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Mean-Square Upper Bound of Hecke L- Functions
On The Critical Line

A. Sankaranarayanan
.

ABSTRACT. We prove the upper bound for the mean-square of the absolute value of the
Hecke L-functions (attached to a holomorphic cusp form) defined for the congruence subgroup

[o(N) on the critical line uniformly with respect to its conductor N.

1. Introduction
Let x denote a character mod q and N, («,T), the number of zeros of L(s, x) in the rectangle
a<o<1,t| <T. Gallagher (see [7]) proved that

1 2
(L) S |L(5+itx)| < (a+[t)loglalt] +2)
X
T 1 2
(1.2) /T L (5 +it, x) < (¢ +T)logqT,
and
(1.3) N, (a,T) < T3 (1og T)¢

uniformly for all ¢ < T'. He also established that

(1.4) 3 (Ny(a, T+ 1) = Ny(a, T)) < ¢ (log ¢)©

X

for T <gq.

Meurman ( see [24]) proved that for any ¢ > 1,

w5 [

x(mod g

2

< (¢H + (qT)7) (o(T + H))*
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foranye>0and 3< H <T.

Balasubramanian and Ramachandra have given a simple proof of the above result (1.5)
( see [2]) and they could replace (¢7')¢ by log ¢T times a power of d(g) for primitive characters
mod ¢. Jutila has proved ([20] and [21]) the fourth power mean for {(s) and mean-square
for L-functions attached to cusp forms (holomorphic as well Maass wave forms ) via Laplace
transformation method. In fact he studies the error term mean values in a greater generality

with an emphasis as a function of 7.

It should be mentioned here that mean values of derivatives of modular L-series had
been studied by Ram Murty and Kumar Murty in [34]. For several interesting mean value
results which were obtained by many mathematicians, see for example [1], [11], [16], [19], [22],
[23], [28], [37], [38]-

Let f(2) = X2, ay(n)e*™, Iz > 0 be a cusp form of even integral weight k& > 2 for
the full modular group SL(2, 7). Hecke L-function attached to f is defined as

(16) Ly(s) = sl

k+1

which is absolutely convergent in s > *7=, and it satisfies the functional equation

(1.7) (2m)7°T'(s)Ls(s) = (—1)3(27r)5_k1‘(k —5)Ls(k —s).
In [10], A. Good proved the following

THEOREM A. If C_; denotes the residue and C_1Cy the constant term in the Laurent ex-

pansion of
o0

D(s) =" lan|’n* at s=k,
n=1
then
T (ko \] T :
/0 Ly (5 + zt) dt =2C_T (log (%> + Co) +0 (T(log T)3)
as T — oo.

As a corollary, he deduced that

(e[S

k 1
Ly <§ —|—it> < |t|5 (log |t])® .

Our main goal in this paper is the following. Let f(z) = Y22, ap(n)e*™*, Iz > 0 be a

holomorphic cusp form of even integral weight k£ > 2 with level N ( i.e in [z(/V) ) and
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ar(l) = 1. We also assume that f is a Hecke eigenform so that ay(n) are eigenvalues of all

the Hecke operators. We are interested to estimate an upper bound for the average integral

! 1 2T k )
I:;W/T Ly <§+zt>

where / indicates that f runs over an orthonormal basis set, uniformly with respect to the

namely

2
dt

conductor N. We prove

MAIN THEOREM. We have

! 1 T k.
=Y grsh <5+”>

e NT(log NT)?(loglog T')? + N*+10¢~CllogT)*

2
dt

uniformly for all levels N of f.

Remark 1. This main theorem may be compared with the result of A. Good. As a corollary

to this main theorem, we obtain uniformly for all N < T, the inequality
! 1 2r k
I SR L L
Ef:<f,f> T f<2 Z)

Remark 2. The main feature of the proof here is that we avoid the approximate functional

2
dt <. T'e

equation (whereas Good’s proof depends upon the approximate functional equation). When-
ever a Dirichlet series has a functional equation, in [4] K. Chandrasekharan and Raghavan
Narasimhan established that a form of the approximate functional equation can be proved
and it has a nice form whenever the coefficients of the Dirichlet series under consideration
are positive which can be utilised to study mean value theorems. Of course, in some special
circumstances even if we do not have the coefficients of the Dirichlet series to be positive it is
possible to use that form to study mean-value theorems. However K. Ramachandra observed
that just with the functional equation, one can prove reasonable upper bounds for mean-
value questions on certain lines and he has used this idea in many of his research work (see
for example [28] and [29]). This crucial idea what we are going to use in proving our main

theorem.

Remark 3. It should be mentioned here that a general mean value theorem (see theorem 1

of [22]) is available. It is not difficult to see that (choosing the parameters appropriately and
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combining lemma 3.1 of section 3)

! 1 2T ko

However, this estimate holds only when the conductor N of f satisfies the condition N < 1.

2
dt <, TH.
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2. Notation and preliminaries

The letters C and A (with or without suffixes ) denote effective positive constants unless
it is specified. It need not be the same at every occurrence. Throughout the paper we assume
T > Ty where Tj is a large positive constant. We write f(z) < g(z) to mean |f(z)| < Cig(x)
( sometimes we denote this by the O notation also ). Let s = o + it, and w = u + iv. The

implied constants are all effective.
Let us recall some basic facts concerning the Poincaré series ( see for example [33]).

Let T'y be the stabilizer of jo0c in I'o(V). The space Sk(IV) of cusp forms of weight k
and level N is a finite dimensional vector space over C, spanned by the Poincaré series : for
m > 1,

Pu(z,k,N)= > j(y,2) *e(myz)
fyel“oo\FO(N)
where
e(2) = €™, j(y,2) = (det 7)7% (cz + d)
and

_ X X%
T=\e¢ d
In the case of k£ = 2, we do not have absolute convergence of the Poincaré series. However,

the discussion below holds in this case as well. If f € Si(INV), we write the Fourier expansion
of f as:

ﬂ@=inMM)
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at i00. The space Si(N) has an inner product ( Petersson inner product ) :

dxzdy
Y2

< f.g>= / f(2)g(z)y"*

To(N)\h
where h denotes the upper half plane. Petersson proved that

(4n)Ft

ag(n) = T —1) < f,Py(,k,N) >

so that if fi,---, f; is an orthonormal basis for Si(/N), and
Pn(akaN) = Zczfz

we obtain

k-1
¢ =< fi, Pu(, k,N) >= Waﬁ(n).

Therefore, we have
(4mn)k-t

—P,(.,k,N) = .
If we compare the m-th coefficients on both sides, then we obtain

(4rn)Ft
mam m.k,N) Z af,(n)as,(m
The m-th Fourier coefficient of the n-th Poincaré series P,(z, k, N) can be computed as :

1

k—
= 4/
ap, (m,k,N) = (%) {5mn + 27Ti_k Z c_ljk—l ( t cmn> Soooo(ma n, C)}

¢=0(modN)

where d,,,, = 0 unless m = n in which case it is 1.

It is well known that ( see [12], [13] ), Ls(s) (f with level N ) satisfies the functional

equation

(2.1) Ly(s) = xs(s)Ls(k —s),
where
2) we=c(5) e

with |C'| = 1. We also know that, in any fixed strip a < 0 < b , as t — oo, we have

(2.3) T(0 + i) = 7 H-1/2=m/2-it+n/2)(0=1/2)  for (1 L0 (%)) -

We observe that
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(2.4 = () (1eo ()

as t — 0o. Since, Ly(s) is absolutely convergent in o > £ we have

k41
(2.5) L (% +e+it) <. 1.

From the functional equation, we have

‘Lf<§—1+zt)‘ = ‘Xf(§—1+zt>Lf(§+1+zt>‘
2T 2(§_1)_k k—2(k
) ¢k—2(5-1)
< (N) 2 4

2T\~
2.6 =) |t
(26) < (5)

Let H be the set of all holomorphic cusp forms (Hecke eigenforms) of even integral weight
k(> 2) of level N. We assume that a;(1) =1V f € H. We also observe that the set

f
— €H
(s
forms an orthonormal basis for H. From the Poincare series discussion above (see for example
[33] also ), we have ( for k > 2 )

Tk-1) & ap(n)ag(m)
b © (4m)k-t Zf: <f, f> (mn)%

(2.7) = Opm + 2mi " Z ) (47T‘ mn) Seooo (M, 1, €),

¢=0(modN)

where 0,,, = 0 unless m = n in which case it is 1. Jy_1(z) is the Bessel function of order
k — 1, defined as

_ (g)k T p\2k
(2.8) Je(2) = m/ﬂ (sin 0)“" cos(z cos 0)db

and Syeo(m, n, ¢) is the Kloosterman sum



8 A.Sankaranarayanan

d+nd
(2.9) Seoo(m,n,c) = S(m,n, Nl) = Y e (M) :
_d(modNT1) Nl
dd=1(modNT1)
Here e(z) = ™. We have ( from Deligne’s estimate )
(2.10) ar(n) < d(n)n%,
and ( from Weil’s estimate )
(2.11) S(m,n,c) < (m,n, c)%d(c)c%.
It is known that i
x

(2.12) Jp(1) € ————

2+ (k + 1)

3. Some lemmas
LEMMA 3.1 (i) For k=2
! 1 (47T)k_1 3
= O (N 2te
;<f,f> rk—1) " (V=)
and
(i) for k> 2,
! 1 (4m)k=1
= O (N~(E=Dre)
s =te-n Ol )

Proof. From (2.7), (2.11) and (2.12), we get ( for k =2 )

¥ et () ) < ) ! id(m)
| .

¢=0(modN ¢
(3.1) < N_%J’E(mn)%(m,n ,

and for k > 2,
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4m\/mn mn) T d(c
Z Cile]k_l ( ) S(m, n, c) < Z —( )k—l ( )
C C
¢=0(modN) ¢=0(modN)
(3.2) Lk N_(k_l)“(mn)k%l.

From (3.1.1) and (3.1.2), we get

p oo D=1 o)

4mEt Z < f > (mn)'T
(3.3) = Omn+0 (max (N_%’Le(mn)%(m n) N—k= 1)+€(mn)k§1))'

Taking m =n =1 in (3.1.3) and noticing that as(1) = 1, we obtain

(k&

(3.4) =1+ O (max (N~&+, N=(=14e))

!
(4m)k—1 Z <f

f J
This proves the lemma.

LEMMA 3.2 For o in the range £ — 1 < ¢ < £l 4 ¢ uniformly, we have the estimate

| W)%(Tl U)+€.

L 't
f(0'+7,)<<<27r

Proof. Follows by applying maximum-modulus principle to a suitable function, namely
F(w) = Lp(w)e®=) xw=s

. {N)3T€
over a suitable rectangle and we can choose X = (%) A

LEMMA 3.3. (Montgomery-Vaughan) If b, is an infinite sequence of complex numbers such

that 3°°° | n|b,|? is convergent, then

/T+H Z b -

Proof. See for example lemma 3.3 of [26] or [31].

t= S bl (H + O(n) .

n=1

4. Proof of the theorem

Let s1 = g + it and let Y and Y; be two parameters satisfying T3 <Y, V; < (NT)4
be chosen appropriately later. Let ¢, = (log7)~!. By Mellin’s transformation,
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= . / Li(s1 +w)Y*T(w)dw + O (Y%+fe—0(1OgT)2)
Rw=1/2+e,
Iv\S(long)2
= Lf(31) + ot / Lf(31 +w)Y*T(w)dw + O (y§+ee—0(1ogT)2)
m Rw=—142¢7,
[v|<(log T)?

2+4€
+ 0 (Y%—l—e (ﬂ) e~ CllogT)?
2m

(4.1) = Lis)+ 140 (y§+eNz+ee_c(1ogT)2) (say)
by moving the line of integration to ®w = —1 + 2¢;. Now

I = — / Ls(s1+w)Y*T'w)dw
2me
Rw=—1+2¢71,

[v|<(log T)?

1
= 5= / X(s1+w){Q1+ Q2} Y*TI'(w)dw

[v|<(log T)?

(42) == _[1 +12,

Q1= a;(n)n”tF Qe = > ap(n)n TR

n<Y1 n>Y;

We note that in I, R(s; +w) = £ — 1+ 2¢;. We have

Y apmn R = YT ap(n)nteE

n>Y1 Y1<n<Y 0

+ O] > d(n)n%“%_l““_k

n>Y0

(4.3) = Y gttt 40 <Y1_5+20“) _

Y1<’IZSY110
Note that we have used the inequality (2.10). Using Hdlder’s inequality and a theorem of
Montgomery and Vaughan (see [2]), we get
2

/TQT \LP2dt < /TQT / x(si+w){ Y ap(n)n®TTFYT(w)dw| dt

w=—1+2¢, YO>n>v
v|<(log T)?
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o —4+4€1
(_) T5+20ey =2y ~10+40q

N
2
o\ —4tde a+20er 2T+ (log T)?
< (logT 2 (—) 7/ a (n)nsﬁmw_k dt
( ) N Y2 Jr(ogT)? 5 (U%]) d
N (2_71’) —4+4€; T5+2061Y_2Y1_10+4061
N
ot —444e T4—|—20€1 |af(n)|2
< (logT)? (—) > X I (h—312e)
1 4N Y2 ngauy n? e ta)
+ (2_7T>_ —+4€q T5+20€1Y—2Y1—10+4061
N
< logrp (Z) T 5 (e
Z(E 112
4 4N Y2 T wingop) n?Elam 1)
2_7T —iria 5+20€1 77 —27,—10+40¢e1
+ N T YY)
, [ 2m —4+4er Pa+20e; Clog¥ 5 Lia
< (logT) (W) y?2 Z (longl) (271/1)_ +4e1
j=0
N (2_71' —4+4€; T5+20€1Y72Y1710+4061
N
< (log T)*N* o 200y =2y "4 (Jog v;)?
(4.4) 4 N4—4e1T5+2061Y—2Y'1—10+4051'
Also we have
1
L= - / X(s1+ w) { > af(n)n81+wk}ywr(w)dw
7T/L§Rw:—1+2€1, nSYl
[v|<(log T')2
1 S w— w
= 5 / x(s1 + w) { Z ar(n)n 1+ k} YT (w)dw
7L<Y1
%w=—l, -
[o]<(log T)?
(45) + 0 ((NT)2 (10gY1)2 Y*%G*CIOgT)z)
by moving the line of integration to Rw = —%. Notice that, if —1 + 2¢; < u < _%’ then
§ =142 <R(sntw) < §—jand -1 £+ 2 <R(s+w—k) < —§ — . Therefore,

for T <t < 2T, we have

NT 1c—2(2el+&—1)
) " < (NT).

X1+ w) < (5

Also, we have
k=1

> ap(n)nt R < d(n)n%Jr 7 F < (loghy)?,

n<Y1 n<Y1
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Y¥ <Y 2 and I'(w) < e Co8T)’

on horizontal lines. Again using Montgomery- Vaughan Theorem and the inequality (2.10),

we obtain

2T
/ L J2dt <
T

+
<

+
<

+
<
(4.6) +

Now, we have

2T
/ 1S |2dt
T

(4.7)

with a suitable a.

- z

* Q g, g )

(log 7" (N Y

(NT)* (log Y;)* Y ~teCllosT)

T2 ~ lag(n)fn
v 2 D

n<yp T

(log T)*N*—

(NT)* (log Y;)* Y~ teCllos™)?

logyt, 3o AW

nSYl

(NT)* (logY1)* Y e ClogT)?
2

T
(log T)2N2?(10g Yi)?

(NT)* (log Y1 )* Y ~te=ClosT)*,

M8

S =

nst

Il
—

n

n=1

o

From (4.1) to (4.7), we obtain,

/ Ly (s1)2dt = Tz‘“f o
T

27r) —27? /2T+(10g T)?

T—(log T2

a’f(n) efn/Y.

’?(T+0( )

n<Y/2 n>Y/2

= Z

2

S ap(n)n Rk dt

nSYl

e ¥ —I-O( (logY)?’)



Mean-Square Upper Bound

0 ((logT J2Ni-tay =2ty —ltia (1o y,) )

19) (N4 der 5y — 2Y1 10+4051) +0 (N2 y 172 (logYI)?’ (logT)Q)
0( logY )+O (Y1—|—26N4+266—C(10gT)2)

0 (N (log i)ty le-t)

+ o+ + +

(4.8)

TZL(?" +O(FEy+Ey+ Es+ E,+ E5 + Eg) say,
— nk

where F; are with obvious notion. It is clear from lemma 3.1 that

!

1
4.9 — B, < E; (i=1,2,3,4,5,6).
(4.9) 2f:<f’f> <E; (i )

Therefore, we get

! 1 ar(n)|? _2n
z<ff>/ Ly (s1)" _Tz<ff> ny P eV
(4.10) +O (E1+ Es+ Es+ E, + E5 + Eg) .
We observe that
1 &ay(n)” o
S, =
' ; <fif> n; nk
= e ¢ ag(n)]
- n;l n ;<f,f>n’“—1
_2n 2
X e~ v (d(n)) 1
by(2.10
<<n§1 m ;<f,f>(y( )
_2n 2
o € ¥ (d(n))
f 1 1
<j 7; - (from lemma 3.1)
d(n))? d(n))’Y
a0 ¥ O (1 o()) 4 5 Y
ney Y s
(4.11) < (logY)?.
Hence, we obtain
! 1
Y57 [ Ly ar < T(log V)’
(4.12) +E,+ Ey+ Es+ E; + Es + Eg.

First, we choose Y such that E3 and E, to be of the same order. This suggests us to choose
Y = NT. This means that

max (E3, E1) < NT {(log ¥1)* (log 7)* + (log Y')*} .
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Now, we are forced to choose Y; = N1 and we notice that

E; < NT (logY;)® (log T)2.

Hence, for this choice Y =Y; = NT', we get

! 1 /2T 9
—_— L;(s))|"dt < T(log(NT))? + NT(log(NT))?(logT)?
;<f’f>T|f(l)‘ k T(log(NT)) (log(NT))*( ).
(4'13) +N5+1056—C(logT)2 + N3 (10g(NT))46_C(IOgT)2,

which proves the theorem, since, on the r.h.s of (4.13), the first and the last terms are domi-

nated by the other two terms.
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