Mean-square upper bound of Hecke L-functions on the critical line.
A Sankaranarayanan

To cite this version:
A Sankaranarayanan. Mean-square upper bound of Hecke L-functions on the critical line.. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 2003, 26, pp.2-17. hal-01109810

HAL Id: hal-01109810
https://hal.archives-ouvertes.fr/hal-01109810
Submitted on 27 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mean-Square Upper Bound of Hecke L- Functions
On The Critical Line
A. Sankaranarayanan

* †

ABSTRACT. We prove the upper bound for the mean-square of the absolute value of the Hecke L-functions (attached to a holomorphic cusp form) defined for the congruence subgroup $\Gamma_0(N)$ on the critical line uniformly with respect to its conductor N.

1. Introduction
Let χ denote a character mod q and $N_\chi(\alpha, T)$, the number of zeros of $L(s, \chi)$ in the rectangle $\alpha < \sigma \leq 1$, $|t| < T$. Gallagher (see [7]) proved that

\[
\sum_{\chi} \left| L \left(\frac{1}{2} + it, \chi \right) \right|^2 \ll (q + |t|) \log(q|t| + 2),
\]

\[
\int_{-T}^{T} \left| L \left(\frac{1}{2} + it, \chi \right) \right|^2 \ll (q + T) \log qT,
\]

and

\[
N_\chi(\alpha, T) \ll T^{3(1-\alpha)}(\log T)^C
\]

uniformly for all $q \leq T$. He also established that

\[
\sum_{\chi} (N_\chi(\alpha, T + 1) - N_\chi(\alpha, T)) \ll q^{3(1-\alpha)}(\log q)^C
\]

for $T \leq q$.

Meurman (see [24]) proved that for any $q \geq 1$,

\[
\sum_{\chi(\text{mod } q)} \int_{T}^{T+H} \left| L \left(\frac{1}{2} + it, \chi \right) \right|^2 \ll \epsilon \left(qH + (qT)^{\frac{3}{4}} \right) (q(T + H))^{\epsilon}
\]

† Key Words : Hecke L-functions, Holomorphic cusp forms, Mean-value theorems, Montgomery-Vaughan Theorem.
for any $\epsilon > 0$ and $3 \leq H \leq T$.

Balasubramanian and Ramachandra have given a simple proof of the above result (1.5) (see [2]) and they could replace $(qT)^{\epsilon}$ by $\log qT$ times a power of $d(q)$ for primitive characters mod q. Jutila has proved ([20] and [21]) the fourth power mean for $\zeta(s)$ and mean-square for L-functions attached to cusp forms (holomorphic as well Maass wave forms) via Laplace transformation method. In fact he studies the error term mean values in a greater generality with an emphasis as a function of T.

It should be mentioned here that mean values of derivatives of modular L-series had been studied by Ram Murty and Kumar Murty in [34]. For several interesting mean value results which were obtained by many mathematicians, see for example [1], [11], [16], [19], [22], [23], [28], [37], [38].

Let $f(z) = \sum_{n=1}^{\infty} a_f(n)e^{2\pi inz}, \Im z > 0$ be a cusp form of even integral weight $k > 2$ for the full modular group $SL(2, \mathbb{Z})$. Hecke L-function attached to f is defined as

\begin{equation}
L_f(s) = \sum_{n=1}^{\infty} a_f(n)n^{-s}
\end{equation}

which is absolutely convergent in $\Re s > \frac{k+1}{2}$, and it satisfies the functional equation

\begin{equation}
(2\pi)^{-s}\Gamma(s)L_f(s) = (-1)^{\frac{k}{2}}(2\pi)^{k-s}\Gamma(k-s)L_f(k-s).
\end{equation}

In [10], A. Good proved the following

THEOREM A. If C_{-1} denotes the residue and $C_{-1}C_0$ the constant term in the Laurent expansion of

$$D(s) = \sum_{n=1}^{\infty} |a_n|^2 n^{-s} \text{ at } s = k,$$

then

$$\int_0^T \left| L_f \left(\frac{k}{2} + it \right) \right|^2 \, dt = 2C_{-1}T \left(\log \left(\frac{T}{2\pi \epsilon} \right) + C_0 \right) + O \left(T(\log T)^{\frac{k}{2}} \right)$$

as $T \to \infty$.

As a corollary, he deduced that

$$L_f \left(\frac{k}{2} + it \right) \ll |t|^{\frac{k}{2}} (\log |t|)^{\frac{k}{2}}.$$

Our main goal in this paper is the following. Let $f(z) = \sum_{n=1}^{\infty} a_f(n)e^{2\pi inz}, \Im z > 0$ be a holomorphic cusp form of even integral weight $k > 2$ with level N (i.e in $\Gamma_0(N)$) and
\(a_f(1) = 1 \). We also assume that \(f \) is a Hecke eigenform so that \(a_f(n) \) are eigenvalues of all the Hecke operators. We are interested to estimate an upper bound for the average integral namely

\[
I = \sum_f \frac{1}{\langle f, f \rangle} \int_T^{2T} \left| L_f \left(\frac{k}{2} + it \right) \right|^2 dt
\]

where \(t \) indicates that \(f \) runs over an orthonormal basis set, uniformly with respect to the conductor \(N \). We prove

MAIN THEOREM. We have

\[
I = \sum_f \frac{1}{\langle f, f \rangle} \int_T^{2T} \left| L_f \left(\frac{k}{2} + it \right) \right|^2 dt \ll_k \epsilon N T (\log NT)^3 (\log \log T)^2 + N^{5+10\epsilon} e^{-C(\log T)^2}
\]

uniformly for all levels \(N \) of \(f \).

Remark 1. This main theorem may be compared with the result of A. Good. As a corollary to this main theorem, we obtain uniformly for all \(N \ll T^\epsilon \), the inequality

\[
I = \sum_f \frac{1}{\langle f, f \rangle} \int_T^{2T} \left| L_f \left(\frac{k}{2} + it \right) \right|^2 dt \ll_k \epsilon T^{1+\epsilon}
\]

Remark 2. The main feature of the proof here is that we avoid the approximate functional equation (whereas Good’s proof depends upon the approximate functional equation). Whenever a Dirichlet series has a functional equation, in \([4]\) K. Chandrasekharan and Raghavan Narasimhan established that a form of the approximate functional equation can be proved and it has a nice form whenever the coefficients of the Dirichlet series under consideration are positive which can be utilised to study mean value theorems. Of course, in some special circumstances even if we do not have the coefficients of the Dirichlet series to be positive it is possible to use that form to study mean-value theorems. However K. Ramachandra observed that just with the functional equation, one can prove reasonable upper bounds for mean-value questions on certain lines and he has used this idea in many of his research work (see for example \([28]\) and \([29]\)). This crucial idea what we are going to use in proving our main theorem.

Remark 3. It should be mentioned here that a general mean value theorem (see theorem 1 of \([22]\)) is available. It is not difficult to see that (choosing the parameters appropriately and
combining lemma 3.1 of section 3)

\[I = \sum_{f \neq f} \frac{1}{<f,f>} \int_{T}^{2T} \left| L_f \left(\frac{k}{2} + it \right) \right|^2 dt \ll_k T^{1+\epsilon}. \]

However, this estimate holds only when the conductor \(N \) of \(f \) satisfies the condition \(N \ll 1 \).

Acknowledgement: The author has great pleasure in thanking Professor Ram Murty for posing this problem some times back and for having fruitful and stimulating discussions related to the Poincare series topic. The author is highly indebted to Instituto de Matemáticas, UNAM, Morelia, Mexico for its warm hospitality and grand financial support during his sabbatical stay there. He also wishes to express his gratitude to the referee for valuable comments.

2. **Notation and preliminaries**

The letters \(C \) and \(A \) (with or without suffixes) denote effective positive constants unless it is specified. It need not be the same at every occurrence. Throughout the paper we assume \(T \geq T_0 \) where \(T_0 \) is a large positive constant. We write \(f(x) \ll g(x) \) to mean \(|f(x)| < C_1 g(x) \) (sometimes we denote this by the \(O \) notation also). Let \(s = \sigma + it \), and \(w = u + iv \). The implied constants are all effective.

Let us recall some basic facts concerning the Poincaré series (see for example [33]).

Let \(\Gamma_\infty \) be the stabilizer of \(i\infty \) in \(\Gamma_0(N) \). The space \(S_k(N) \) of cusp forms of weight \(k \) and level \(N \) is a finite dimensional vector space over \(C \), spanned by the Poincaré series: for \(m \geq 1 \),

\[P_m(z, k, N) = \sum_{\gamma \in \Gamma_\infty \backslash \Gamma_0(N)} j(\gamma, z)^{-k} e(m\gamma z) \]

where

\[e(z) = e^{2\pi iz}, \quad j(\gamma, z) = (\det \gamma)^{-\frac{1}{2}} (cz + d) \]

and

\[\gamma = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \]

In the case of \(k = 2 \), we do not have absolute convergence of the Poincaré series. However, the discussion below holds in this case as well. If \(f \in S_k(N) \), we write the Fourier expansion of \(f \) as:

\[f(z) = \sum_{n=1}^{\infty} a_f(n)e(nz) \]
at \(i\infty \). The space \(S_k(N) \) has an inner product (Petersson inner product):

\[
< f, g > = \int_{\Gamma_0(N) \backslash \mathbb{H}} f(z) \overline{g(z)} y^k \frac{dx dy}{y^2}
\]

where \(\mathbb{H} \) denotes the upper half plane. Petersson proved that

\[
a_f(n) = \frac{(4\pi n)^{k-1}}{\Gamma(k-1)} < f, P_n(., k, N) >
\]

so that if \(f_1, \ldots, f_r \) is an orthonormal basis for \(S_k(N) \), and

\[
P_n(., k, N) = \sum_i c_i f_i
\]

we obtain

\[
c_i = < f_i, P_n(., k, N) > = \frac{\Gamma(k-1)}{(4\pi n)^{k-1}} a_{f_i}(n).
\]

Therefore, we have

\[
\frac{(4\pi n)^{k-1}}{\Gamma(k-1)} P_n(., k, N) = \sum_i a_{f_i}(n) f_i.
\]

If we compare the \(m \)-th coefficients on both sides, then we obtain

\[
\frac{(4\pi n)^{k-1}}{\Gamma(k-1)} a_{P_n(m,k,N)} = \sum_i a_{f_i}(n) a_{f_i}(m).
\]

The \(m \)-th Fourier coefficient of the \(n \)-th Poincaré series \(P_n(z, k, N) \) can be computed as:

\[
a_{P_n(m,k,N)} = \left(\frac{m}{n} \right)^{k-1} \left\{ \delta_{mn} + 2\pi i^{-k} \sum_{c \equiv 0(\text{mod}N)} c^{-1} \sum_{j=1}^{J(k-1)} \left(\frac{4\pi \sqrt{mn}}{c} \right) S_{\infty \infty} (m, n, c) \right\}
\]

where \(\delta_{mn} = 0 \) unless \(m = n \) in which case it is 1.

It is well known that (see [12], [13]), \(L_f(s) \) (\(f \) with level \(N \)) satisfies the functional equation

\[
(2.1) \quad L_f(s) = \chi_f(s)L_f(k-s),
\]

where

\[
(2.2) \quad \chi_f(s) = C \left(\frac{2\pi}{N} \right)^{2s-k} \frac{\Gamma(k-s)}{\Gamma(s)},
\]

with \(|C| = 1 \). We also know that, in any fixed strip \(\sigma \leq \sigma \leq b \), as \(t \to \infty \), we have

\[
(2.3) \quad \Gamma(\sigma + it) = t^{\sigma + it - 1/2} e^{-\pi t^2(\sigma + it - \frac{1}{2})} \sqrt{2\pi} \left(1 + O \left(\frac{1}{t} \right) \right).
\]

We observe that
(2.4) \[|\chi_f(s)| = \left(\frac{2\pi}{N}\right)^{2\sigma-k} |t|^{k-2\sigma} \left(1 + O\left(\frac{1}{|t|}\right)\right) \]
as \(t \to \infty \). Since, \(L_f(s) \) is absolutely convergent in \(\sigma > \frac{k+1}{2} \), we have

(2.5) \[L_f \left(\frac{k+1}{2} + \epsilon + it \right) \ll \epsilon 1. \]

From the functional equation, we have

\[
\left| L_f \left(\frac{k}{2} - 1 + it \right) \right| = \left| \chi_f \left(\frac{k}{2} - 1 + it \right) L_f \left(\frac{k}{2} + 1 + it \right) \right| \ll \left(\frac{2\pi}{N} \right)^{2(\frac{k}{2}-1)-k} |t|^{k-2(\frac{k}{2}-1)} \ll \left(\frac{2\pi}{N} \right)^{-2} |t|^2.
\]

(2.6)

Let \(H \) be the set of all holomorphic cusp forms (Hecke eigenforms) of even integral weight \(k(\geq 2) \) of level \(N \). We assume that \(a_f(1) = 1 \ \forall \ f \in H \). We also observe that the set

\[
\left\{ \frac{f}{\langle f, f \rangle} : f \in H \right\}
\]
forms an orthonormal basis for \(H \). From the Poincare series discussion above (see for example [33] also), we have (for \(k \geq 2 \))

\[
E = \frac{\Gamma(k-1)}{(4\pi)^{k-1}} \sum_f \frac{a_f(n)a_f(m)}{\langle f, f \rangle (mn)^{\frac{k-1}{2}}}
\]

(2.7)

\[= \delta_{mn} + 2\pi i^{-k} \sum_{c \equiv 0 (mod N)} c^{-1} J_{k-1} \left(\frac{4\pi \sqrt{mn}}{c} \right) S_{\infty\infty}(m, n, c), \]

where \(\delta_{mn} = 0 \) unless \(m = n \) in which case it is 1. \(J_{k-1}(x) \) is the Bessel function of order \(k - 1 \), defined as

(2.8)

\[J_k(z) = \frac{\left(\frac{z}{2}\right)^k}{\sqrt{\pi \Gamma\left(k + \frac{1}{2}\right)}} \int_0^\pi (\sin \theta)^{2k} \cos(\theta \cos \theta) d\theta \]

and \(S_{\infty\infty}(m, n, c) \) is the Kloosterman sum.
(2.9) \[S_{\infty}(m, n, c) = S(m, n, Nl) = \sum_{d \equiv 1 \pmod{Nl}} e\left(\frac{md + ndl}{Nl}\right). \]

Here \(e(z) = e^{2\pi iz} \). We have (from Deligne’s estimate)

(2.10) \[a_f(n) \ll d(n)n^{\frac{k-1}{2}}, \]
and (from Weil’s estimate)

(2.11) \[S(m, n, c) \leq (m, n, c)^{\frac{k}{2}}d(c)c^{\frac{1}{2}}. \]

It is known that

(2.12) \[J_k(x) \ll \frac{x^k}{2^k \Gamma\left(k + \frac{1}{2}\right)} \]

3. Some lemmas

LEMMA 3.1 (i) For \(k = 2 \)

\[\sum_{f \neq f, f} \frac{1}{<f, f>} = \frac{(4\pi)^{k-1}}{\Gamma(k-1)} + O\left(N^{-\frac{3}{2}+\epsilon}\right) \]

and

(ii) for \(k > 2 \),

\[\sum_{f \neq f, f} \frac{1}{<f, f>} = \frac{(4\pi)^{k-1}}{\Gamma(k-1)} + O\left(N^{-(k-1)+\epsilon}\right). \]

Proof. From (2.7), (2.11) and (2.12), we get (for \(k = 2 \))

\[\sum_{c \equiv 0 \pmod{N}} c^{-1} J_{k-1} \left(\frac{4\pi \sqrt{mn}}{c}\right) S(m, n, c) \ll (mn)^{\frac{1}{2}}(m, n)^{\frac{1}{2}} \left(\sum_{j=1}^{\infty} \frac{d(Nj)}{(Nj)^2}\right) \]

(3.1) \[\ll N^{\frac{3}{2}+\epsilon}(mn)^{\frac{1}{2}}(m, n)^{\frac{1}{2}}, \]

and for \(k > 2 \),
\[
\sum_{c \equiv 0 (\text{mod } N)} c^{-1} J_{k-1} \left(\frac{4 \pi \sqrt{mn}}{c} \right) S(m, n, c) \ll_k \sum_{c \equiv 0 (\text{mod } N)} \frac{(mn)^{k-1}}{c^{k-1}} d(c) \ll_k N^{-(k-1)+\epsilon} (mn)^{\frac{k-1}{2}}.
\]

From (3.1.1) and (3.1.2), we get

\[
E =: \frac{\Gamma(k-1)}{(4 \pi)^{k-1}} \sum_f ^{'} \frac{a_f(n)a_f(m)}{<f, f>(mn)^{\frac{k-1}{2}}} =: \delta_{mn} + O \left(\max \left(N^{-\frac{k-1}{2}+\epsilon}, N^{-(k-1)+\epsilon} \right) \right).
\]

Taking \(m = n = 1 \) in (3.1.3) and noticing that \(a_f(1) = 1 \), we obtain

\[
\frac{\Gamma(k-1)}{(4 \pi)^{k-1}} \sum_f ^{'} \frac{1}{<f, f>} = 1 + O \left(\max \left(N^{-\frac{k-1}{2}+\epsilon}, N^{-(k-1)+\epsilon} \right) \right).
\]

This proves the lemma.

LEMMA 3.2 For \(\sigma \) in the range \(\frac{k}{2} - 1 \leq \sigma \leq \frac{k+1}{2} + \epsilon \), uniformly, we have the estimate

\[
L_f(\sigma + it) \ll \left(\frac{|t|N}{2\pi} \right)^{\frac{k}{2}+\epsilon}.
\]

Proof. Follows by applying maximum-modulus principle to a suitable function, namely

\[
F(w) = L_f(w)e^{(w-s)^2 X w - s}
\]

over a suitable rectangle and we can choose \(X = \left(\frac{|w|N}{2\pi} \right)^{\frac{k}{2}+\epsilon} \).

LEMMA 3.3. (Montgomery-Vaughan) If \(b_n \) is an infinite sequence of complex numbers such that \(\sum_{n=1}^{\infty} n |b_n|^2 \) is convergent, then

\[
\int_T^{T+H} \left| \sum_{n=1}^{\infty} b_n n^{-it} \right|^2 dt = \sum_{n=1}^{\infty} |b_n|^2 (H + O(n)).
\]

Proof. See for example lemma 3.3 of [26] or [31].

4. Proof of the theorem

Let \(s_1 = \frac{k}{2} + it \) and let \(Y \) and \(Y_1 \) be two parameters satisfying \(T^{\frac{1}{2}} \leq Y, Y_1 \leq (NT)^{A} \) to be chosen appropriately later. Let \(\epsilon_1 = (\log T)^{-1} \). By Mellin’s transformation,
\[S =: \sum_{n=1}^{\infty} \frac{a_f(n)}{n^{s_1}} e^{-\frac{\varphi}{2}} \]
\[= \frac{1}{2\pi i} \int_{\Re w = 1 + 2\epsilon_1, \quad |v| \leq (\log T)^2} L_f(s_1 + w) Y^w \Gamma(w) dw + O \left(Y^{\frac{1}{2} + \epsilon} e^{-C(\log T)^2} \right) \]
\[= L_f(s_1) + \frac{1}{2\pi i} \int_{\Re w = 1 + 2\epsilon_1, \quad |v| \leq (\log T)^2} L_f(s_1 + w) Y^w \Gamma(w) dw + O \left(Y^{\frac{1}{2} + \epsilon} e^{-C(\log T)^2} \right) \]
\[+ O \left(Y^{\frac{1}{2} + \epsilon} \left(\frac{T N}{2\pi} \right)^{2+\epsilon} e^{-C(\log T)^2} \right) \]
\[(4.1) \]
\[= L_f(s_1) + I + O \left(Y^{\frac{1}{2} + \epsilon} N^{2+\epsilon} e^{-C(\log T)^2} \right) \text{ (say)} \]

by moving the line of integration to \(\Re w = -1 + 2\epsilon_1 \). Now

\[I = \frac{1}{2\pi i} \int_{\Re w = -1 + 2\epsilon_1, \quad |v| \leq (\log T)^2} L_f(s_1 + w) Y^w \Gamma(w) dw \]
\[= \frac{1}{2\pi i} \int_{\Re w = -1 + 2\epsilon_1, \quad |v| \leq (\log T)^2} \chi(s_1 + w) \{ Q_1 + Q_2 \} Y^w \Gamma(w) dw \]
\[(4.2) \]
\[= I_1 + I_2, \]

where
\[Q_1 = \sum_{n \leq Y_1} a_f(n) n^{s_1 + w - k}; \quad Q_2 = \sum_{n > Y_1} a_f(n) n^{s_1 + w - k}. \]

We note that in \(I_2, \Re (s_1 + w) = \frac{k}{2} - 1 + 2\epsilon_1 \). We have

\[\sum_{n > Y_1} a_f(n) n^{s_1 + w - k} = \sum_{Y_1 < n \leq Y_1^{10}} a_f(n) n^{s_1 + w - k} \]
\[+ O \left(\sum_{n > Y_1^{10}} d(n) n^{\frac{k-1}{2} + \frac{1}{2} - 1 + 2\epsilon_1} \right) \]
\[(4.3) \]
\[= \sum_{Y_1 < n \leq Y_1^{10}} a_f(n) n^{s_1 + w - k} + O \left(Y_1^{-5 + 20\epsilon_1} \right). \]

Note that we have used the inequality (2.10). Using Hölder's inequality and a theorem of Montgomery and Vaughan (see [2]), we get

\[\int_0^{2T} |I_2|^2 dt \ll \int_0^{2T} \left| \int_{\Re w = -1 + 2\epsilon_1, \quad |v| \leq (\log T)^2} \chi(s_1 + w) \left\{ \sum_{Y_1^{10} \geq n > Y_1} a_f(n) n^{s_1 + w - k} \right\} Y^w \Gamma(w) dw \right|^2 dt \]
\[+ \left(\frac{2\pi}{N} \right) ^{-4+4\epsilon_1} T^{-5+20\epsilon_1} Y^{-2} Y_1^{-10+40\epsilon_1} \]
\[\ll (\log T)^2 \left(\frac{2\pi}{N} \right) ^{-4+4\epsilon_1} \frac{T^{4+20\epsilon_1}}{Y^2} \int T-(\log T)^2 \sum \left| \sum_{(u,2U)} a_f(n)n^{s_1+\Re w-k} \right|^2 dt \]
\[+ \left(\frac{2\pi}{N} \right) ^{-4+4\epsilon_1} T^{-5+20\epsilon_1} Y^{-2} Y_1^{-10+40\epsilon_1} \]
\[\ll (\log T)^2 \left(\frac{2\pi}{N} \right) ^{-4+4\epsilon_1} \frac{T^{4+20\epsilon_1}}{Y^2} \sum U \left(U \leq n \leq 2U \right) \frac{|a_f(n)|^2}{n^{2(2k-1-(k-\frac{1}{2}+2\epsilon_1)^2)}} \]
\[+ \left(\frac{2\pi}{N} \right) ^{-4+4\epsilon_1} T^{-5+20\epsilon_1} Y^{-2} Y_1^{-10+40\epsilon_1} \]
\[\ll (\log T)^2 \left(\frac{2\pi}{N} \right) ^{-4+4\epsilon_1} \frac{T^{4+20\epsilon_1}}{Y^2} \sum_j (\log Y)^3 (2j)^{1-4\epsilon_1} \]
\[+ \left(\frac{2\pi}{N} \right) ^{-4+4\epsilon_1} T^{-5+20\epsilon_1} Y^{-2} Y_1^{-10+40\epsilon_1} \]
\[\ll (\log T)^2 N^{-4+4\epsilon_1} T^{-5+20\epsilon_1} Y^{-2} Y_1^{-10+40\epsilon_1} \]
\[+ N^{-4+4\epsilon_1} T^{-5+20\epsilon_1} Y^{-2} Y_1^{-10+40\epsilon_1} . \]

(4.4)

Also we have

\[I_1 = \frac{1}{2\pi i} \int_{\Re w = -\frac{1}{2}, |w| \leq (\log T)^2} \chi(s_1 + w) \left\{ \sum_{n \leq Y_1} a_f(n) n^{s_1+w-k} \right\} Y^w \Gamma(w) dw \]
\[= \frac{1}{2\pi i} \int_{\Re w = -\frac{1}{2}, |w| \leq (\log T)^2} \chi(s_1 + w) \left\{ \sum_{n \leq Y_1} a_f(n) n^{s_1+w-k} \right\} Y^w \Gamma(w) dw \]
\[+ O \left((NT)^2 (\log Y_1)^2 Y^{-\frac{1}{2}} e^{-C(\log T)^2} \right) \]

by moving the line of integration to \(\Re w = -\frac{1}{2} \). Notice that, if \(-1+2\epsilon_1 \leq u \leq -\frac{1}{2} \), then \(\frac{k}{2} - 1 + 2\epsilon_1 \leq \Re (s_1 + w) \) \(\leq \frac{k}{2} - \frac{1}{2} \) and \(-1 - \frac{k}{2} + 2\epsilon_1 \leq \Re (s_1 + w - k) \leq -\frac{k}{2} - \frac{1}{2} \). Therefore, for \(T \leq t \leq 2T \), we have

\[|\chi (s_1 + w)| \ll \left(\frac{NT}{2\pi} \right)^{k-2(2\epsilon_1+\frac{k}{2})} \ll (NT)^2 . \]

Also, we have

\[\sum_{n \leq Y_1} a_f(n) n^{s_1+w-k} \ll \sum_{n \leq Y_1} d(n) n^{\frac{k}{2}+\frac{1}{2}-k} \ll_k (\log Y_1)^2 , \]
on horizontal lines. Again using Montgomery- Vaughan Theorem and the inequality (2.10), we obtain

\[
\int_T^{2T} |I_1|^2 dt \ll \frac{(\log T)^2}{2} T^{-2} \int_T^{2T} \left| \sum_{n \leq Y_1} a_f(n) n^{s_1 + \Re w - k} \right|^2 dt \\
+ \frac{(NT)^4 (\log Y_1)^4 Y^{-1} e^{-C(\log T)^2}}{Y^2} \\
+ \frac{(log T)^2 N^2}{Y} \sum_{n \leq Y_1} \frac{|a_f(n)|^2 n}{n^{2(\frac{1}{2} + \frac{1}{4})}} \\
+ \frac{(log T)^2 T^3}{Y} \sum_{n \leq Y_1} \frac{(d(n))^2 n^k}{n^{k+1}} \\
+ \frac{(log T)^2 N^2}{Y} (\log Y_1)^3 \\
+ \frac{(log T)^2 (\log Y_1)^4 Y^{-1} e^{-C(\log T)^2}}{Y}.
\]

(4.6)

Now, we have

\[
S = \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n} e^{-\frac{n}{Y}}.
\]

\[
\int_T^{2T} |S|^2 dt = \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^k} e^{-\frac{2n}{Y}} (T + O(n)) \\
= T \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^k} e^{-\frac{2n}{Y}} \\
+ O \left(\sum_{n \leq Y/2} \frac{|a_f(n)|^2}{n^k} + \sum_{n \geq Y/2} \frac{|a_f(n)|^2}{n^k} \left(\frac{Y}{n} \right)^{2k+2} \right) \\
= T \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^k} e^{-\frac{2n}{Y}} + O \left(Y (\log Y)^3 \right).
\]

(4.7)

with a suitable \(\alpha \).

From (4.1) to (4.7), we obtain,

\[
\int_T^{2T} |L_f(s_1)|^2 dt = T \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^k} e^{-\frac{2n}{Y}}
\]
\[+ \ O \left((\log T)^3 N^{4-\epsilon_1} Y^{-2} T^4 Y_1^{-1+\epsilon_1} (\log Y_1)^3 \right) \]

\[+ \ O \left(N^{4-\epsilon_1} T^5 Y^{-2} Y_1^{-10+4\epsilon_1} \right) + O \left(N^2 Y^{-1} T^2 (\log Y_1)^3 (\log T)^2 \right) \]

\[+ \ O \left(Y_1 (\log Y)^3 \right) + O \left(\alpha \ Y_1^2 Y^4 (\log T)^2 \right) \]

\[+ \ O \left(N^4 (\log Y_1)^4 Y^{-1} e^{-C(\log T)^2} \right) \]

\[(4.8) \]

\[= \ T \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^k} e^{-2n} + O (E_1 + E_2 + E_3 + E_4 + E_5 + E_6) \]

say,

where \(E_i \) are with obvious notion. It is clear from lemma 3.1 that

\[(4.9) \]

\[\sum_{f \neq i} \frac{1}{f, f} E_i \ll E_i \quad (i = 1, 2, 3, 4, 5, 6). \]

Therefore, we get

\[(4.10) \]

\[\sum_{f \neq i} \frac{1}{f, f} \int_T^{2T} |L_f(s_1)|^2 dt = T \sum_{f \neq i} \frac{1}{f, f} \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^k} e^{-2n} + O (E_1 + E_2 + E_3 + E_4 + E_5 + E_6). \]

We observe that

\[S_1 =: \sum_{f \neq i} \frac{1}{f, f} \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^k} e^{-2n} \]

\[= \sum_{n=1}^{\infty} \frac{e^{-2n}}{n} \sum_{f \neq i} \frac{1}{f, f} \sum_{n=1}^{\infty} \frac{|a_f(n)|^2}{n^k} \]

\[\ll \sum_{n=1}^{\infty} \frac{e^{-2n}}{n} \sum_{f \neq i} \frac{1}{f, f} \quad \text{(by (2.10))} \]

\[\ll_k \sum_{n=1}^{\infty} \frac{e^{-2n}}{n} \sum_{n=1}^{\infty} \frac{(d(n))^2}{n} \quad \text{from lemma 3.1} \]

\[\ll_k \sum_{n \leq \frac{T}{2}} \frac{(d(n))^2}{n} \left(1 + O \left(\frac{n}{Y} \right) \right) + \sum_{n \leq \frac{T}{2}} \frac{(d(n))^2 Y}{n} \]

\[(4.11) \]

Hence, we obtain

\[\sum_{f \neq i} \frac{1}{f, f} \int_T^{2T} |L_f(s_1)|^2 dt \ll_k T (\log Y)^3 \]

\[(4.12) \]

\[+ E_1 + E_2 + E_3 + E_4 + E_5 + E_6. \]

First, we choose \(Y \) such that \(E_3 \) and \(E_4 \) to be of the same order. This suggests us to choose \(Y = NT \). This means that

\[\max (E_3, E_4) \ll NT \left\{ (\log Y_1)^3 (\log T)^2 + (\log Y)^3 \right\}. \]
Now, we are forced to choose $Y_1 = NT$ and we notice that

$$E_1 \ll NT (\log Y_1)^3 (\log T)^2.$$

Hence, for this choice $Y = Y_1 = NT$, we get

$$\sum_{1 < f, f >} \frac{1}{f} \int_T^{2T} |L_f(s_1)|^2 dt \ll_k T (\log(NT))^3 + NT \log(NT) (\log T)^2$$

$$+ N^5 + 10 e^{-C \log T} + N^3 (\log(NT))^4 e^{-C \log T},$$

which proves the theorem, since, on the r.h.s of (4.13), the first and the last terms are dominated by the other two terms.

Present Address: Instituto de Matemáticas, UNAM, Morelia Campus, Ap. Postal 61-3 (xangari), CP 58 089, Morelia, Michoacan, Mexico.

E-mail address: sank@matmor.unam.mx

Permanent Address: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai - 400 005, India.

E-mail address: sank@math.tifr.res.in

(Accepted on 03-09-2003)