## HARDY-LITTLEWOOD FIRST APPROXIMATION THEOREM FOR QUASI L-FUNCTIONS

BY<br>R.BALASUBRAMANIAN and K.RAMACHANDRA<br>(DEDICATED WITH DEEPEST REGARDS TO THE MEMORY OF LEONARD EULER)<br>(accepted on 12-06-2005)

§1. INTRODUCTION. We begin by stating the following theorem due to G.H.HARDY and J.E.LITTLEWOOD (see Theorem 4.11 of [ECT]).

THEOREM 1. We have

$$
\begin{equation*}
\zeta(s)=\sum_{n \leq x} n^{-s}-\frac{x^{1-s}}{1-s}+O\left(x^{-\sigma}\right) \tag{1}
\end{equation*}
$$

uniformly for $\sigma \geq \sigma_{0}>0,|t| \leq \pi x C^{-1}$ which $C>1$ is any given constant.
REMARK. We call (1) as the first approximation theorem of HARDY and LITTLEWOOD. In $[\mathrm{RB}, \mathrm{KR}]_{1}$ we proved (1) with the conditions $t>2$ and $x>\left(\frac{1}{2}+\delta\right) t$, where $\delta>0$ is any constant.

The object of the present note (which is an addendum to $[\mathrm{RB}, \mathrm{KR}]_{1}$ ) is to make a few remarks on the results of $[\mathrm{RB}, \mathrm{KR}]_{1}$ and prove the following theorem.

THEOREM 2. We define (quasi L-functions) by

$$
\begin{equation*}
L(s, \chi)=\sum_{n=1}^{\infty} \chi(n)(n+\alpha)^{-s} F(n+\alpha) \tag{2}
\end{equation*}
$$

where $\chi(n)$ is any periodic sequence of complex numbers (not all zero) whose sum over any period is zero. $\alpha>0$ is any constant and $F(X)$ is any complex valued function of $X$ which is infinitely often continuously differentiable in $X \geq 1$ with $F^{(k)}(X)=O\left(X^{-k+\epsilon}\right)$ for every $k \geq 0$ and every $\epsilon>0$. As usual $s=\sigma+i t, \sigma \geq \sigma_{0}>0$. Then $L(s, \chi)$ defined above is uniformly convergent in any compact sub-set. Moreover $L(s, \chi)$ can be continued as an entire
function and

$$
\begin{equation*}
L(s, \chi)=\sum_{n \leq x} \chi(n)(n+\alpha)^{-s} F(n+\alpha)+E \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
|E| \leq C_{\epsilon} x^{-\sigma+\epsilon}, \sigma \geq-K \tag{4}
\end{equation*}
$$

provided only that $x \geq x_{0}=D_{\epsilon}(|t|+2)^{1+\epsilon}, D_{\epsilon}>0$ being a certain constant depending on $K(>0)$ and $\epsilon$ (and of course on constants depending upon the quasi $L$ function). In (4) $C_{\epsilon}>0$ depends only on $\epsilon(>0)$ and $K$ which are arbitrary.

REMARK 1. In (2) and (3) we have written $F(n+\alpha)$ for some convenience. Certainly we can write $F(n)$ instead.

REMARK 2. The proof that certain functions are entire (see $[\mathrm{RB}, \mathrm{KR}]_{2}$ ) is a special case of theorem 2 obtained by treating $\sum_{n=1}^{\infty}(-1)^{n} \int_{0}^{1} f^{\prime}(n+x) d x$.

REMARK 3. Examples of $F(n)$ are $\exp (\sqrt{\log n})$ and so on.
§2. PROOF OF THEOREM 2. We begin by stating Theorem 2 of $[R B, K R]_{1}$ as a lemma.

LEMMA. Let $a$ and $b$ integers with $a<b, k$ a non-negative integer and $f(x)$, a function of $x$ which is $k$-times continuously differentiable in $a \leq x \leq b-1+k$. Then

$$
\begin{aligned}
& \sum_{a \leq n<b} f(n)=\int_{a}^{b} f(x) d x+\left\{-\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left(f\left(b+u_{1} \nu_{1}^{\frac{1}{2}}\right)-f\left(a+u_{1} \nu_{1}^{\frac{1}{2}}\right)\right) d u_{1} d \nu_{1}\right. \\
& +\frac{1}{2^{2}} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(f^{\prime}\left(b+u_{1} \nu_{1}^{\frac{1}{2}}+u_{2} \nu_{2}^{\frac{1}{2}}\right)-f^{\prime}\left(a+u_{1} \nu_{1}^{\frac{1}{2}}+u_{2} \nu_{2}^{\frac{1}{2}}\right)\right) d u_{1} d \nu_{1} d u_{2} d \nu_{2} \\
& \ldots+\frac{(-1)^{k-1}}{2^{k-1}} \int_{0}^{1} \ldots \int_{0}^{1}\left(f^{(k-2)}\left(b+u_{1} \nu_{1}^{\frac{1}{2}}+\ldots+u_{k-1} \nu_{k-1}^{\frac{1}{2}}\right)\right. \\
& \left.\left.-f^{(k-2)}\left(a+u_{1} \nu_{1}^{\frac{1}{2}}+\ldots+u_{k-1} \nu_{k-1}^{\frac{1}{2}}\right)\right) d u_{1} d \nu_{1} \ldots d u_{k-1} d \nu_{k-1}\right\} \\
& +\frac{(-1)^{k}}{2^{k}} \int_{0}^{1} \ldots \int_{0}^{1} \sum_{a \leq n<b} f^{(k)}\left(n+u_{1} \nu_{1}^{\frac{1}{2}}+\ldots+u_{k} \nu_{k}^{\frac{1}{2}}\right) d u_{1} d \nu_{1} \ldots d u_{k} d \nu_{k}
\end{aligned}
$$

REMARK 1. The terms in the curly brackets are absent if $k=1$.
REMARK 2. We have corrected the following. In Theorem 2 of $[\mathrm{RB}, \mathrm{KR}]_{1} a<n \leq b$ is not correct. It should read $a \leq n<b$.

REMARK 3. Actually the proof of the lemma is simple and runs as follows.

$$
\sum_{a \leq n<b} f(n)=\sum_{a \leq n<b}\left(f(n)-\int_{n}^{n+1} f(u) d u\right)+\int_{a}^{b} f(u) d u
$$

and here the first term on the RHS is

$$
\begin{aligned}
& \sum_{a \leq n<b} \int_{0}^{1}(f(n)-f(n+u)) d u=-\sum_{a \leq n<b} \int_{0}^{1} \int_{0}^{u} f^{\prime}(n+v) d v d u \\
& =-\sum_{a \leq n<b} \int_{0}^{1} \int_{0}^{1} u f^{\prime}(n+u v) d u d v \\
& =-\frac{1}{2} \sum_{a \leq n<b} \int_{0}^{1} \int_{0}^{1} f^{\prime}\left(n+u v^{\frac{1}{2}}\right) d u d v
\end{aligned}
$$

(by a change of variable). This gives the case $k=1$ of the lemma. The lemma follows by a $k$-fold application of this case.

We now resume the proof of theorem 2 . We define $\chi(0)$ to be $\chi(p)$ where $p$ is the length of the period. Let $X$ be any positive integer. We have

$$
\begin{aligned}
& \sum_{n \geq X} \chi(n)(n+\alpha)^{-s} F(n+\alpha) \\
= & \sum_{\nu=0}^{p-1} \chi(\nu) \sum_{n \equiv \nu(\bmod p), n \geq X p}(n+\alpha)^{-s} F(n+\alpha) \\
= & \sum_{\nu=0}^{p-1} \chi(\nu)\left\{\sum_{n \equiv \nu(\bmod p), n \geq X p}(n+\alpha)^{-s} F(n+\alpha)-\sum_{n \equiv 0(\bmod p), n \geq X p}(n+\alpha)^{-s} F(n+\alpha)\right\} \\
= & \sum_{\nu=0}^{p-1} \chi(\nu)\left\{\sum_{l p+\nu \geq X p}(l p+\nu+\alpha)^{-s} F(l p+\nu+\alpha)-\sum_{l \geq X}(l p+\alpha)^{-s} F(l p+\alpha)\right\} \\
= & \sum_{\nu=0}^{p-1} \chi(\nu)\left\{\sum_{l \geq X}(l p+\nu+\alpha)^{-s} F(l p+\nu+\alpha)-\sum_{l \geq X}(l p+\alpha)^{-s} F(l p+\alpha)\right\} \\
= & \sum_{\nu=0}^{p-1} \chi(\nu)\left[\left\{\int_{X}^{\infty}(x p+\nu+\alpha)^{-s} F(x p+\nu+\alpha) d x-\int_{X}^{\infty}(x p+\alpha)^{-s} F(x p+\alpha) d x\right\}\right. \\
+ & \frac{1}{2} \frac{d}{d x}\left((x p+\nu+\alpha)^{-s} F(x p+\nu+\alpha)-(x p+\alpha)^{-s} F(x p+\alpha)\right)_{x=X} \\
- & \frac{1}{2^{2}} \frac{d^{2}}{d x^{2}}\left((x p+\nu+\alpha)^{-s} F(x p+\nu+\alpha)-(x p+\alpha)^{-s} F(x p+\alpha)\right)_{x=X} \\
+ & \ldots
\end{aligned}
$$

$$
\begin{align*}
& -\frac{(-1)^{k-2}}{2^{k-2}} \frac{d^{(k-2)}}{d x^{k-2}}\left((x p+\nu+\alpha)^{-s} F(x p+\nu+\alpha)-(x p+\alpha)^{-s} F(x p+\alpha)\right)_{x=X} \\
& +\frac{(-)^{k}}{2^{k}} \int_{0}^{1} \ldots \int_{0}^{1}\left\{\frac { d ^ { k } } { d x ^ { k } } \left(\sum_{n \geq 1}\left((X+x+n+\alpha+y+\nu)^{-s} F(X+x+n+\alpha+y+\nu)\right)\right.\right. \\
& \left.\left.\left.-\sum_{n \geq 1}\left((X+x+n+\alpha+y)^{-s} F(X+x+n+\alpha+y)\right)\right)\right\}_{x=0} d u_{1} d \nu_{1} \ldots d u_{k} d \nu_{k}\right] \tag{5}
\end{align*}
$$

where $y=u_{1} \nu_{1}^{\frac{1}{2}}+\ldots+u_{k} \nu_{k}^{\frac{1}{2}}$.
This follows by choosing $f(x)$ (in the lemma) suitably and letting $b \rightarrow \infty$ (provided $\sigma \geq 2)$. Thus we get analytic continuation in $\sigma>0$. By choosing $k=1,2,3, \ldots,[K]+10$ (successively) we see that $L(s, \chi)$ is entire (since $K$ is arbitrary). We have

$$
\int_{X}^{\infty}(x p+\nu+\alpha)^{-s} F(x p+\nu+\alpha) d x=\int_{X p+\nu+\alpha}^{\infty} W^{-s} F(W) \frac{d W}{p}
$$

(by putting $x p+\nu+\alpha=W$ ) and

$$
\int_{X}^{\infty}(x p+\alpha)^{-s} F(x p+\alpha) d x=\int_{X p+\alpha}^{\infty} W^{-s} F(W) \frac{d W}{p} .
$$

Hence their difference is entire and is $O\left(X^{-\sigma+\epsilon}\right)$.
In (5) all terms except the last are entire and are $O\left(X^{-\sigma+\epsilon}\right)$. We give some details. For $k \geq l \geq 0$ and $x \geq A \geq 10$ and $\beta(>0)$ bounded above by $B$ we have

$$
\frac{d^{l}}{d x^{l}}\left((x+\beta)^{-s} f(x)\right)\left(=O\left(x^{-\sigma+\epsilon}\right) \text { if } l=0\right)
$$

and if $l \geq 1$ it is

$$
\begin{aligned}
& =O\left(\frac{|s|(|s|+1) \ldots(|s|+l-1)}{x^{\sigma+l}}|f(x)|+l \frac{|s|(|s|+1) \ldots(|s|+l-2)}{x^{\sigma+l-1}}\left|f^{\prime}(x)\right|\right. \\
& \left.+\frac{l(l-1)}{2!} \frac{|s|(|s|+1) \ldots(|s|+l-3)}{x^{\sigma+l-2}}\left|f^{\prime \prime}(x)\right|+\ldots t o l+1 \text { terms }\right) \\
& =O\left(2^{l}(l+1) \max _{1 \leq j \leq l+1} \frac{|s|(s)+1) \ldots(|s|+l-j)}{x^{\sigma+l-j+1}}\left|f^{(j-1)}(x)\right|\right) \\
& =O\left(2^{l}(l+1) \max _{1 \leq j \leq l+1}\left\{\frac{(|s|+l-j+1)^{l-j+1}}{x^{l-j+1}} x^{-\sigma} x^{-(j-1)+\epsilon}\right\}\right) \\
& =O\left(2^{l}(l+1) \max _{1 \leq j \leq l+1}\left\{\frac{(|\sigma|+|t|+k)^{l}}{x^{l}} x^{-\sigma+\epsilon}\right\}\right)
\end{aligned}
$$

$$
=O\left(x^{-\sigma+\epsilon}\right) \text { if } x \geq 4(|\sigma|+|\mathrm{t}|+\mathrm{k}) .
$$

On the other hand the last but one inequality shows us that the last multiple integral in (5) is

$$
\begin{aligned}
& O\left(\sum_{n \geq 1} 2^{k}(k+1) \max _{1 \leq j \leq k+1}\left\{\frac{(|\sigma|+|t|+k)^{k}}{(X+n)^{k}}(X+n)^{-\sigma+\epsilon}\right\}\right) \\
& =O\left(2^{k}(k+1)\left(\frac{|\sigma|+|t|+k}{X}\right)^{k} X^{-\sigma+\epsilon+1}\right) \\
& =O\left(X^{-\sigma+\epsilon}\right)
\end{aligned}
$$

provided $k+\sigma \geq 3$ and $X \geq(|\sigma|+|t|+k+200)^{1+\epsilon}$ and also $k=\left[\frac{100}{\epsilon}\right]$. This completes the proof of Theorem 2.

## ACKNOWLEDGMENTS.

The authors are thankful to Professor ROGER HEATH-BROWN, FRS, for constant encouragement. They are thankful to Professor P.G.VAIDYA and an ananimous referee for their interest in this work. Finally they are thankful to Smt. J.N.SANDHYA for technical assistance.

## REFERENCES

$[\mathrm{RB}, \mathrm{KR}]_{1}$, R.BALASUBRAMANIAN and K.RAMACHANDRA, On an analytic continuation of $\zeta(s)$, Indian J. of Pure and Appl. Math. 18(7)(1987), 790-793.
$[\mathrm{RB}, \mathrm{KR}]_{2}$, R.BALASUBRAMANIAN and K.RAMACHANDRA, The proof that certain functions are entire, Maths. Teacher (India), Vol. 21 nos. 3 and 4, (1985), p 7.
[ECT], E.C.TITCHMARSH, The theory of the Riemann zeta-function, Clarendon Press, Oxford (1951), Second edition (revised and edited by D.R. HEATH-BROWN), Clarendon Press, Oxford (1986)).

## Address of the Authors

1. R.Balasubramanian, Director (MATSCIENCE), Tharamani P.O., 600113, Chennai, Tamil Nadu, India e-mail: balu@imsc.ernet.in
2. K. RAMACHANDRA, Hon. Vis. Professor, NIAS, IISc Campus, Bangalore- 560012, India. Also K.Ramachandra, Retd. Sr. Professor, TIFR centre P.O. Box 1234, IISc Campus, Bangalore-560 012, India. email: kram@math.tifrbng.res.in
P.S. Sharper results are known for $\zeta(s)$ and $L(s, \chi)(\chi-a$ character $\bmod k)$. See the booklet 'RIEMANN ZETA-FUNCTION' published by Ramanujan Institute, Chennai (1979).
