{2}}
$$

Note that $\sum(M(\gamma))^{2} \ll T(\log T)^{6+8 D+E+40} \leq T(\log T)^{50+8 D+E}$ since each of the $M(\gamma)$ s may be replaced by the maxima in step I. Also

$$
N \ll T(\log T)^{6-4 C+8 D} .
$$

Thus

$$
\sum_{2} \ll T(\log T)^{25+4 D+E+3-2 C+4 D} \leq T(\log T)^{-1}
$$

if $C=4 D+E+20$.
We now look at the sum \sum_{1}. It consists of those γ 's for which

$$
\begin{equation*}
(\log T)^{-F} \leq M(\gamma) \leq(\log T)^{C} \tag{3.5}
\end{equation*}
$$

and so by step IV the number of zeros of $\zeta(s)$ in

$$
\left|s_{\gamma}-s\right| \leq G(\log \log T)(\log T)^{-1} \text { is } O(\log \log T)
$$

Here G is any constant such that this disc lies in

$$
\left[\frac{1}{2}-\frac{D \log \log T}{\log T} \leq \sigma \leq 3\right] \times J
$$

where J is any of the non exceptional intervals of step II. This is so if $D=10 G$.
STEP VI. We are now in a position to complete the estimation of \sum_{1}. Divide the $\sigma-$ range $\left[\frac{1}{2}-\frac{A}{\log T} \leq \sigma \leq 2\right]$ into intervals
$I_{0}=\left[\frac{1}{2}-\frac{A}{\log T} \leq \sigma \leq \frac{1}{2}+\frac{A}{\log T}\right]$,
$I_{1}=\left[\frac{1}{2}+\frac{A}{\log T} \leq \sigma \leq \frac{1}{2}+\frac{2 A}{\log T}\right]$,
$I_{2}=\left[\frac{1}{2}+\frac{2 A}{\log T} \leq \sigma \leq \frac{1}{2}+\frac{3 A}{\log T}\right], \ldots$
$I_{n}=\left[\frac{1}{2}+\frac{n A}{\log T} \leq \sigma \leq \frac{1}{2}+\frac{(n+1) A}{\log T}\right], \ldots$
the last interval projecting a little beyond 2. First consider I_{0}. Look at the s_{γ} of the sum \sum_{1} for which $R e s_{\gamma} \epsilon I_{0}$. We have (see page 34 of $[K . R]_{1}$)

$$
\left|\zeta\left(s_{\gamma}\right)\right|^{2} \leq\left(\pi R_{0}^{2}\right)^{-1} \iint_{\left|s-s_{\gamma}\right| \leq R_{0}}|\zeta(s)|^{2} d a
$$

where $d a$ is the element of area and $R_{0}>0$. Choose $R_{0}=\frac{20 A}{\log T}$. We find
$\sum_{\sigma . R \in s, \in I_{0}}\left|\zeta\left(s_{\gamma}\right)\right|^{2} \ll(\log \log T)(\log T)^{2} \iint_{T \leq t \leq 2 T,\left|\sigma-\frac{1}{2}\right| \leq \frac{\operatorname{loda}}{1 \log _{T} T}}|\zeta(s)|^{2} d \sigma d t$
$\ll(\log \log T) \log T)^{2}(T \log T)(\log T)^{-1}$
$=T(\log T)^{2} \log \log T$
Now for any fixed $n(n=1,2,3, \ldots)$ consider the interval I_{n} for Re s_{γ}. We have (see page 34 of $[K . R]_{1}$)

$$
\left|\zeta\left(s_{\gamma}\right)\right|^{2} \leq\left(\pi R_{n}^{2}\right)^{-1} \iint_{\left|s-s_{,}\right| \leq R_{n}}|\zeta(s)|^{2} d a
$$

where $d a$ is the element of area and $R_{n}>0$. We choose $R_{n}=\frac{n A}{2 \log T}$. We find

$$
\begin{gathered}
\sum_{\gamma, R e, s, \epsilon I_{n}}\left|\zeta\left(s_{\gamma}\right)\right|^{2} \\
\ll(\log \log T)\left(n^{-1} \log T\right)^{2} \iint_{T \leq t \leq 2 T, \frac{1}{2}+\frac{n A}{2 \log T} \leq \sigma \leq \frac{1}{2}+\frac{2 n \pi}{\log _{6} T}}|\zeta(s)|^{2} d \sigma d t \\
\ll(\log \log T)(\log T)^{2} n^{-2} \int_{\sigma \in I_{n}}\left(T \sum_{m=1}^{\infty} m^{-2 \sigma}\right) d \sigma \\
\ll T(\log \log T)(\log T)^{2} n^{-2}\left(n^{-1} \log T\right) n(\log T)^{-1} \\
\ll T(\log \log T)(\log T)^{2} n^{-2} .
\end{gathered}
$$

Summing up over $n=1,2, \ldots,[\lambda \log T]$, where $\lambda>0$ is a suitable constant (and square bracket denotes the integer part), we have

$$
\sum_{1} \ll T(\log T)^{2}(\log \log T)
$$

This proves part (i) of Theorem 1 in the case $H=T-2$, (the case $H \geq T^{\frac{2}{3}}+\varepsilon$ is similar).
STEP VII. To prove part (ii) we have to use

$$
\begin{equation*}
T^{-1} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right| d t \ll(\log T)^{\frac{1}{4}} . \tag{3.6}
\end{equation*}
$$

From (3.6) the following two Corollaries can be drawn (by the use of convexity principles (see $\left.[K . R]_{2}\right)$).

COROLLARY 1. For $\left|\sigma-\frac{1}{2}\right| \ll(\log T)^{-1}$, we have

$$
\begin{equation*}
\frac{1}{T} \int_{T}^{2 T}|\zeta(\sigma+i t)| d t \ll(\log T)^{\frac{1}{4}} . \tag{3.7}
\end{equation*}
$$

COROLLARY 2. For $\sigma=\frac{1}{2}+\lambda$ with $0<\lambda \leq 2, \lambda \gg(\log T)^{-1}$, We have

$$
\begin{equation*}
\frac{1}{T} \int_{T}^{2 T}|\zeta(\sigma+i t)| d t \ll \lambda^{-\frac{1}{4}} \tag{3.8}
\end{equation*}
$$

The rest of the proof of part (ii) of Theorem 1 is similar to that of part(i). (In this case also the proof with $H \geq T^{\frac{1}{2}+\varepsilon}$ is similar).
§4. PROOF OF THEOREM 2. The proof is similar to that of Theorem 1 (part (i)). We have simply to note that Hypothesis 1 implies (by convexity principles refered to already) the following two Corollaries.

COROLLARY 1. For $\left|\sigma-\frac{1}{2}\right| \ll(\log T)^{-1}$, we have,

$$
\begin{equation*}
\frac{1}{H} \int_{T}^{T+H}|\zeta(\sigma+i t)|^{2 k} d t \ll(\log T)^{k^{2}} \tag{4.1}
\end{equation*}
$$

COROLLARY 2. For $\sigma=\frac{1}{2}+\lambda$, with $0<\lambda \leq 2$ and $\lambda \gg(\log T)^{-1}$, we have,

$$
\begin{equation*}
\frac{1}{H} \int_{T}^{T+H}|\zeta(\sigma+i t)|^{2 k} d t \ll \lambda^{-k^{2}} \tag{4.2}
\end{equation*}
$$

This completes the proof of all our assertions.
§5.REMARK. We have not computed the constants in Theorems 1 and 2. We will take it up on a different occasion if there are some important applications.

ACKNOWLEDGEMENTS: I am thankful to Professor Roger Heath-Brown for encouragement.

REFERENCES

[D.R.H-B], D.R.Heath-Brown, The fourth power moment of the Riemann zeta-function, Proc. London, Math. Soc., (3) 38(1979), 385-422.
[A.I]. A.IVIĆ, On certain sums over ordinates of zeta-zeros, (preprint).
[H.I], H.IWANIEC, Fourier coefficients of cusp forms and the Riemann zeta-function, Expose No. 18, Semin. Theor. Nombres, Universite Bordeaux (1979/80).
[M.J], M.JUTILA, The fourth power moment of the Riemann zeta-function over a short interval, "Coll. Math. Soc. J.Bolyai 54, Number Theory, Budapest (1987) North-Holland, Amsterdam (1989), 221-244.
[Y.M.], Y.MOTOHASHI, An explicit formula for the fourth power mean of the Riemann zeta-function, Acta Math., 170(1993), 180-220.
$\left[\mathrm{K} . \mathrm{R}_{1}\right.$, K.RAMACHANDRA, On the mean value and Omega-theorems for the Riemann zeta-function, T.I.F.R. Lecture notes no. 85, Springer (1995).
$[\mathrm{K} . \mathrm{R}]_{2}$, K.RAMACHANDRA, Fractional moments of the Riemann zeta-function, Acta Arith., LXXVII. 3 (1997), 255-265.
$[\mathrm{K} . \mathrm{R}]_{3}$, K.RAMACHANDRA, Mean-value of the Riemann zeta-function and other remarks-III, Hardy-Ramanujan J., Vol 6 (1983), 1-21.
[E.C.T, D.R.H-B], E.C.TITCHAMARSH, The theory of the Riemann zeta-function, Second edition (revised and edited by D.R.HEATH-BROWN), Clarendon press, Oxford (1986).
[N.Z]. N.ZAVOROTNYI, On the fourth moment of the Riemann zeta-function (Russian), Preprint, Vladivostok, Far Eastern Research Centre of the Academy of Sciences U.S.S.R., (1986). Published in Sci.Coll.Works, Vladivostok, (1989), 69-125.

Author's addresses

K. Ramachandra

Hon. Vis. Professor
Nat. Inst. of Adv. Studies
I. I. Sc. Campus

Bangalore-560012
India
K. Ramachandra

Retd. Professor
TIFR Centre
P.O.Box 1234
I. I. Sc. Campus

Bangalore-560012
India
e-mail: kram@math.tifrbng.res.in
MANUSCRIPT COMPLETED ON 13-02-2001.

