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SOME PROBLEMS OF ANALYTIC NUMBER
THEORY -1V

R.Balasubramanian and K. Ramachandra.

1. Introduction. There are two main reasons for publishing this paper. The earlier
paper III with the same title was published under many difficulties and consequently in that
paper [RB, KR] the pages were not numbered properly. Secondly in the present paper we use
Ramachandra’s kernel function of the second order (see Lemma 1 of §3) namely Exp((sinz)?).
This has some advantages over the earlier kernel Exp(z%%*t2?) where a is a positive integer.
As an outcome of the new kernel we are able to handle 2-Theorems for error terms in the
asymptotic formula for the summatory function of the coefficients of generating functions of
the type Exp(((s)), Exp Exp(((s)) and also of the type Exp Exp((¢(s))2). (Also there follow
many applications such as L(s, x) in place of {(s)). It will be plain from our Theorems 3 and
4 which follow from Theorem 1 of the present paper especially from Theorems 2 and 3) that
() Theorems in divisor problems such as

> di(n) — P, (logz) = Q(ac%’

n <z
do not need the functional equation (for ((s)) at all. (Here ({(s))* = 3%, di(n)n™* (Res >
2), k > 2 is any integer and Py(logz) is a polynomial of degree £k — 1 in logz). One

£

) (1)

of the corollories to Theorem 1 is Theorem 2. It gives Q. theorems (but not with the
same exponent as in ) theorems). For instance in the case of the abelian group problem
we get Qu(z10) (or a slightly better result) whereas we get Q(z5 y/Iogz). Our method
[RB, KR] of proving these two results is explained beautifully in a joint paper [AS, KS] by
A.Sankaranarayanan and K.Srinivas. More complicated version of the same method was em-
ployed by R.Balasubramanian, K.Ramachandra and M.V.Subbarao [RB, KR, MVS] to study
the oscillation of the error-term in the asymptotic formula for the number of k-full numbers
not exceeding z. This method has been applied by A.Schinzel [AS] to study a problem consid-
ered by Sierpinski and Ramanujan. Here the generating function will have many singularities
which are not too densely distributed. In the present paper we formalise this aspect of the
problem also. The crux of the whole thing seems to be a fundamental identity given by

Theorem 1 from which all the other theorems follow.
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§2. NOTATION AND STATEMENT OF THEOREM 1.

Throughout this paper

o
F(s)=> an \,° (s=0+1t) (2)
n=1
where aq, ag, ... is a sequence of complex numbers, 1 =X} < Ay < A3,...and A1 — Ay >

1. It will be assumed that F'(s) converges absolutely in some half-plane o > Cy > 100
and analytically continuable in (0 > «a — §,t €I) where a and § are constants satisfying
a>0>0(0<d< 3) (the last requirement is not very important). I is a suitable interval
for t. For the purposes of Theorems 2 and 3, {a,} is any sequence of complex numbers and in
certain applications of Theorem 4 we assume that {a,} is any sequence of real numbers and
at the same time we assume that |F'(s)| does not exceed a bounded (positive constant) power

of [t| for all large |t|. A will be a sufficiently large constant and for v > 0 we define

1 Cotioo . W g dw
Aw =g [T utExp((sn ) 3)
and also ) o
_ b oT? o0 w . E 9
J(u) = 5.7 /COi LU (Exp((sin A) ))dw. (4)

We remark that A(u) = O(u?/?) and also 1+ O(u=4/2) and is therefore bounded by a
constant depending only on A. Similarly J(u) = O(u?/?) and also O(u~4/?) and is therefore
bounded by a constant depending only on A. These follow by moving the line of integration
to Re(w) = A/2 and —A/2 respectively. With F'(s) we associate the series

> X
B(s) =3 o X" A () (5)
n=1 n

where X > 0.

THEOREM 1.Let s = « + ity(ty is assumed to exceed a large positive constant) and

max |F'(s)| < M where the mazimum is taken over (o6 > a—0,|t—ty] < C log log M) and
we impose the conditionty < M < Exp Exp(eto) where Cy is a large positive constant and
¢ 18 a small positiive constant. Also we impose 0 < & < a. Then fizing § to be A™? and X to

be M®™*, we have (by simple contour integration)
F(s0) = B(so) + O(M ™). (6)

Also if ¢(z)z' is any analytic function (analytic on a curve C to be described

presently) and

Bu)=3 an - 5= [ we() ()
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We have (for any large positive constant dy)

X
B(SO) = Z Qp /\;S A (/\—> + Bl(So)
An <y n
o X o X
+ 5 / E(uw)u™* " A(=) du + / E(u)u™*"" J(Z=) du
Y u y U
1 . =80+ 2,9, X 0T
— E d
+ 5= [ e Em(sn —2TE)?) el
1 yfso+z
- — d
2m1 /zeC -89+ 2 9(2)dz
1 1 —do+% 00 y*50+z X w
~ 5w Lo ¥ [ Sime )
dw
E 72
( Xp((SmA) ) -, )4 (8)

provided Re(z) > a+mn > 0 for some constant n > 0 and for all z on C. HereY < y <2Y
(Y is assumed to exceed a large positive constant), Bl(so) depends on vy,
2y dy

(9)

and C is the wunion of boundedly many rectzﬁable curves each of bounded length

Blso— / Y50 A( )E()

all contained in a circle of bounded radius and with centre z = 0.

REMARK. For the purposes of Theorems 2 and 3, ¢(z)z~! can be any function analytic on
C. But for the purposes of certain applications of theorem 4, ¢(z)z~! will have to be replaced
by F(z)z~! and C will have to be chosen appropriately. C; and ¢ may be chosen to be A3
and A% respectively and A has to be large enough. dy can be chosen to be A/2.

§3. THREE FUNDAMENTAL LEMMAS.

LEMMA 1. Let z = z + iy be a complezx variable with |x| < % Then, we have
(a)| Exp((sinz)?)| < e? <2 forally (10)

and
(b) if ly| > 2, we have

| Exp((sin 2)?)| < e (ExpExp |y|)™" < 2(Exp Exply|)~". (11)
REMARK. This is Lemma 2.1 on page 38 of [KR],. We have retained the same notation

as in this reference. Notation of Lemma 1 should not be confused with the other notation of

this paper.
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A very importnat result due to H.L.Montgomery and R.C.Vaughan is the following

LEMMA 2. Suppose R > 2; A1, Az..., Ag are distinct real numbers and that §,, = min,, 4, |A,—
Am|- Then

ama'n —
DY )\m_)\n| < 5 3 fanl? 65 (12)

REMARK. This is Theorem 1.4.1 on page 21 of [KR],. Again we have retained the same
notation as in this reference. The notation of Lemma 2 above should not be confused with

the other notation of the present paper.

As a Corollary to Lemma 2 we record

LEMMA 3. We have

2U R ) R R
/U S AP dt=U Y a2+ O3 An lanl?) (13)
n=1 n=1 n=1
where 1 <K Ay, Ao, ... are positive and increasing and Apy1 — A, > 1, and a1, 0a9,...ag are

any complex numbers and further U > 10.

PROOF. Lemma 3 follows from Lemma 2 on observing that
[log A —log M| ™" < (A + Xa) A = A

for all m # n.

§4. PROOF OF THEOREM 1. We have

B(sg) — AZ< an/\nsA<)\£n)
= [T A(%)d( Y - D)+ [T uoA (%) D'(u) du

A <u Y

= By(so) + Bs(so) say,

(where D(u) = 52 [. .o 6(2) £).

2me

o0

By(sp) =u™ A (%) E(u) :|y—0 — /yoo E(u) % (u‘so A (%)) du.

Here the first term is Bj(sq) which is the second term on the RHS of (8). Also the second
term here is the sum of the third term and foruth term on the RHS of (8).
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Next

By(sy) — /°° w A (X) D'(u) du

u

= [T (g s G @ten 59) )
% /zsC u?t qﬁ(z)dz) du

_ /0°° ...+(—/0y...)=B4($0)+Bs(80), say.

o) s s 1 Co+i oo —w dw
Bulso) = /0 v {(27ri /(Joi oo ! (Exp((sm A) )) w )
L z—1 z—1 ) }
(27”, /Z oY X* " o(2)dz ) X ¢ dv
(by the transformation u = v.X)

o) Co+1i00
— [ 1 : / sto—f—z 1 / U—50+Z—1 / 0 U—w
211 JzeC 2w Jo Co—i oo

(Exp((sm Z) )) d—wdv}qS( )dz

_ L —so0+z . —Sot 2z,
T

by using the fact that
1 [e's) Co+ioco d
o [T [ (B (5)7) 2 a

—Sg+ 2

= { Exp(sin ( )?) (=so+2)7"
( )

(We remark that under fairly general conditions on F'(w) we have

1 oo s_1 c+i oo —w _
%/0 x (/CZOO F(w)x dw) dx = F(s).

see page 7, §1.5 of [ECT]).

Finally

= e { (o D G @t S 5)

(2m /zeC v ¢( )dz)}d
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- L / VT s

271 eC —So+ 2

e g [ G (e ) )
(2%” /zw u?t qb(z)dz)}du

(on moving the line of integration to Re(w) = —dy). Clearly the last triple integral is

1 1 podotico gm0tz Y d
“omi | @G [ e (O (Bxp(sin 5)) e

27 2wt J-dy—-io0 —So+z—w Y

and this proves Theorem 1 completely.

We next record Theorem 2 (which is a corollary to Theorem 1) and next derive two

theorems (Therems 3 and 4) which follow from it.

THEOREM 2 With the same notation as in Theorem 1, andty =Y < y < 2Y, we have

2Y

|B(sg)log2 — /Y {30 /yOO E(u)u=%"! A(u)du

+ / " B(u)u! J(%) du} @

<1f X o SOA(fﬁ’
w17 v Al Bw) Y+ 001 ) + 0 (14)

where § = max Re(z) for z eC.

PROOQOF. The proof is trivial. (The last three terms on the RHS of (8) contribute the O-terms

n (14)).
Before stating Theorem 3 we state a lemma.

LEMMA 4. LetY < y < 2Y (Y should exceed a large positive constant), sy = a+ ity and
let B be a constant satisfying 0 < B < 1. Then

to 2y 0
G(u)u* " du | dt
[ [ s a2 a
© G(u) 4 du < G(u) 4 du
AL e 1
<</Y|ua|u+0/y|ua|u2 (15)
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where G(u) is any complez valued function of a defined inu >'Y, such that the inner integral
on the LHS of (15) is convergent.

PROOF. LHS of (15) is the same as
L LY G-ty =1 by d? L
—14y+u)(n—1+y+u)"o" =4
/tg /Y /0 T;l n y+u)(n y+u u , Lo
to g2y 1 90 dy
g/ / / 1> Gn—1+y+u)(n—1+y+u)"*"" dul®* —di
tg Jy Jo T Y

2Y 1 9
= [ [ X to+0m—1+y+u)iGn—1+y+u)
=1

dy

(n—1+y+u)>*?du y

(on reversing the order of integration and using Lemma 3)
2Y 1 o
< /y /0 Z | G(n—1+y+u)|2(n_ 1+y+u)—2a—2
d
Y dud 2y du d
/ / @ |2 y + %o / / )‘2 - _y
U y 2y

g(logQ){/Yoo|G u t/ d“.

This proves the Lemma.

THEOREM 3. We have

to dt Xt Eu),ydu  _g (X' E(u), du
I R L e ML

2 «a «a
5 ts u u 5 u u

X e A |t M g (16)
/\n S 2tO

where § = max(Re(z)) for z €C (0 is subject toa+3—n > 6 >a—n), n> 0 being a small

constant and 3 is a constant with0 < 8 < 1. If0 > a+ % the last term on the RHS of (16)

will have to be replaced by t2(0 @)=3

REMARK. Note that (16) holds with B(s) replaced by F'(sp). Also

dt to dt
S IR < [ 1B)R Fea (17)

0 t2
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where the I’s are any set of disjoint sub-intervals of [t5, to] such that B(s,) is an approximation
to F(S()).

PROOF. Note that F(u) = O(u“**%) and so Lemma 4 is applicable (with Y replaced by
to after (15) is established. Note that if we replace Y by t, before establishing (15) there is
some problem in reversing the order of integration). The first term on the RHS of (15) gives
the third term on the RHS of (16). The second term on the RHS of (14) gives

s ) o
:/t§°|/yoo...— 2:3...2<</ ||A(u)|2?

remembering our choice Y = t,. Note that the contribution to the last integral from v > X*

is O(M~4).

Similarly (and in a simpler way) we obtain the following Theorem from Theorem 1
(Putting Y = ¢, in (9)).

THEOREM 4. We have
Xt BE(u), du

Bl <o [ 1517+ 3l
M ey (18)
and so
to'[B(so)| < {/X  Bydu ( 2 lan|A5“> o’
to U U A <2t
Hgt MA e ] (19)

REMARK. Some times it is more advantageous to use lower bounds for
/X4 |E(u) 2 du
to @ U

and insert an upper bound for E(u) say O(u®) (o < 2«) and thus obtain a lower bound for

Xt B(u) | du
/t | y2a—ao | u
of the type > log t; (a weaker lower bound will result in a weaker Q. result). We can use
such a lower bound to prove E(u) = Qi (u?*~%) under fairly general (but not too general)

conditions on F'(s). We will amplify this remak later.
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§5. APPLICATIONS OF THEOREMS 3 AND 4 TO 2 THEOREMS.

From now on we assume the convergence of Y |a,| A, 7 for every o > 1. (In applications
of Theorem 3 we need the convergence of 3" |a,|*A~? for every o > 1. Of course the convergence
of 3" |an| A, 7 for every o > 11is a consequence). Naturally F'(s) will be regular in ¢ > 1 with the
consequence < 1+ for every fixed € > 0. We choose 5(< 1) close to 1 and a(1 > a—n > 0)
(n is a small positive constant) and {tp} a sequence which tends to infinity for which LHS
of (16) is > 1 (It will be > logt, or a bigger quantity in some applications). We give some
details of application to {2 theorems in the case of F(s) = (¢(s))* and F(s) = Exp({(s)). (We

note that a lower bound for "
B(so)> —
> B

I running through some disjoint sub-intervals of [t7, to] wherein B(s,) approximates to F(so)
with a small error is enough for many purposes). The remark in the parenthesis is applicable
to F'(s) with many singularities but which are not too densely distributed, (see [RB, KR,
MVS)). For example it is applicable to Exp Exp((¢(s))2). If F(s) has no singularities in (o >
a—6,t < t < ty),B(s) approximates to F(s) throughout the interval

tg + C; log log M.ty — C; log log M

and hence it suffices to consider a lower bound for

to dt
2 0
L 1BGoP

0

or equivalently for

LEMMA 5. We have for all T > 10 and all integers k > 2,

2T .
T/ 5——+zt)|2dt>>Tz (20)
and by Holders inequality
2T
- / 5— —+zt)\2’“ > T (21)
and so . . . o
/Tﬂ CG—5+ it) | 7 >logT. (22)

REMARK. The proof of (2) does not need the functional equation. It needs (apart from

Lemma 3) the result

()= > n* +0(T7) (23)

n < 10T
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(Note that = [77| ((o + it)[?dt = O(T*%) for all 0 < L and > (1 —20)7! T"% for all
o < 3 and close to 3. Convexity now gives the mean value to be > T2 for all o < 3.)
uniformly in (¢ >0, T < t < 2T) (see [KR]; or the Third main theorem of Chapter II in
[KR]2. These do not depend upon the functional equation. The result in [KR], is very very
general and very very important from many points of view). Next we remark that Theorem

3 together with (22) gives

THEOREM 5. We have

a-|"‘

; dk(n) - Pk(logx) = Q(,@%_2 )’

where (C(s))* =32, dp(n)n* (s=o+it, o > 2) and k(> 2) is any integer and Py(logx)
is a polynomial of degree k — 1 in (logx).

REMARK. All our results Q(N;) and Q4 (N,) are effective in the following sense. Given
any A > 100, we can find a B(> A) effectively such that

max  |E(z)| > k1N,
max E(z) > koNy

min _ E(z) < —k3Ny

where F(z) is the error function and x; and ko and k3 are effective positive constants (inde-
pendent of Ny and Ny).

In our applications to say Exp({(s)) and so on, an important role is played by Borel-
Catheodory theorem (see §1.6, p. 26 of [KR]s) which we state as

LEMMA 6. Suppose f(z) is analytic in |z — 25| < R, and on the circle z = 2o+ Re' ¥ (0 <
0 < 27) we have Re(f(2)) < U. Then in |z — 2| < r < R, we have

(U = Re(f(%)))

&) - fz) < 2

R—r
and so
2rU R+r
< ..
JE) < ot e 1)l (24)

As a corollary we deduce
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LEMMA 7. Let zy =2+ 1ity, R=1+2¢, r =14 ¢ where e > 0 s a very small constant.
Let g(s) be analytic in |z — zy| < R. Let H(to) be positive and tend to infinity asty — oo.
Let |g(zp)| be bounded by an absolute constant and let

Jmax l9(s)] > H(to) (25)
Then
max_ Re(g(s) > (H(t))'™ (26)

for every € > 0 and all ty exceeding a large positive constant.

PROOF. Assume that (26) is false. Then by Lemma 6, we have

Jmax lg(s)] < @ (H(to))' ™ + & +38|g(zO)|
which contradicts (25). Hence Lemma 7 is proved.
LEMMA 8. We have
Jmax [ Exp(C(s))] = ExpExp ((logto)'~*) (27)
and also
Jmax | Exp Exp(((s))| > ExpExp Exp((logto) ") (28)

for every fized ¢ > 0.

REMARK. By convexity (coupled with the kernel Exp((sin z)?) (27) and (28) hold for

s = o+ it, where [t; — o] < ito and (< 1) is as close to 1 as we want.
PROOF. To prove (27) we should have

max _ (Re(C(s)) > Exp((logte)'~%)

|s—z0|=R

But this follows from
max _[C(s)| > Exp((logts)'™).

|[s—z0|<T

(See Theorems 3.3.1 and 3.3.2 of [KR]2. In fact there exist plenty of such ¢p). The result (28)

can also be proved similarly (using (27)).
REMARK. We can prove

max | Exp Exp Exp((¢(s))| > Exp Exp Exp Exp((logt,)' %) (29)

|s—zo| <r
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and so on. But we are unable to prove () for results for the error terms in the asymptotic
formula for the summatory function of the coefficients for such (and higher) iterates of Exp.
Aslo while dealing with Exp Exp((¢(s))?) (we can certainly deal with € theorem for such

functions) we have to use density theorems for the zeros of the Riemann zeta-function.
Theorem 4 together with Lemma 8 gives

THEOREM 6. Let

Exp((¢(s)) = X024 byn ® and

Ezxp Exzp((C(s)) = Xo2, dun™

(30)
in Re(s) > 1. Then, we have
1 ds
=5 | E « 4ot 1
P I COEE-ST (31)
and
S di= o= [ EpEw((e) o 2 0@ (32)
n<a 211 Jjs-1|=5% s

hold good for every firede > 0 as x — oo. In fact if a is any constant such that % <a<l—-ng

holds for somen > 0 and if E(x) denotes either error term, we have

ue U

-1 R(to) < /tX | (33)

where R(ty) denotes the RHS of (27) and (28) respectively.

REMARK. Our method of proving (33) is applicable to functions like Exp((¢(s))?) and also
to Exp Exp((¢(s))2). As remarked earlier we have to use the density theorems for the zeros of

the Riemann zeta-function. In such cases the dominant term is

s+1

1 o+
/ (generating function at s + 1) ds,

% —00 s+1

(with the commonly employed notation). Our results are applicable to functions like L(s, x)
(and so on) in place of ((s)). But we are unable to handle 2 results except under stringent

conditons to be stated in the next section.

§6.,APPLICATIONS OF THEOREMS 3 AND 4 TO (. THEOREMS.
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THEOREM 7. Let

o0

F(s)=>" an \,° (s =0 +1t) (34)
n=1
where a], s are real numbers and 1 K A\ < Ao < ..., Apy1 — Ay > 1. We assume that

F(s) is absolutely convergent in o > 1 and is analytically continuable in (o0 > o — § (where
0<éd<a<l, danda being constants), t > Cy where Cy is some large constant). In this

regz'on we assume

|F(s)| <t (35)
where Cy is a positive constant which may depend on « and d. Lastly we assume (for every
T >Cy)

20 FE(u), du
/ | (a)l— > C,y (36)
U U u
for some U(T <U < TC5) for some positive constants Cy and Cs. Here
1 ds
E(u) = S / F(s) w 37
W= Y -5 [ Fls)uws (37)

An < u

C being a curve joining o — d — 1Cs, 14+ ¢ —iCs, 1 + & + 1Cy and o — § + iCy in this order
(e > 0 being any small constant). Then as x — oo, there holds

E(z) = Q4 (z°).
Proof. The proof is nearly the same as our earlier one (see [AS, KS] for a nice exposition in

the case F'(s) = ((s)((25)((3s)-..).

COROLLARY 1. Lety be the Euler’s constant and E(x) = X, <, d(n)—(zlogz+(2y—1)z).
Then

=

E(z) = Qs (7). (38)

REMARK. We use

W F d
[ Ay (39)
U us u
which follows from theorem 3 (in the special case F(s) = ({(s))?). From this we deduce
U B(u), d
[E s (40
U use U

using the estimate E(u) = O(u3) due to G.Voronoi (see p.272 of [GHH, EMW]). Our results
are applicable to circle problem where the generating function is F(s) = ((s)L(s, x)) for the

nontrivial character x (mod 4).
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COROLLARY 2. Let F(s) = [132, ((ks). Then the dominant term is 332, ijﬂl' (where

C1,Cs, ..., Chg are suitable real constants). With o = 11—0 we obtain

log x
loglog

E(z) = Qu (27 Exp(Cy( )))

where Cq > 0 is a certain constant.

REMARK. Here instead of using

2U E(u) 5 du
[ =er =
U ue u

> log T,

we find it advantageous to apply Theorem 4 directly and obtain

1
22U E(u), du logT \?
U uio U log logT

and deduce the 4 theorem from this.

FINAL REMARK. The results on circle and divisor problems are not new. There are

very classical and better results due to G.H.Hardy, E.Landau and others. We have not given

references to these classical results. In recent times these have been improved by Raghavan
Narasimhan, K.Chandrasekharan, K.S.Gangadharan, K.A.Corradi, I Katai, J.L.Halfner and

others. We hope that the reader will be able to find out references to these famous papers.
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